Abstract—Carbon Nanotube Field Effect Transistor (CNFET) is a promising new technology that overcomes several limitations of traditional silicon integrated circuit technology. In recent years, the potential of CNFET for analog circuit applications has been explored. This paper proposes a novel four quadrant analog multiplier design using CNFETs. The simulation based on CNFET technology shows that the proposed multiplier has better features than CMOS Multiplier. Multiplier-divider circuits are using in digital signal processing base on neural networks and communications (amplifiers with variable gain, modulators, detectors and...). In Most of CMOS analog circuit, transistors are only in triode or saturate regions; till now both regions not used. In this one kind of current multiplier-divider circuits is intrudused.it is very simple, has low die area and wide range in low voltage. All tough this circuit has no sense to temperature variation and varying parameters.

Index terms—CNT, Analog signal processing, current-mode operation, multiplier, reconfigurable circuits.

I. INTRODUCTION
Signal processing circuits find a multitude of applications in many domains such as telecommunications, medical equipment, hearing devices, and disk drives [1]–[4], the preference for an analog approach of signal processing systems being mainly motivated by their low-power operation and high speed that allows a real-time signal processing. Multiplier circuits represent intensively used blocks in analog signal processing structures. The motivation for designing these computational structures is related to their extremely wide range of applications in analog signal processing, such as adaptive equalization, frequency translation, waveform generation and curve-fitting generators, amplitude modulation, automatic gain control, squaring and square rooting, rms-dc conversion, neural networks, and VLSI adaptive filters, or measurement equipment. Based on subthreshold-operated MOS transistors, the realization of multiplier/dividers [5]–[10] requires simple architectures. In order to improve the frequency response of the computational structures and to increase their ~3 dB bandwidth, many analog signal processing functions can be achieved by exploiting the squaring characteristic of MOS transistors biased in saturation. In [11]–[15], multiplier structures were presented with single-ended input voltages, the linearization of their characteristics being obtained using proper squaring relations between the input potentials. In order to implement the multiplication of two differential-input voltages, in [16]–[18] multiplier circuits were described based on mathematical principles, similar to the methods used for multipliers with single-input voltages. As one of the promising new transistors, carbon nanotube field-effect transistor (CNFET) overcomes most of the fundamental limitations of traditional silicon MOSFET. The excellent device performance of carbon nanotube (CNT) is attributed to its near-ballistic transport capability under low voltage bias [2]. Intense research on carbon nanotube (CNT) technology has been performed on digital circuit applications such as logic or memory, as well as radiofrequency (RF) devices for analog applications. The potential for high intrinsic device speed [3] and demonstration of CNFETs with a cut-off frequency fT as high as 80 GHz [4] have indicated that CNT-based devices are well suited as building blocks of future analog and RF circuits. CNFET structure is similar to a conventional MOSFET except that its semiconducting channel is made up of carbon nanotubes (CNT) as shown in Figure 1. Since the electrons are only confined to the narrow nanotube, the mobility goes up substantially on account of near-ballistic transport as compared to the bulk MOSFET. The near-ballistic transport is due to a limited carrier-phonon interaction because of larger mean free paths of acoustic phonons [5]. Additionally, CNFET shows higher current density, and higher electron mobility of the order of 104–105 cm2/Vs [6] compared with 103 cm2/Vs for bulk silicon. The sizing of a CNFET is equivalent to adjusting the number of tubes. Since the mobility of n-type and the mobility of p-type carriers inside CNTs are identical, the minimum size is 1 for both P-CNFET and N-CNFET [7]. The device is turned on or off by the applied gate voltage. Thus, CNFET is a high quality semiconducting material.

Manuscript Received on August 2014.

Mohammad Vahid Naiemifard, Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Hormozghan, Iran.

Seied Ali Hosseini, Department of Electrical Engineering, Yadegar-E-Imam Khomeini (RAH) Branch, Islamic Azad University, Tehran, Iran.

Fig. 1 CNFET Device Structure with Multiple Nanotubes (CNFET_L3) and with a Single Tube (CNFET_L2) as Illustrated in [2]

The potential of CNFETs for analog circuit design is explored in recent works [7,8]. CNFET also exhibits properties of higher current densities, higher transconductance, lower intrinsic capacitances, as compared to CMOS, which makes CNFET attractive for linear analog
A similar expression can be obtained for the IOUT2 current, replacing in (4) the $(\text{I1} + \text{IO})$ current with $(\text{I1} - \text{IO})$ current. The expression of the output current of the multiplier/divider circuit from Fig. 2 is $\text{IOUT} = \text{IOUT1} + \text{IOUT2} + 2\text{IO}$, resulting $\text{IOUT} = (\text{I0} \text{I1}) / \text{I2}$. The aspect ratios of MOS transistors from Fig. 2 are as follows: M1–M5, M7–M11, M13–M15, M18–M23 4.5/0.9; M6, M12 10.8/0.9; M16, M17 9/0.9. The chip area of the multiplier/divider circuit is approximately 800 μm2 (including pads). The negative feedback loops that enforce M4 and M15 transistors and, respectively, M8 and M18 transistors to have the same current are stable, since their speed is suitable for obtaining the requested frequency response for the designed circuits.

