Volume-3 Issue-12

  • Version
  • Download 10
  • File Size 4.00 KB
  • File Count 1
  • Create Date September 7, 2017
  • Last Updated September 7, 2017

Volume-3 Issue-12

 Download Abstract Book

S. No

Volume-3 Issue-12, October 2015, ISSN:  2319–6378 (Online)
Published By: Blue Eyes Intelligence Engineering & Sciences Publication Pvt. Ltd. 

Page No.



Reza Norouzalizadeh Ghoochani, Mahyar Habibi Rad

Paper Title:

Improving Energy Consumption in Building Products using Life Cycle Assessment and Energy Analysis

Abstract: Modern building products have the potentials to save energy and improve environmental impacts in comparison to conventional products. However, in order to reduce of the energy and environmental impacts of any building product, its materials and energy consumption must be evaluated over its entire life cycle. This study analyzed the energy consumption associated with the total life cycle of the building products. It reviewed the literatures and information provided in existing life cycle assessment studies and reports to develop a comprehensive analysis of the life cycle energy for the building products. The analysis comprised three main phases: manufacturing, transportation, and operation. The results confirmed that the life cycle energy analysis could assign the useful metrics for equal comparison the products types and reduced uncertainty throughout quantifying the energy consumption and environmental impacts of the entire life cycle of the building products. Moreover, the life cycle energy analysis provided the facility of continuing improvements to efficiency and operating lifetime of the building products.

  Life cycle energy analysis; building materials and products


1.          IEA (International Energy Agency). Transition to Sustainable Buildings: Strategies and Opportunities to 2050. Available online: http://www.iea.org/etp/buildings/ (accessed on 30 July 2015).
2.          Sartori, I, Hestnes, AG. Energy use in the life cycle of conventional and low-energy buildings: a review article. Energy and Buildings, 3 (2007) 249-257.

3.          Ortiz, O, Castells, F, Sonnemann, G. Sustainability in the construction industry: a review of recent developments based on LCA. Construction and Building Materials, 1 (2009) 28-39.

4.          Zabalza Bribian, I, Aranda Uson, A, Scarpellini, S. Life cycle assessment in buildings: state-of-the-art and simplified LCA methodology as a complement for building certification. Building and Environment 12 (2009) 2510-2520.

5.          Sharma, A, Saxena, A, Sethi, M, Shree, V, Varun Life cycle assessment of buildings: a review. Renewable & Sustainable Energy Reviews 1 (2011) 871-875.

6.          Singh, A, Berghorn, G, Joshi, S, Syal, M. Review of life-cycle assessment applications in building construction. Journal of Architectural Engineering 1 (2011) 15-23.

7.          Buyle, M, Braet, J, Audenaert, A. Life cycle assessment in the construction sector: a review. Renewable & Sustainable Energy Reviews 26 (2013) 379-388.

8.          Horne, R, Grant, T, Verghese, K. Life Cycle Assessment: Principles, Practice and Prospects; CSIRO Publishing, Clayton VIC, Australia, 2009; pp. 1-10.

9.          Asdrubali, F, Baldassarri, C, Fthenakis, V. Life cycle analysis in the construction sector: guiding the optimization of conventional Italian buildings. Energy and Buildings 64 (2013) 73-89.

10.       Cabeza, LF, Rincon, L, Vilarino, V, Perez, G, Castell, A. Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renewable and Sustainable Energy Reviews 29 (2014) 394-416.

11.       Khasreen, MM, Banfill, FGP, Menzies, FG. Life-Cycle Assessment and the Environmental Impact of Buildings: A Review. Sustainability 1 (2009) 674-701.

12.       Biswas, WK. Carbon footprint and embodied energy consumption assessment of building construction works in Western Australia. International Journal of Sustainable Built Environment 3 (2014) 179-186.

13.       Ramesh, T, Prakash, R, Shukla, KK. Life cycle energy analysis of buildings: an overview. Energy and Buildings 10 (2010) 1592-1600.

14.       IFCO (Iranian Fuel Conservation Organization). Building sector report 2011. Available online: http://www.ieeo.org/ (accessed on 28 July 2015).

15.       Consoli, F, Allen, D, Boustead, I, Fava, J, Franklin, W, Jensen, A, Oude, N, Parrish, R, Perriman, R, Postlethwaite, D, Quay, B, Seguin, J, Vigon, B. Guide Lines for Life-Cycle Assessment: A ‘Code of Practice’; Society of Environmental Toxicology and Chemistry SETAC, Pensacola, FL, USA, 1993; pp. 1-10.

16.       Ciambrone, DF. Environmental life cycle analysis; Lewis, Boca Raton, New York, USA, 1997; pp. 1-10.

17.       Joshi, S. Product environmental life-cycle assessment using input–output techniques. Journal of Industrial Ecology 2(3) (1999) 95-120.

18.       ISO 14040 Environmental Management Life Cycle Assessment Principles and Framework; International Standards Organization, Brussels, Belgium, 2006.
19.       ILCD (International reference life cycle data system handbook). General guide for life cycle assessment—detailed guidance, 1st ed.; European Commission – Joint Research Centre – Institute for Environment and Sustainability, 2010.
20.       Jonsson, A, Tillman, AM, Svensson, T. Life cycle assessment of flooring materials: case study. Building and Environment 3 (1997) 245-255.

21.       Mroueh, U, Eskola, P, Laine Ylijoki, J. Life-cycle impacts of the use of industrial by-products in road and earth construction. Powder Technology 3 (2001) 271-277.

22.       Junnila, S, Horvath, A. Life-cycle environmental effects of an office building. Journal of Infrastructure Systems 4 (2003) 157-166.

23.       Guggemos, AA, Horvath, A. Comparison of environmental effects of steel- and concrete-framed buildings. Journal of Infrastructure Systems 2 (2005) 93-101.

24.       Asif, M, Muneer, T, Kelley, R. Life cycle assessment: a case study of a dwelling home in Scotland. Building and Environment 3 (2007) 1391-1394.

25.       Kofoworola, OF, Gheewala. SH. Environmental life cycle assessment of a commercial office building in Thailand. International Journal of Life Cycle Assessment 6 (2008) 498-511.

