Abstract: The system configuration including green power generator, energy storage element, dc appliance and equipment, and energy management system (EMS) with fuzzy logic will be introduced. The proposed integrated circuit allows the machine to operate in motor mode or acts as boost inductors of the boost converter, and thereby boosting the output torque coupled to the same transmission system or dclink voltage of the inverter connected to the output of the integrated circuit. In motor mode, the proposed integrated circuit acts as an inverter and it becomes a boosttype boost converter, while using the motor windings as the boost inductors to boost the converter output voltage. Enhancement of a renewable power management system with intelligence control techniques (Fuzzy) for a micro grid system. Modeling, analysis, and control of distributed power sources and energy storage devices with MATLAB/ Simulink are proposed, and the integrated monitoring EMS is implemented. To improve the life cycle of the battery, intelligence control techniques manage the desired state of charge. The controller is to optimize energy distribution and to set up battery state of charge SOC parameters. In the development of the green energy systems, a control method is required to optimize energy distribution of a micro grid system. The design concept of this study was to increase the useful life of lithium batteries and to include charge and over discharge protection mechanisms. The power generator includes PV panels, wind turbines, and fuel cells. The fuel cells provide base power for the emergency loads when the system is operated during a power failure. Maximum power point trackers are associated with PV panels and wind turbines to draw maximum power, which is fed into the dc grid. The loads are connected to the grid and supplied from the grid directly. If there is power shortage, the bidirectional inverter will take power from the ac grid and it is operated in rectification mode with power factor correction to regulate the dc grid voltage within a range of 380 ± 20 V.
Keywords: Energy management system (EMS), Fuzzy Logic, State of charge (SOC), Micro grid, MATLAB/SIMULINK
References:
[1] H. Rongxian, L. Zhiwen, C. Yaoming, W. Fu, and R. Guoguang, “DC microgrid simulation test platform,” in Proc. 9thTaiwan Power Electron. Conf., 2010, pp. 1361–1366.
[2] S. Morozumi, “Microgrid demonstration projects in Japan,” in Proc. IEEE Power Convers. Conf., Apr. 2007, pp. 635–642.
[3] Y. Uno, G. Fujita, R. Yokoyama, M. Matubara, T. Toyoshima, and T. Tsukui, “Evaluation of microgrid supply and demand stability for different interconnections,” in Proc. Power Energy Conf., 2006, pp. 611–616.
[4] M. HabibUllah, T. S. Gunawan, M. R. Sharif, and R. Muhida, “Design of environmental friendly hybrid electric vehicle,” in Proc. IEEE Conf.Comput. Commun. Eng., Jul. 2012, pp. 544–548.
[5] Experience in Developing and Promoting 400 V DC Datacenter Power, T. V. Aldridge, Director, Energy Systems Research Lab, Intel Corporate Technology Group, Green Building Power Forum, Jun. 2009.
[6] Maximizing Overall Energy Efficiency in Data Centres, S. Lidstrom, CTO, Netpower Labs AB, Green Building Power Forum, Jun. 2009.
[7] Renewable Energy & Data Centers, J. Pouchet, Director Energy Initiatives, Emerson Network Power., Green Building Power Forum, Jun. 2009.
[8] Development of Higher Voltage Direct Current Power Feeding System in Data Centers, K. Asakura, NTT Energy/Environment, Green Building Power Forum, Dec. 2010.
[9] M. B. Camara, B. Dakyo, and H. Gualous, “Polynomial control method of DC/DC converters for DC/DC converters for DCBus voltage and currents managementbattery and supercapacitors,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1455–1467, Mar. 2012.
[10] F.J. Lin,M.S. Huang, P.Y.Yeh, H.C. Tsai, and C.H.Kuan, “DSPbased probabilistic fuzzy neural network control for liion battery charger,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3782–3794, Aug. 2012.
[11] M. F. Naguib and L. Lopes, “Harmonics reduction in current source converters using fuzzy logic,” IEEE Trans. Power Electron., vol. 25, no. 1, pp. 158–167, Jan. 2010.