Fig. 2 Implementation of the Multiplier/Divider Circuit

B. Errors Introduced by Second-Order Effects

The most important errors introduced in the multiplier/divider circuits’ operation are represented by the mismatches, channel effect modulation, body effect, and mobility degradation. As a result of these undesired effects, the proper functionality of previous circuits will be affected by additive errors. The values of these errors are relatively small (because second-order effects are smaller with a few order of magnitude than the main squaring characteristic that models the MOS transistor operation). Additionally, a multitude of specific design techniques exist that are able to compensate the errors introduced by the second-order effects. The practical realization of translinear loops using common-centroid MOS transistors strongly reduces the errors introduced by the mismatches between the corresponding devices. The design of current mirrors using cascade configurations allows an important reduction of the errors caused by the channel length modulation. In this situation, a tradeoff between the impact of the second-order effects and the minimal value of the supply voltage must be performed. Because the bulks of an important number of MOS transistors from Fig. 1 can be connected to their source (as a result of the original proposed circuit architectures), the errors introduced by the bulk effect can be canceled out for these devices.

C. Small-Signal Frequency Response of Multiplier/Dividers

The multiplier/divider circuit proposed in Fig. 1 is designed for allowing a high bandwidth. In order to achieve this goal, there exists a single high-impedance node, noted with A, which will impose the maximal frequency of operation. The frequency response of the multiplier/divider circuit presented in Fig. 2 is poorer than the frequency response of the circuit from Fig. 1, because in Fig. 2 there exist three high-impedance nodes (A, B, and C). As most of the nodes in a circuit represent low-impedance nodes, it is expected that the proposed circuits to have relatively high maximal frequencies of operation (79.6 and 59.7 MHz, respectively, obtained after simulations).
III. SIMULATED RESULTS

The $I_{\text{OUT}}(I_1)$ simulation for the first multiplier/divider circuit proposed in Fig. 2, for an extended range of I_1 current (between 0 and 10 μA), is presented in Fig. 3. The I_O current is set to be equal to 40 μA, while the I_2 current has a parametric variation: 1) 10 μA; 2) 20 μA; 3) 30 μA; and 4) 40 μA.

Fig. 3 $I_{\text{OUT}}(I_1)$ Simulation for the Multiplier/Divider Circuit

$\varepsilon_{\text{MULT}}[nA]$ vs $I_1[\mu A]$ (Fig. 4) shows the simulated linearity errors of the $I_{\text{OUT}}(I_1)$ characteristic for the multiplier/divider circuits. The $\varepsilon_{\text{MULT}}$ error is defined as the difference between the ideal linear characteristic of the multiplier/divider structure and its real characteristic, implemented using the original proposed computational structure. Taking into account PVT and Monte Carlo analysis (performed for 2 standard deviations), the linearity errors of the circuits are smaller than 0.75% (first multiplier/divider) and smaller than 0.9% (second multiplier/divider). The $I_{\text{OUT}}(I_2)$ simulation is presented in Figs. 4. The I_O current is set to be equal to 10 μA, while the I_1 current has a parametric variation: 1) 10 μA; 2) 20 μA; 3) 30 μA; and 4) 40 μA. The range of I_2 current was chosen to be between 1 μA and 50 μA. The simulation of the multiplier/divider frequency response shows a −3 dB bandwidth of approximately 59.7 MHz. The transient analysis for the multiplier/divider circuit proposed in Fig. 2 is shown in Fig. 6. The I_O current is a sinusoidal current with a frequency of 1 MHz and an amplitude equal to 200 μA, while the I_1 current is a sinusoidal current having a frequency of 60 MHz and an amplitude equal to 300 μA, while I_2 is a constant current equal to 350 μA. The simulations were made using the BSIM4 model, associated with a 0.18-μm CMOS process, MOS active devices having $f_T = 3.5$ GHz. Comparing with alternative implementations in 0.35-μm CMOS technology of the proposed multiplier/divider structures, some important advantages can be achieved. The supply voltage can be decreased from 3 to 1.2 V, correlated with a relatively important decrease of the circuits’ power consumption. Additionally, the circuits’ bandwidths can be increased by their implementation in 0.18-μm CMOS technology. A comparison between the performances of multiplier circuits reported in the previous works and the multiplier/divider circuit in Fig. 2 is presented in Table I. The proposed multiplier/divider structures have the most important advantages, such as the smallest linearity error and an increased bandwidth, compared with previously reported circuits. The circuits were designed for implementing in 0.18-μm CMOS technology, being supplied at 1.2 V. If the range of input currents is limited to 0–5 μA, the power consumptions of both proposed multiplier/divider circuits (60 and 75 μW, respectively) are smaller than the power consumption of most previously reported circuits. The input referred noise is smaller than 0.6 μV/$\sqrt{\text{Hz}}$ for both proposed multiplier/divider structures.
A novel analog multiplier using carbon nanotube FETs is proposed. The current-mode operation of the proposed computational structures further increases the circuits’ accuracy, while the removal of the impact of temperature variations on the circuits’ operation additionally contributes to the increase of the multiplier/dividers’ performances. High linearity and good noise performance has been achieved by well designed structure of multiplier and fine-tuned parameters of CNFET. The performance of the proposed multiplier is also compared with similar works on multiplier in CMOS technology.

IV. CONCLUSION

The current-mode operation of the proposed computational structures further increases the circuits’ accuracy, while the removal of the impact of temperature variations on the circuits’ operation additionally contributes to the increase of the multiplier/dividers’ performances.

REFERENCES