26.       Asdrubali, F. The role of life cycle assessment (LCA) in the design of sustainable buildings: thermal and sound insulating materials. In Sustainable strategy and noise solutions in urban development and infrastructure, Proceedings of 8th European Conference on Noise Control (Euronoise), Edinburgh, Scotland, UK, 27 October; Institute of Acoustics, 2009, 1400-1540.

27.       Douglas, J, A. Noy, E. Building Surveys and Reports, 4th ed.; Wiley & Sons Ltd., West Sussex, UK, 2011.

28.       Zabalza Bribian, I, Valero Capilla, A, Aranda Uson, A. Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Building and Environment 46 (2011) 1133-1140.

29.       Asdrubali, F, Schiavoni, S, Horoshenkov, KC. A review of sustainable materials for acoustic applications. Build Acoustic 19(4) (2012) 283-312.

30.       Thiel, CL, Campion, N, Landis, AE, Jones, AK, Schaefer, LA, Bilec, MM. A Materials Life Cycle Assessment of a Net-Zero Energy Building. Energies 6 (2013) 1125-1141.

31.       Ximenes, FA, Grant, T. Quantifying the greenhouse benefits of the use of wood products in two popular house designs in Sydney, Australia. International Journal of Life Cycle Assessment 18 (2013) 891-908.

32.       Nassen, J, Holmberg, J, Wadeskog, A, Nyman, M. Direct and indirect energy use and carbon emissions in the production phase of buildings: an input–output analysis. Energy 9 (2007) 1593-1602.

33.       Chang, D, Lee, C, Chen, CH. Review of Life Cycle Assessment towards Sustainable Product Development, Journal of Cleaner Production , (2014), doi: 10.1016/j.jclepro.2014.07.050.

34.       Adalberth, K, Almgren, A, Petersen, EH. Life cycle assessment of four multi-family buildings. International Journal of Low Energy and Sustainable Buildings 2 (2001) 1-21.

35.       Finnemore, JE. Fluid Mechanics with Engineering Applications; McGraw-Hill, New York, USA, 2002, ISBN 0-07-243202-0.

36.       Holman, JP. Heat Transfer, 9th ed.; McGraw-Hill, New York, USA, 2002;,ISBN 0070296391.

37.       ISIRI (Institute of Standards and Industrial Research of Iran). Energy consumption standards, information to measure energy consumption in energy-intensive industrial equipment and processes. Available online: http://www.isiri.org/Portal/Home (accessed on 30 July 2015).

38.       Langston, YL, Langston, CA. Reliability of building embodied energy model-ling: an analysis of 30 Melbourne case studies. Construction Management and Economics 2 (2008) 147-160.

39.       Lenzen, M, Wier, M, Cohen, C, Hayami, H, Pachauri, S, Schaeffer, R. A comparative multivariate analysis of household energy requirements in Australia, Brazil, Denmark, India and Japan. Energy 2-3 (2006) 181-207.

40.       Keoleian, GA, Blanchard, S, Reppe, P. Life-Cycle Energy, Costs, and Strategies for Improving a Single-Family House. Journal of Industrial Ecology 4(2) (2001) 135-156.

41.       Citherlet, S, Defaux, T. Energy and environmental comparison of three variants of a family house during its whole life span. Building and Environment 2 (2007) 591-598.






Ezer Osei Yeboah-Boateng, Emmanuel Owusu Asamoah, Vera Dzidedi Segbedzi

Paper Title:

An Automated Attendance System based on NFC & X Bee Technologies with a Remote Database

Abstract:  The main aim of this research was to automate attendance registration, thereby reducing human involvement in the whole process. Typically, the system works by storing vital staff personable information, such as Name, Job specification, etc. into a MySQL database upon engagement.  The staff is identified with a unique key associated with an NFC based ID card within the database.  So on typical work day, an employee scans his/her ID card on the PN532 reader in close proximity.  The exact time and date, together with the unique identifier of the scanned card are stored locally on a storage media, before the data is relayed via the XBee to the remote database.  The captured data is then authenticated by comparing with the pre-entered data to give access or authorization to the corporate resources, as well as recorded for attendance purposes.  Our experiment shows that the automated attendance system is more effective, efficient and reliable, due to its real time capability, remote monitoring and attendance reports that it provides to the institution.

Keywords: NFC, XBee, RFID, Attendance System, personable information.

1.          Oxford, "Oxford Dictionaries," Oxford University Press, 2015. [Online]. Available: http://www.oxforddictionaries.com. [Accessed 26 February 2015].
2.          Fadi Masalha, Nael Hirzallah, "A Students Attendance System Using QR Code," International Journal of Advanced Computer Science and Applications (IJACSA) , vol. 5, p. 5, 2014.

3.          R. B. Kuriakose, Automatic Student Registration using Radio Frequency Identification, Free State, South Africa: Central University of Technology, 2010.

4.          Sagar Shankarrao Shillewar, Gajanan Shamaraw Jadhav, "The Technology of Smart Cards," International Multidisciplinary Research Journal, vol. 4, no. 8, p. 6, 2014.

5.          NFC Forum Inc, "NFC Data Exchange Format (NDEF)," NFCForum-TS-NDEF_1.0, p. 69, 24 July 2006.

6.          Mitsugu Terada, "Application of ZigBee sensor network to data acquisition and monitoring," MEASUREMENT SCIENCE REVIEW, vol. 9, p. 4, 2009.

7.          Tom Igoe,Don Coleman,Brian Joseph, Beginning NFC, United State of America: O'reilly Media,Inc.,1005, 2014, p. 245.

8.          Lemuel Mensah, Micheal Nii Nai Johnson, David Kwadwo Frimpong, RFID Student Based Identification System, 2014.

9.          Yadav, Ravishankar & Nainan, Sumita, "Design of RFID based Student attendance Systems with notification to Parents Using GSM," International Journal of Engineering Research & Technology (IJERT), vol. 3, no. 2, p. 5, February 2014.

10.       Metrix Multimedia Zigbee Solution, ZigBee Teachers Course Notes, 2008.

11.       M. Z. a. A. Bagula, "Planning And Deploying Long Distance Wireless Sensor Networks," p. 14, 2010.

12.       M. H. A. G. B. W. D. Harris, Getting Started With Xbee Rf Modules, version 1.0 ed., parallax inc, 2010, p. 163.