[12] W. Baosheng, “A controllable rectifier wind and solar hybrid power system based on digital signal processor developed,” M.S. thesis in electrical engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 2009.
[13] “Battery Energy Management System for DC Micro Grids with Fuzzy Controller”
[14] I. Cvetkovic, D. Boroyevich, P.Mattavelli, F. C. Lee, and D. Dong, “Nonlinear, Hybrid Terminal Behavioral Modeling of a DCbased Nanogrid System,” in Proc. Appl. Power Electron. Conf., 2011, pp. 1251–1258.
[15] “Design and Implementation of Energy Management System With Fuzzy Control for DC Microgrid Systems” by YuKai Chen, Member, IEEE, YungChun Wu, ChauChung Song, and YuSyun Chen.
[16] R.J. Wai and L.C. Shih, “Adaptive fuzzyneuralnetwork design for voltage tracking control of a DC–DC boost converter,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 2104–2115, Apr. 2012.
[17] L. Zhengmin and C. Mingzong, “Small standalone wind turbine device characteristics analysis,” M.S. thesis in electrical engineering, Southern Taiwan University of Science and Technology,Tainan, Taiwan, vol. 35, May 2010.
[18] R. Bharanikumar and A. N. Kumar, “Analysis of wind turbine driven PM generator with power converter,” Int. J. Comput. Electr. Eng., vol. 2, no. 4, pp. 766–769, Aug. 2010.
[19] Development of Socketoutlet Bar and Power Plug for 400 V Direct Current Feeding System, T. Yuba, R&D Manager, Fujitsu Components Ltd. Green Building Power Forum, Jan. 2010.

1216

Abstract: Rough set theory has emerged as a useful mathematical tool to extract conclusions or decisions from real life data involving vagueness, uncertainty and impreciseness and is therefore applied successfully in the field of pattern recognition, machine learning and data mining. This paper presents basic concepts and terms of rough set theory. The paper also presents hybridization approach of rough sets with various other established techniques along with developments from time to time.
Keywords: Pattern recognition, rough sets, hybridization of rough sets, neural networks, fuzzy sets.
References:
1. Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, System Theory, Kluwer, Dordrecht, 1991.
2. Zdzishaw Pawlak, Andrzej Skowron, “Rudiments of rough sets,” Information Sciences, vol. 177, 2007, pp. 327.
3. L. P. Khoo, S. B. Tor and L. Y. Zhi, “A RoughSetBased Approach for Classification and Rule Induction,”Int J AdvManufTechnol , vol.15,1999, pp. 438444.
4. Daijin Kim, “Data classification based on tolerant rough set,” Pattern Recognition , vol. 34, 2001,pp. 16131624.
5. Richard Jensen, Chris Cornelis, “Fuzzyrough nearest neighbour classification and prediction,” Theoretical Computer Science, vol. 412, 2011, pp. 58715884.
6. Roman W. Swiniarski, AndrzejSkowron, “Rough set methods in feature selection and recognition,” Pattern Recognition Letter, vol. 24, 2003, pp. 833849.
7. Rajen B. Bhatt, M. Gopal, “On fuzzyrough sets approach to feature selection,” Pattern Recognition Letters, vol. 26, 2005, pp. 965975.
8. Zuqiang Meng, Zhongzhi Shi, “Extended rough setbased attribute reduction in inconsistent incomplete decision systems,” Information Sciences, vol. 204, 2012, pp. 4469.
9. Pramod Kumar P, Prahlad Vadakkepat, Loh Ai Poh, “Fuzzy rough discriminative feature selection and classification algorithm, with application to microarray and image datasets,” Applied Soft Computing, vol. 11, 2011, pp. 34293440.
10. Neil Mac Parthalain, Richard Jensen, “Unsupervised fuzzyrough setbased dimensionality reduction,” Information Sciences, vol. 229, 2013, pp. 106121.
11. Asif Sikander Iquebal, Avishek Pal, Darek Ceglarek, Manoj Kumar Tiwari, “Enhancement of Mahalanobis – Taguchi System via rough sets based feature selection,” Expert Systems with Applications, In Press, 2014.