13.       Piyush Suthar, Neha Pandya, "Near Field Communication”- An Enhanced Approach Towards Contactless Services," International Journal of Advanced Research in
Computer Science, vol. 4, Jan-Feb 2013.

14.       Gowthan Mamidiselti, P.N.S.L. Sravani, P. Anusha, "MNFC Operation Modes and Risks," International Journal of Soft Computing and Engineering (IJSCE), 5 November 2013.

15.       R.R.V.S.S Abhishek, P.Ravi Teja, P.RAM Maninth, "NFC Technology across a broad range of Applications," International Journal of Engineering trends and Technology (IJETT), April 2013.

16.       N. E. (. Semiconductors, Near Field Communication (NFC) Controller, PN532/C1, vol. 27, NXP B.V, 2012.

17.       N. Semiconductors, MF1S503x MIFARE Classic 1K Mainstream contactless smart card IC, NXP B.V., 2011.

18.       N. Semiconductors, NFC Type Mifare Classic Tag Operation, USA: NXP B.V, 2011.

19.       Missimo Banzi, "Arduino Board Mega," Arduino, 2015. [Online]. Available: http://www.arduino.cc/en/Main/arduinoBoardMega. [Accessed 19 May 2015].

20.       w. Gordon, Director, Kow the Difference Between the Most Common Arduino's. [Film]. Life Hacker, 2015.

21.       ITEAD STUDIO, "SD Shield 3.0," ITEAD STUDIO, p. 4, 2014.

22.       M. Integrity, DS1307 Real Time Clock, 160 Rio Robles, San Jose, CA 95134 USA , 2008.

23.       T. Cooper, "DS1307 Real Time Clock Breakout Board Kit," Adfruit , 04 May 2015. [Online]. Available: https://learn.adafruit.com/ds1307-real-time-clock-breakout-board-kit. [Accessed 19 May 2015].

24.       M. Banzi, "Arduino Ethernet Shield," Arduino, 2015. [Online]. Available: http://www.arduino.cc/en/Main/ArduinoEthernetShield. [Accessed 13 June 2015].






P  Veera Bhadra Kumari

Paper Title:

A Survey of Multilevel Inverters

Abstract:   Multilevel inverter technology has become important over the years in the area of high power medium voltage energy control. This paper presents information about several multilevel inverter topologies, such as the Neutral-Point Clamped Inverter and the Cascaded Multicell Inverter. This paper also presents the most relevant control and modulation methods developed for this family of converters: multilevel sinusoidal pulsewidth modulation, multilevel selective harmonic elimination and space vector modulation. Finally, developing areas such as electric vehicle propulsion converters and electric power grid system and other opportunities for future developments are addressed.

 Multilevel inverter, topologies, modulation, comparison

1.       N. G. Hingorani and L. Gyugyi, "Understanding FACTS" , IEEE Press, 2000
2.       Rodriguez, J.; Jih-Sheng Lai; Fang Zheng Peng; , "Multilevel inverters: a survey of topologies, controls, and applications," Industrial Electronics, IEEE Transactions on , vol.49, no.4, pp. 724- 738, Aug 2002 doi: 10.1109/TIE.2002.801052

3.       Jih-Sheng Lai; Fang Zheng Peng; , "Multilevel converters-a new breed of power converters," Industry Applications, IEEE Transactions on , vol.32, no.3, pp.509
517, May/Jun 1996 doi: 10.1109/28.502161

4.       Panagis, P.; Stergiopoulos, F.; Marabeas, P.; Manias, S.; , "Comparison of state of the art multilevel inverters," Power Electronics Specialists Conference, 2008.
PESC 2008. IEEE , vol., no., pp.4296-4301, 15-19 June 2008 doi:10.1109/PESC.2008.4592633

5.       Peng, F.Z.; , "A generalized multilevel inverter topology with self voltage balancing," Industry Applications Conference, 2000. Conference Record of the 2000 IEEE , vol.3, no., pp.2024-2031 vol.3, 2000 doi: 10.1109/IAS.2000.882155

6.       Peng, F.Z.; Wei Qian; Dong Cao; , "Recent advances in multilevel converter/inverter topologies and applications," Power Electronics Conference (IPEC), 2010 International , vol., no., pp.492-501, 21-24 June 2010 doi: 10.1109/IPEC.2010.5544625

7.       Naja_, E.; Yatim, A.; Samosir, A.S.; , "A new topology -Reversing Voltage (RV) - for multi level inverters," Power and Energy Conference, 2008. PECon 2008. IEEE 2nd International , vol., no., pp.604-608, 1-3 Dec. 2008 doi:10.1109/PECON.2008.4762547

8.       Hemant Joshi, P. N. Tekwani, Amar Hinduja, Implementation of a Five- Level Inverter Using Reversing Voltage Topology: A Competitive Solution for High- Power IM Drive Application. Indian Institute of Technology Roorkee. 2010

9.       Zhihong Bai; Zhongchao Zhang; Yao Zhang; , "A Generalized Three-Phase Multilevel Current Source Inverter with Carrier Phase-Shifted SPWM," Power Electronics Specialists Conference, 2007. PESC 2007. IEEE , vol., no., pp.2055-2060, 17-21 June 2007 doi: 10.1109/PESC.2007.4342322

10.    McGrath, B.P.; Holmes, D.G.; , "A comparison of multicarrier PWM strategies for cascaded and neutral point clamped multilevel inverters," Power Electronics Specialists Conference, 2000. PESC 00. 2000 IEEE 31st Annual , vol.2, no., pp.674-679 vol.2, 2000 doi: 10.1109/PESC.2000.879898

11.    McGrath, B.P.; Holmes, D.G.; , "Multicarrier PWM strategies for multilevel inverters," Industrial Electronics, IEEE Transactions on , vol.49, no.4, pp. 858- 867, Aug 2002 doi: 10.1109/TIE.2002.801073

12.    Carrara, G.; Gardella, S.; Marchesoni, M.; Salutari, R.; Sciutto, G.; , "A new multilevel PWM method: a theoretical analysis," Power Electronics, IEEE Transactions on , vol.7, no.3, pp.497-505, Jul 1992 doi: 10.1109/63.145137