12. Darshit Parmar, Teresa Wu, Jennifer Blackhurst, “MMR: An algorithm for clustering categorical data using Rough Set Theory,” Data & Knowledge Engineering, vol. 63, 2007, pp. 879893.
13. Hong Yu, Zhanguo Liu, Guoyin Wang, “An automatic method to determine the number of clusters using decisiontheoretic rough set,” International Journal of Approximate Reasoning , vol. 55, 2014, pp. 101115.
14. InKyoo Park, GyooSeok Choi, “Rough set approach for clustering categorical data using informationtheoretic dependency measure, “Information Systems, In Press, 2014.
15. Yee Leung, WeiZhi Wu, WwnXiu Zhang, “Knowledge acquisition in incomplete information systems: A rough set approach,” European journal of Operation Research, vol. 168, 2006, pp. 164180.
16. Shoji Hirano, Shusaku Tsumoto, Rough representation of a region of interest in medical images , International Journal of Approximate Reasoning, vol. 40, 2005, pp. 2334.
17. B. S. Ahn, S.S. Cho, C.Y. Kim, “The integrated methodology of rough set theory and artificial neural network for business failure prediction,” Expert System with Applications, vol. 18,2000, pp. 6574.
18. Y. Y. Yao ,“Constructive and algebraic methods of the theory of rough sets,” Journal of Information Sciences,vol. 109, 1998, pp. 214.
19. Mohamed Quafafou, “αRST: a generalization of rough set,“Information Sciences, vol.124, 2000, pp. 301316.
20. Huaguang Zhang, Hongli ,Derong Liu, “Two new operators in rough set theory with applications to fuzzy sets,” Information Sciences, vol. 166, 2004, pp. 147165.
21. VanNam Huynh, Yoshiteru Nakamori, “A roughness measure for fuzzy sets,” Information Sciences, vol. 173, 2005, pp. 255275.
22. Dominik Slezak, Wajciech Ziarko, “The investigation of the Bayesian rough set model,” International Journal of Approximate Reasoning, vol. 40, 2005, pp. 8191.
23. Daowu Pei, “On definable concepts of rough set models,” Information sciences, vol. 177, 2007, pp. 42304239.
24. Zdzishaw Pawlak, Andrzej Skowron, “Rough sets: Some extensions,” Information Sciences, vol. 177, 2007, pp. 2840.
25. Yiyu Yao, “Probabilistic rough set approximations,” International Journal of Approximate Reasoning, vol. 49, 2008, pp. 255271.
26. Joseph P. Herbert, JingTao Yao, “Criteria for choosing a rough set model,” Computer and Mathematics with Applications, vol. 57, 2009, pp. 908918.
27. Zhiming Zhang, “On characterization of generalized interval type2 fuzzy rough sets,” Information Sciences, vol. 219, 2013, pp. 124150.
28. Degang Chen, Qiang He, Xizhao Wang, “FRSVMs : Fuzzy rough set based support vector machines,” Fuzzy Sets and Systems, vol. 161, 2010, pp. 596607.
29. Junbo Zhang, Tianrui Li, Hongmei Chen, “Composite rough sets for dynamic data mining,” Information Sciences, vol. 257, 2014, pp. 81100.
30. Yuhua Qian, Hu Zhang, Yanli Sang, Jiye Liange, “Multigranulation decisiontheoretic rough sets,” International Journal of Approximate Reasoning, vol. 55, 2014, pp. 225237.
31. XiuyiJia, Zhenmin Tang, Wenhe Liao, Lin Shang, “On an optimization representation of decisiontheoretic rough set model,”International Journal of Approximate Reasoning, vol. 55, 2014, pp. 156166.
32. Yuhua Qian, Shunyong Li, Jiye Liang, Zhongzhi Shi, Feng Wang, “Pessimistic rough set based decisions: A multigranulation fusion strategy,” Information Sciences, vol. 264, 2014, pp. 196210.
33. Robert Susmaga, “Reducts and constructs in classic and dominancebased rough sets approach,” Information Sciences, vol. 271, 2014, pp. 4564.