13.    Rodriguez, J.; Bernet, S.; Steimer, P.K.; Lizama, I.E.; , "A Survey on Neutral-Point-Clamped Inverters," Industrial Electronics, IEEE Transactions on , vol.57, no.7, pp.2219-2230, July 2010 doi: 10.1109/TIE.2009.2032430

14.    Busquets-Monge, S.; Alepuz, S.; Rocabert, J.; Bordonau, J.; , "Pulsewidth modulations for the comprehensive capacitor voltage balance of n-level diode-clamped converters," Power Electronics Specialists Conference, 2008. PESC 2008. IEEE ,vol., no., pp.4479-4486, 15-19 June 2008 doi: 10.1109/PESC.2008.4592669

15.    Yongdong Li; Yue Gao; Xuan Hou; , "A general SVM algorithm for multilevel converters considering zero-sequence component control," Industrial Electronics Society, 2005. IECON 2005. 31st Annual Conference of IEEE , vol., no., pp. 6 pp., 6-10 Nov.2005 doi: 10.1109/IECON.2005.1568957

16.    Newton, C.; Sumner, M.; , "Novel technique for maintaining balanced internal DC link voltages in diode clamped _ve-level inverters," Electric Power Applications, IEEE Proceedings - , vol.146, no.3, pp.341-349, May 1999 doi: 10.1049/ip-epa:19990103

17.    Siemaszko, D.; Antonopoulos, A.; Ilves, K.; Vasiladiotis, M.; Ängquist, L.; Nee, H.-P.; , "Evaluation of control and modulation methods for modular multilevel converters," Power Electronics Conference (IPEC), 2010 International , vol., no.,pp.746-753, 21-24 June 2010 doi: 10.1109/IPEC.2010.5544609

18.    N. Mohan, T. Undeland, and W. Robbins, "Power Electronics: Converters, Applications, and Design", Wiley, 2003, ISBN:978-0-471-22693-2 






M Nalini Devi

Paper Title:

Performance Analysis of RLC Series Circuit and DC Machine using Bond Graph Theory

Abstract: This paper presents the Bond Graph formalism for modeling of electrical systems. Eelectrical models like series RLC circuit and DC machine are modeled by this approach for the analysis of their physical behavior. System equations are generated by using a step-by-step procedure from a bond graph diagram. Theoretical valuation is validated through the numerical simulation studies. MATLAB/SIMULINK software package is employed for simulation and corresponding results have been carried out.

  Bond graph, effort and flow, MATLAB/SIMULINK


1.       Amod C. Umarikar, Tusharkant Mishra And L. Umanand , “Bond Graph Simulation And Symbolic Extraction Toolbox In Matlab/Simulink”, J. Indian Inst. Sci., Jan.–Feb. 2006, pp 45–68.
2.       José Antonio Calvo, Carolina Álvarez- Caldas and José Luis San Román, “Analysis of Dynamic Systems Using Bond Graph Method Through SIMULINK” Sapin.

3.       Samantaray, www.bondgraphs.com, 2001, pg.1-25.

4.       Jan F. Broenink, “Introduction to Physical Systems Modelling with Bond Graphs” University of Twente, Dept EE, Control Laboratory

5.       Amalendu Mukherjee, Arun Kumar Samantaray, Ranjith karmakar,” Bond Graph In Modeling, Simulation And Fault Identification”I.K.Publishers.. 






Rajeev Singh

Paper Title:

A Review of Pressure Pulse Measurement Techniques for Space-Charge and Polarization in Dielectrics

Abstract:  This review encompasses a detailed account of pressure pulse methods for measurement of space charge profiles in thickness direction of polymer electrets.

 Space-Charge, Pressure Pulse, PPS, LIPP, PWP


1.          B. Gross, J. Dow, and S. V. Nablo, “Charge Buildup in Electron Irradiated Dielectrics”, J. Appl. Phy., Vol.44, pp.  2459-2463, 1973.
2.          B. Gross, G. M. Sessler and J. E. West, “Charge Dynamics for Electron Irradiated Polymer-Foil Electrets”, J. Appl. Phys., Vol. 45, pp.  2841-2851, 1974.

3.          B. Gross, R. Gerhard Multhaupt, K. Labonate and A. Berrassoul, “Current Transmission and Charge Deposition in Polyethylene Terephthalate (PETP) Irradiated with 10-50 keV Electrons”, Coll. Polym. Sci., Vol. 262, pp.  93-98, 1984.

4.          G. M. Sessler, J. E. West, D. A. Berkely and G. Morgenstern, “Determination of Spatial Distribution of Charges in Thin Dielectrics”, Phy. Rev. Lett., Vol. 38, pp.  368-371, 1977.

5.          G. M. Sessler and R. Gerhard-Multhaupt, “A Review of Methods for Charge or Field Distribution studies on Radiation Charged Dielectric Films”, Radiat. Phy. Chem., Vol. 23, pp.  363-370, 1984.

6.          Thiessen, A. Winkel and K. Hermann, “Elektrische nach wirkungen im erstarren dielektrum“, Phys. Z., Vol. 37, pp.  511-520, 1936.

7.          D. K. Walker and O. Jefimenko, “Volume Charge Distribution in Carnauba Wax Electrets”, J. Appl. Phys., Vol. 44, pp.  3459-3464, 1973.

8.          R. E. Collins, Ferroelectrics, “Thermal Pulsing Technique Applied to Polymer Electrets”, Vol. 33, pp.  65-74, 1981.

9.          R. J. Phelan Jr., R. L. Peterson, C. A. Hamilton, and G. W. Day, “The Polarization of PVF and PVF2 Pyroelectrics”, Ferroelectrics, Vol. 7, pp.  375, 1974.

10.       M. A. Marcus, “Controlling the Piezoelectric Activity Distribution in Poly(vinylidene fluoride)”, Ferroelectrics, Vol. 32, pp.  149-155, 1981.

11.       Maciej A. Noras, “Charge Detection Methods for Dielectrics- Overview”, Trek Application Note, No. 3005, pp.  1-13, 2003.

12.       R. J. Fleming, “Space Charge in Polymers, Particularly Polyethylene”, Brazillian Journal of Physics, Vol. 29, pp.  280-294, 1999.

13.       P. Bloβ, A. S. DeReggi, G. M. Yang, G. M. Sessler and H. Schäfer, “Thermal and Acoustic Pulse Studies of Space-Charge Profiles in Electron-Irradiated Fluoroethylene Propylene”, J. Phys. D: Appl. Phys., Vol. 33, pp.  430-436, 2000.