34. Bingzhen Sun, Weimin Ma, Haiyan Zhao, “Decisiontheoretic rough fuzzy set model and application,” Information Sciences, In Press, 2014.
35. Rechard Jensen and Qiang Shen, Computational Intelligence and Feature Selection Rough and Fuzzy Approaches, New Jersey: John Weley and Sons, 2008.
36. George J. Klir and Bo Yuan, Fuzzy sets and Fuzzy logic Theory and Applications, New Jersey : PrenticeHall, 1995.
37. Ilona Jagielska, Chris Matthews and Tim Whitfort, An Investigation into the application of neural networks, fuzzy logic, genetic algorithms, and rough sets to automated knowledge acquisition for classification problems, Neurocomputing, vol. 24, 1999, pp. 3754.
38. Qiang Shen, Alexios Chouchoulas, A roughfuzzy approach for generating classification rules, Pattern Recognition, vol. 35, 2002, pp. 24252438.
39. Amitava Roy, Sankar K. Pal, Fuzzy discretization of feature space for a rough set classifier, Pattern Reconition Letter, vol. 24, 2003, pp. 895902.
40. YingChieh, Tsai, ChingHsue Cheng, JingRong Chang, “Entropybased fuzzy rough classification approach for extracting classification rules,” Expert Systems with Applications, vol. 31, 2006, pp. 436443.
41. Manish Sarkar, Fuzzyrough nearest neighbour algorithms in classification, Fuzzy Sets and Systems, vol. 158, 2007, pp. 21342152.
42. Qiang Shen, Richard Jensen, Rough Sets, Their Extensions and Applications, International Journal of Automation and Computing, vol. 04(3), 2007, pp. 217228.
43. Degang Chen, Qinghua Hu, Yongping Yang, Parameterized attribute reduction with Gaussian kernel based fuzzy rough sets, Information Sciences, vol. 181, 2011, pp. 51695179.
44. Qinghua Hu, Shuang An, Xiao Yu, Daren Yu, Robust fuzzy rough classifiers, Fuzzy Sets and Systems, vol. 183, 2011, pp. 2643.
45. Jianhua Dai, Rough set approach to incomplete numerical data, Information Sciences, vol. 241, 2013,pp. 4357.
46. Neil Mac Parthalain, Richard Jensen, Unsupervised fuzzyrough setbased dimensionality reduction, Information Sciences, vol. 229, 2013, pp. 106121.
47. Yi Cheng, Forward approximation and backward approximation in fuzzy rough sets, Neurocomputing, In Press, 2014.
48. Yuhua Qian, Qi Wang, Honghong Cheng, Jiye Liang, Chuangyin Dang, “Fuzzyrough feature selection accelerator,” Fuzzy Sets and Systems, In Press, 2014.
49. Bishop C.M., Neural Network for pattern Recognition, Oxford: Oxford University Press, 1995.
50. Simon Haykins, Neural NetworksA Comprehensive Foundation, Singapore : Pearson Education, 1999.
51. Roman W. Swiniarski, Larry Hargis, Rough sets as a front end of neuralnetworks texture classifiers, Neurocomputing, vol. 36, 2001, pp. 85102.
52. J. Han, M. Kamber and J. Pei, Data Mining Concepts and Techniques, 3rded., USA: Margan Kaufmann, 2012.
53. Jollife T., Principal Component Analysis, New York: SringerVerlag, 1986.
54. Renpu Li, Zhengou Wang, Mining classification rules using rough sets and neural networks, European Journal of Operation Research, vol. 157, 2004, pp. 439448.
55. Avatharam Ganivada, Soumitra Dutta, Sankar K. Pal, Fuzzy rough granular neural networks, fuzzy granules, and classification, Theoretical Computer Science, vol. 412, 2011, pp. 58345853.
56. Julio J. Valdes, Enrique Romero, Alan J. Barton, “Data and knowledge visualization with virtual reality spaces, neural networks and rough sets: Application to cancer and geophysical prospecting data,” Expert Systems with Applications, vol. 39, 2012, pp. 1319313201.