14.       G. M. Sessler, J. E. West, and G. Gerhard, “High Resolution Laser Pulse Method for Measuring Charge Distributions in Dielectrics”, Phys. Rev. Lett., Vol. 48, pp.  563-566, 1982.

15.       C. Alquié, G. Dreyfus and J. Lewiner, “Stress Wave Probing of Electric Field Distributions in Dielectrics”, Phys. Rev. Lett., Vol. 47, pp.  1483-1487, 1981.

16.       T. Takada, N. Adachi and Y. Tanaka, “Comparison between PEA Method and the PWP Method for Space Charge Measurement in Solid Dielectrics’’, Space Charge in Solid Dielectrics edited by J. C. Fothergill and L. A. Dissado, pp.  133-144, 1998.

17.       G. M. Sessler, J. E. West and G. Gerhard, “Measurement of Charge Distribution in Polymer Electrets by a New Pressure Pulse Method”, Polym. Bull., Vol.6, pp.  109-111, 1981.

18.       W. Eisenmenger and M. Haardt, “Observation of Charge Compensated Polarization Zones in Polyvinylidene fluoride (PVDF) Films by Piezoelectric Acoustic Step-Waves Response”, Solid State Comm. Vol. 41, pp.  917-920, 1982.

19.       M. Haardt and W. Eisenmenger, “High Resolution Technique for Measuring Charge and Polarization Distributions in Dielectrics by Piezoelectrically Induced Pressure Step Waves”, 1982 Ann. Rep. Con. on Electr. Insul. Diel. Phenom., IEEE Report No. 82CH1773-1, pp.  46-51, 1982.

20.       W. Eisenmenger and M. Haardt, “Observation of Charge Compensated Polarization Zones in PVDF Film by Piezoelectric Acoustic Step Wave Response’’, Solid State Comm., Vol. 26, pp. 579-581, 1985.

21.       R. Gerhard-Multhaupt, M. Haardt, W. Eisenmenger and G. M. Sessler, “Electric-Field Profiles in Electron Beam-Charged Polymer Electrets”, J. Phys. D, Vol. 16, pp.  2247-2256, 1983.

22.       P. Laurenceau, G. Dreyfus, and J. Lewiner, “New Principle for the Determination of Potential Distributions in Dielectrics”, Phys. Rev. Lett. Vol. 38, pp.  46-49, 1977.

23.       P. Laurenceau, J. Ball, G. Dreyfus, and J. Lewiner, C. R. Acad. Sci. Ser. B 283 ,  pp.  135, 1976.

24.       D. Darmon, P. Laurenceau, G. Dreyfus, and J. Lewiner, “Une methode non destructive de determination de la distribution spatiale des potentiels dans les dielectriques”, J. Electrostatics., Vol. 8,  pp.  75-79, 1979.

25.       R. Gerhard-Multhaupt, “Analysis of Pressure-wave Methods for Nondestructive Determination of Spatial Charge or Field Distributions in Dielectrics”, Phys. Rev. B., Vol. 27, pp.  2494-2503, 1983.

26.       G. M. Sessler, R. Gerhard-Multhaupt, H. Seggern and J. E. West, “Charge and Polarization Profiles in Polymer Electrets”, IEEE Trans. Electr. Insul., Vol. 21, pp.  411-415, 1986.

27.       G. M. Sessler, R. Gerhard-Multhaupt, H. Seggern and J. E. West, “Charge and Polarization Profiles in Polymer Electrets”, 5th Intern. Symp. On Electrets, Heidelberg, Germany, pp.  565-570, 1985.

28.       J. E. West, H. J. Wintle, A. Berraissoul and G. M. Sessler, “Space Charge Distribution in Electron Beam Charge Mylar and Kapton Films”, Electr. Insul., Vol. 24, pp.  553-536, 1989
29.       G. M. Sessler, “Charge Storage in Dielectrics”, IEEE Trans. Electr. Insul., Vol. 24, pp.  395-402, 1989.

30.       L. Tingi and G. M. Sessler, “An Experimental Study of Charge Distribution in Electron Beam Irradiated Polypropylene Films, “IEEE Trans. Electr. Insul., Vol. 26, pp.  228-235, 1991.

31.       R. Gerhard-Multhaupt, G. M. Sessler, J. E. West, K. Holdik, M. Haardt and W. Eisenmenger, “Investigation of Piezoelectricity Distribution in Poly (vinylidene fluoride) by means of Quartz- or Laser Generated Pressure Pulses”, J. Appl. Phys., Vol. 55, pp.  2769-2775, 1984.

32.       Y. Suzuoki, T. Furuta, H. Yamada, S. O. Han, T. Mizutani, M. Ieda and N. Yoshifuji, “Study of Space Charge in Polyethylene by Direct Probing”, IEEE Trans. Electr. Insul., Vol. 26, pp.  1073-1079, 1989

33.       D. Malec, “Study of Static Electricity using the Laser-Induced Pressure Pulse Method”, Meas. Sci. Technol., Vol. 15, pp.  N1-N5, 2004.

34.       L. Ainouche and C. Alquié, “Application of Pressure Wave Propagation Method for Adhesion Defects Detection and Quantification in Bilayer Structure”, J. Appl. Phys., Vol. 86, pp.  1156-1166, 1999.

35.       D. Malec and Th. Lebey, “Coupled Measurements of Partial Discharges Activity and Space Charge in a Polyethylene Model Sample Under 50 Hz AC Field”, Proc. IEEE Conf. Electr. Insul. Diel. Phenom. (Austin USA) (Piscataway, NJ: IEEE), 1999.

36.       D. Malec and Th. Lebey, “Laser Induced Pressure Pulse as a Tool to Determine Surface Charges in Inhomogeneous (solid/gas) Dielectric”, Appl. Phys. Lett., Vol. 80, pp.  1421-1423, 2002.

37.       P. G. Kazansky, A. R. Smith, P. St. Russel, G. M. Yang and G. M. Sessler, “Thermally Poled Silica Glass: Laser Induced Pressure Pulse Probe Charge Distribution”, Appl. Phys. Lett., Vol. 68, pp.  269-271, 1996.

38.       C. Alquié, F. Chapeau and J. Lewiner, “Evolution of Charge Distributions in FEP Films Analysis by the Laser Induced Acoustic Pulse Method”, 1984 Ann. Rep. Con. on Electr. Insul. And Diel. Phenom., IEEE Report No. 84CH1994-3, pp.  488-496, 1984.

39.       M. P. Cals, J. P. Marque and C. Alquié, “The Pressure Pulse Method for Measuring Space Charge Distribution in Irradiated Insulators”, IEEE Trans.  Electr. Insul., Vol. 24, pp.  999-1003, 1989.

40.       C. Laburthe-Tolra, C. Alquié and J. Lewiner, “Piezoelectrically Analysis in VDF-TrFE Copolymer Films Using the Pressure Wave Propagation Method”, 1990 Ann. Rep. Conf. Electr. Insul. Diel. Phenom., pp.  71-77, 1990.

41.       F. Chapeau, C.  and J. Lewiner, “The Pressure Wave Propagation Method for the Analysis of Insulating Materials: Application to LDPE Used in HV Cables”, IEEE Trans. Electr. Insul., Vol. 21, pp.  405-410, 1986.
42.       T. Ditchi, C. Alquié, J. Lewiner, E. Favrie and R. Joctuer, “Electrical Properties of Electrode/Polyethylene/Electrode Structures”, IEEE Trans.  Electr. Insul., Vol. 24, pp.  403-408, 1989.
43.       F. Chapeau, C. Alquié, J. Lewiner,  H. Auclair, Y. Pelet and R. Jocteur, “Pulsed Laser Determination of Surafce Electric Charge Distributions”, J. Phys. Lett. Vol. 43, pp.  687-693, 1982.

44.       F. Chapeau, T. Ditchi, C. Alquié, C. Alquié, J. Perret and B. Dalle, “Comparative Study of the Behaviour of Two Polyethylene Types Under DC Voltage by the Pressure Wave Method”, Conf. JICABLE 1987, Versailles, France, pp.  81-97, 1987.

45.       R. Gerhard-Multhaupt, W. Künstler, G. Eberle, W. Eisenmenger and G. Yang, “High Space-Charge Densities in the Bulk of Fluoropolymer Electrets Detected with Piezo-electrically Generated Pressure Steps”, Space Charge in Solid Dielectrics, Edited by J. C. Fothergill and L. A. Dissado Published by the Dielectrics Society Leicester, England, pp.  123-132, 1998.






Akhilesh Kumar Pandey, Girish Chandra, Rajeev Singh

Paper Title:

A Comparative Analysis of Variation Between Feed Patch and Parasitic Patch of a CPW Microstrip Antenna

Abstract:  A CPW fed microstrip antenna with triple band is presented. Two different radiating microstrip line are kept near the fed microstrip line structure. The new radiating antenna obtained has shifted frequencies bands at left side. The analysis of radiating structure by varying the gap fed patch and microstrip line is done. As well as comparisons of four antennas are given along with radiation pattern are presented. The simulation results have been done using software AWR Microwave office.

 Coplanar wave guide (CPW), Microstrip patch, triple band, dual band.

1.          Steven Mestdagh, Walter De Raedt, and Guy A. E. Vandenbosch, “CPW-Fed Stacked Microstrip Antennas,” IEEE Transactions on Antennas and Propagation, vol. 52, 2004, pp. 74-83.
2.          K. Pandey, R. Singh, and G. Chandra, “Analysis of CPW fed T-shaped patch antenna for WLAN applications,” International Journal of Advance Electrical and Computer Engineering (IJAECE), vol. 2, 2015, pp. 35-38.

3.          Singh, J.A. Ansari, K. Kamakshi, A. Mishra and Mohammad Aneesh, “Compact notch loaded half disk patch antenna for dualband operation,” Annal Telecommunication, vol. 69, 2014, pp. 475-483.

4.          Singh, Kamakshi, M. Aneesh, and J. A. Ansari, “Slots and Notches Loaded Microstrip Patch Antenna for Wireless Communication,” TELKOMNIKA Indonesian Journal of Electrical Engineering, vol. 13, 2015, pp.584-594.

5.          S.S Sayeed, A. Singh, Kamakshi, M. Aneesh and J. A. Ansari, “Analysis of C-Shaped compact microstrip line fed rectangular patch antenna for dual band operation,” Journal of Electrical Engineering, vol. 14, 2014, pp. 1-7.

6.          J. Y. Sze, T. H. Hu and T. J. Chen, “Compact dualband angular-ring slot antenna with meandered grounded strip,” PIER Online, vol.95, 2009, pp.299-308.

7.          J. Anguera, C. Puente and C. Borja, “Dual Frequency broadband microstrip with a reactive loading and stackrd elements,” PIER Letters, vol.10, 2009, pp-1-10.

8.          Kai Fong Lee, Kwai Man Luk and K Ming Mak, “ Dual and triple band patch antennas fed by meandering probes,” Microwave Opt. Technol. Lett., Vol. 52, 2010, pp 1498-1504.

9.          R. Q. Lee and R. N. Simons, “Coplanar wave guide aperture coupled microstrip patch antenna,” IEEE Microwave and Guided Wave Letters,vol. 2, 1992, pp. 138-139.

10.       H. Iwasaki, “A back-to-back rectangular-patch antenna fed by a CPW,” IEEE Transactions on Antennas and Propagation, vol. 46, 1998, pp. 1527-1530.

11.       Sean C. Ortiz, Tony Ivanov, and Amir Mortazawi, “A CPW-fed microstrip patch quasi-optical amplifier array,” IEEE Transactions on Microwave Theory and Techniques, vol. 48, 2000, pp. 276-280.

12.       K. H. Y. Ip, T. M. Y. Kan, and G. V. Eleftheriades, “A single-layer CPW-fed active patch antenna,” IEEE Microwave and Guided Wave Letters, vol. 10, 2000, pp. 64-66.

13.       K. H. Y. Ip and G. V. Eleftheriades, “A compact CPW-based single-layer injection-locked active antenna for array applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, 2002, pp. 481-486.

14.       M. N.-Moghadasi, R. Sadeghzadeh, L. Asadpor, and B. S. Virdee, “A small dual-band cpw-fed monopole antenna for GSM and WLAN applications,” IEEE Antennas and Wireless Propagation Letters, vol. 12, 2013,pp. 508-511.

15.       K. Gautam, S. Yadav, and B. K. Kanaujia, “A CPW-fed compact UWB microstrip antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 12, 2013, pp. 151 154.

16.       A. A. Abdelaziz, “Bandwidth enhancement of microstrip antenna,” Progress In Electromagnetics Research, vol. 63, 2006, pp. 311–317.






Bright Kwame Ameme

Paper Title:

Internet Banking in Ghana: Challenges and Benefits

Abstract:   One of the most important competitive tools and strategic strengths of banks today is information technology. Technological investments in banks enhance customer experience and satisfaction through operational excellence, improved and convenient product and service offerings. This notwithstanding, customers face some challenges with these technological innovations. The ability of banks to compete effectively on these technological innovations depends largely on ensuring that the benefits outweigh the challenges faced by customers. This study used both qualitative and quantitative approach to investigate the benefits and challenges of internet banking in Ghana, with specific emphasis to a commercial bank. The study employed Kendall’s Coefficient of Concordance to establish the degree of agreement among the respondents on internet banking challenges. Kruskal-Wallis ranking method was also employed to analyse respondents rating of reduction in banking hall transactions, as a result of using internet banking services. The results of the study revealed frequent breakdown of websites, high service charges, low limit on funds transfer and slowness of transactions as key challenges facing internet banking customers in Ghana. On the other hand, customers will be more satisfied when internet banking platforms are enhanced with other banking services. The study concluded that there was a significant effect of the use of internet banking services on the volume of banking hall transactions. In addition, there was a weak-to-moderate level of evidence of agreement among the respondents on the internet banking challenges. It was therefore recommended for banks in Ghana to invest in alternate banking channels in order to remain competitive, satisfy and retain their customers and reduce the long queues that often characterise the banking halls. Equally, banks need to take steps to mitigate challenges affecting customers in the use of internet banking services.

  Banking, Innovation, Service, Technology.


1.          G. Worku, “Electronic-banking in Ethiopia-Practices, opportunities and challenges,” J. Internet Bank. Commer., vol. 15, no. 2, pp. 2–8, 2010.
2.          K. Obiri-Yeboah, R. Kyere-Djan, and K. O. Kwarteng, “The role of information technology on banking service delivery: A perspective from customers in Ghana.”

3.          C. M. Matei, C. I. Silvestru, and D. S. Silvestru, “Internet banking integration within the banking system,” Rev. Inform. Econ. Nr, vol. 2, no. 46, pp. 1012–1018, 2008.

4.          Y. Mermod, “Customer’s perspectives and risk issues on e-banking in Turkey; Should we still be online,” J. Internet Bank. Commer., vol. 16, no. 1, pp. 2011–04, 2011.

5.          K. C. Biswal, “Emerging trends in the Indian banking sector- Challenges & opportunities,” Int. J. Adv. Arts Sci. Eng., vol. 3, no. 6, pp. 2320–6144, Jan. 2015.

6.          PwC, “Ghana banking survey report,” 2015.

7.          H. Seyal and M. M. Rahim, “Customer satisfaction with internet banking in Brunei Darussalam: Evaluating the role of demographic factors,” E-Serv. J., vol. 7, no. 3, pp. 47–68, 2011.

8.          M. F. Talpos and D. Cândea, “Contemporary challenges in internet banking,” Manag. Chall. Contemp. Soc. Proc., p. 285, 2009.

9.          Union internationale des télécommunications, Measuring the information society 2012. Geneva: International telecommunications union, 2012.

10.       C. Sayar and S. Wolfe, “Internet banking market performance: Turkey versus the UK,” Int. J. Bank Mark., vol. 25, no. 3, pp. 122–141, Apr. 2007.

11.       H. M. Sabi, “Developing countries,” J. Internet Bank. Commer., vol. 19, no. 2, 2014.

12.       R. Venkatesh, “Marketing theory and its applications in the healthcare industry,” Int. J. Mark. Technol., vol. 2, no. 8, pp. 162–173, 2012.

13.       S. Al-Hajri and A. Tatnall, “Factors relating to the adoption of internet technology by the Omani banking industry,” E-Commer. Trends Organ. Adv. New Appl. Methods New Appl. Methods, p. 264, 2009.

14.       R. Jatana and R. K. Uppal, E-banking in India: Challenges and opportunities. New Century Publications, 2007.

15.       M. S. Alnsour and K. Al-Hyari, “Internet banking and Jordanian corporate customers: Issues of security and trust,” J. Internet Bank. Commer., vol. 16, no. 1, pp. 1–14, 2011.

16.       S. K. Kombe and M. K. Wafula, “Effects of internet banking on the financial performance of commercial banks in Kenya. A case of Kenya commercial bank,” Int. J. Sci. Res. Publ., vol. 5, no. 5, May 2015.

17.       M. E. Agwu, “A qualitative study of the problems and prospects of online banking in developing economies–case of Nigeria,” J. Internet Bank. Commer., vol. 17, no. 3, pp. 1–20, 2012.

18.       G. Angelakopoulos and A. Mihiotis, “E-banking: Challenges and opportunities in the Greek banking sector,” Electron. Commer. Res., vol. 11, no. 3, pp. 297–319, Sep. 2011.

19.       E. M. Auta, “E-banking in developing economy: Empirical evidence from Nigeria,” J. Appl. Quant. Methods, vol. 5, no. 2, pp. 212–222, 2010.

20.       M. Polasik and T. Piotr Wisniewski, “Empirical analysis of internet banking adoption in Poland,” Int. J. Bank Mark., vol. 27, no. 1, pp. 32–52, Jan. 2009.

21.       R. K. Srivastava, “Customer’s perception on usage of internet banking,” Innov. Mark., vol. 3, no. 4, p. 66, 2007.

22.       D. Thulani, C. Tofara, and R. Langton, “Adoption and use of internet banking in Zimbabwe: An exploratory study,” J. Internet Bank. Commer., vol. 14, no. 1, p. 1, 2009.

23.       M. Salehi and M. Alipour, “E-banking in emerging economy: Empirical evidence of Iran,” Int. J. Econ. Finance, vol. 2, no. 1, p. p201, 2010.

24.       W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance analysis,” J. Am. Stat. Assoc., vol. 47, no. 260, p. 583, Dec. 1952.

25.       T. Neideen and K. Brasel, “Understanding statistical tests,” J. Surg. Educ., vol. 64, no. 2, pp. 93–96, Mar. 2007.

26.       J. Rattray and M. C. Jones, “Essential elements of questionnaire design and development,” J. Clin. Nurs., vol. 16, no. 2, pp. 234–243, Feb. 2007.

27.       D. Kember and D. Y. P. Leung, “Establishing the validity and reliability of course evaluation questionnaires,” Assess. Eval. High. Educ., vol. 33, no. 4, pp. 341–353, Aug. 2008.

28.       G. Thanasegaran, “Reliability and validity issues in research,” Integr. Dissem., vol. 4, pp. 35–40, 2009.

29.       J. Chavan, “Internet banking–Benefits and challenges in an emerging economy,” Int. J. Res. Bus. Manag., vol. 1, no. 1, pp. 19–26, 2013.

30.       B. Omar, N. Sultan, K. Zaman, N. Bibi, A. Wajid, and K. Khan, “Customer perception towards online banking services: Empirical evidence from Pakistan,” J. Internet Bank. Commer., vol. 16, no. 2, 2011.

31.       Dagar, “Online banking : Benefits and related issues,” vol. 3, no. 5, pp. 715–719, 2014.

32.       B. W. Okibo and A. Y. Wario, “Effects of e-banking on growth of customer base in Kenyan banks,” Int. J. Manag. Sci. Inf. Technol. IJMSIT, no. 11-(Jan-Mar), pp. 48–64, 2014.






Gyanendra Singh, Neha Mishra, Tushar Singh, Vipin Kumar

Paper Title:

Power System State Estimation and Observability Analysis via Matrix Laboratory

Abstract:   This paper provides a numerical approach to observability analysis. The approach enables observability analysis and restoration (pseudo- measurement selection) in a simple way with iteration, via triangular factorization of the jacobian matrix of the weight least square state estimator. An algorithm for precious measurement of topological observability in large bus – system state estimation has been proposed. The algorithm is based on observation that the search for a spanning tree of full rank. The observability characterization of an electric power system from a topological point of view with respect to a given measurement acquisition system is equivalent to the existence of a certain spanning tree. The notation of observability, is a measure of how well internal states of a system can be reconstructed using a given set of measurements. In this work we derive necessary and sufficient conditions for observability in a power system. It is also show that standard measurement sets of at least one voltage measurement, and paired active and reactive power measurements may lead to unobservability for certain measurements configuration. Using a non linear transformation and properties of graph theory, a set of sufficient conditions are derived for observability. These conditions are shown to be dependent on the topological properties as well as the type of available measurements. The results is validated using an IEEE-3 Bus system. This method can be utilized off- line as a planning tool during the initial stages of measurements system design as well as on-line prior to state estimation. We use observability algorithm and state estimation algorithm, also use the Mat lab to obtain the various graphs of bus systems. In this paper we use Newton Raphson method to measure the matrix of bus-system The main objective of this paper is to measure the Observability analysis of bus system by using Mat lab simulation. In this paper we write the state estiman and observability analysis programming in matrix laboratory.

Power system state estimation, Observability analysis, Pseudo-measurement, Mathematical technique, Critical measurement

1.          G. R. Krumpholz, K. A. Clements and P. W. Davis “Power System Observability: A practical algorithm using network topology”, IEEE Trans on Power apparatus and system VOL PAS- 99, pp 1534- 1542 July/Aug 1980.
2.          G. R. Krumpholz, K. A. Clements, and P. W. Davis, “Power System Observability”, Sep 1981.

3.          V.H. Quintana, A Simoes-costa and A. Mandal, “Power System Observability using a direct graph –Theoretic approach”, IEEE Trans on PAS VOL. PAS -101 pp: 617-625 March 1982.

4.          R. E. Kalman,, “On the Computation of the Reachable/Observable Canonical Form”, SIAM Journal of Control and Optimization, Vol. 20, pp. 258-260, 1982.

5.          S. M. Chan, “Model Controllability and Observability of PowerSystem Models” Electrical Power & Energy Systems, Vol. 6, No. 2, pp. 83 – 88, 1984.

6.          Monticelli, F. F. Wu., “Network Observability: Theory”, IEEE Transactions on Power Apparatus and Systems, Vol. Pas-104, No. 5, pp. 1042 – 1048, Feb 1985.

7.          E.D. Crainiac,et.al. “Power system observability The assessment of measurement system strength 1990.

8.          P. Trehin, N. Heraud, “Observability and State Estimation of Electrical Power Networks”, Computers and Electrical Engineering, Vol. 28, pp. 391 – 416, 2002.

9.          G. N. Korres, P. J. Katsikas, “A Hybrid Method for Observability Analysis Using a Reduced network graph Theory”, IEEE Transactions on Powers Systems 2003.

10.       G.N. Korres “Numerical observability analysis based on Network graph theory 2003.

11.       P. Trehin, N. Heraud, “Observability and State Estimation of Electrical Power Networks”, Computers and Electrical Engineering, Vol. 28, pp. 391 – 416, 2002.

12.       G. N. Korres, P. J. Katsikas, “A Hybrid Method for Observability Analysis Using aReduced Network Graph Theory”, IEEE Transactions on Powers Systems, Vol., 18, No. 1, pp. 295 – 304, 2003.

13.       G. N. Korres, P. J. Katsikas, K. A. Clements, P. W. Davis, “Numerical Observability Analysis Based on Network Graph Theory”, IEEE Transactions on Power Systems, Vol. 18, No. 3, pp. 1035 – 1045, 2003.

14.       G. N. Korres, P. J. Katsikas, G. C. Contaxis, “Transformer Tap Setting Observability in State Estimation”, IEEE Transaction on Power Systems, Vol. 19, No.2, pp.
699 – 706, Oct 2004.

15.       Korres, “Reduced model for numerical observability analysis in generalised state estimation”, IEEE Generation, transmission and distribution, ISSN 1350-2360, 99-108, Jan. 2005.

16.       Almedia, “A numerical method for finding spanning trees in power system state estimation”, Power system technology, 2006 in Chongqing, International conference on 22-26 Oct. 2006.