57. Zhengyou He, Sheng Lin, Yujia Deng, Xiaopeng Li, Qingquan Qian, “A rough membership neural network approach for fault classification in transmission lines,” Electrical Power and Energy Systems, vol. 61, 2014, pp. 429439.
58. LiPheng Khoo, LianYin Zhai, A prototype genetic algorithmenhanced rough setbased rule induction system, Computer in Industry, vol. 46, 2001, pp. 95106.
59. Goldberg D. E., Genetic Algorithms in Search Optimization and Machine Learning,Oxford: Pearson Education, 2009.
60. Rechard Jensen, Qiang Shen, Fuzzyrough data reduction with ant colony optimization, Fuzzy Sets and Systems, vol. 149, 2005, pp. 520 .
61. Marco Dorigo and Thomas Stutzle, Ant colony optimization, A Bradford Book, 2004.
62. Liangjun Ke, Zuren Feng, Zhigang Ren, An efficient ant colony optimization approach to attribute reduction in rough set theory, Pattern Recognition Letters, vol. 29, 2008, pp. 13511357.
63. Yijun He, Dezhaochen, Weixiang Zhao, Integrated method of compromisebased ant colony algorithm and rough set theory and its application in toxicity mechanism classification, Chemometrics and Intelligent Laboratory Systems, vol. 92, 2008, pp. 2232.
64. Kuang Yu Huang, An enhanced classification method comprising a genetic algorithm, rough set theory and modified PBMFindex function, Applied Soft Computing, vol. 12, 2012, pp. 4663.
65. Rechar O. Duda, Peter E. Hart, David G. Stork,Pattern Classification, 2nded, Wiley, 2001.
66. YuNeng Fan, TzuLiang Tseng, ChingChin Chern, ChunChe Huang, “Rule induction based on an incremental rough set,” Expert Systems with Applications, vol. 36, 2009, pp. 1142911450.67. Saroj K. Meher, “Explicit roughfuzzy pattern classification model,”Pattern Recognition Letters, vol. 36,2014, pp. 5461.
68. Aboul Ella Hassanien, “Fuzzy rough sets hybrid scheme for breast cancer detection,” Image and Vision Computing, vol. 25, 2007, pp. 172183.
69. Renpu Li, Zhengou Wang, Mining classification rules using rough sets and neural networks, European Journal of Operation Research, vol. 157, 2004, pp. 439448.
70. ShihHsun Chang, Shiuan Wan, “Discrete rough set analysis of two different soilbehaviorinduced landslides in National SheiPa Park, Taiwan,” Geoscience Frontiers , In Press, 2014.
71. ShanWen Zhang, DeShuang Huang, ShuLin Wang, “A method of tumor classification based on wavelet packet transforms and neighbourhood rough set,” Computer in Biology and Medicine, vol. 40, 2010, pp. 430437.
72. YouShyang Chen, ChingHsue Cheng, “Hybrid models based on rough set classifiers for setting credit rating decision rules in the global banking industry,” KnowledgeBased Systems, vol. 39, 2013, pp. 224239.
73. Manish Sarkar, Ruggedness measures of medical time series using fuzzyrough sets and fractals, Pattern Recognition Letters, vol. 27, 2006, pp. 447454.
74. Qiang He, Congxin Wu, Degang Chen, Suyun Zhao, Fuzzy rough set based attribute reduction for information systems with fuzzy decisions, KnowledgeBased Systems, vol. 24, 2011, pp. 689696.
75. Sankar K. Pal, Saroj K. Meher, SoumitraDutta, Classdependent roughfuzzy granular space, dispersion index and classification, Pattern Recognition, vol. 45, 2012, pp. 26902707.
76. V. Murlidharan, V. Sugumaran, “Rough set based rule learning and fuzzy classification of wavelet features for fault diagnosis of monoblock centrifugal pump,” Measurement, vol. 46, 2013, pp. 30573063.
77. Pawan Lingras, Cory Butz, Rough set based 1v1 and 1vr approaches to support vector machine multiclassification, Information Sciences, vol. 177, 2007, pp. 37823798.
78. Nele Verbiest, Chris Cornelis, Francisco Herrera, FRPS: A Fuzzy Rough Prototype Selection method, Pattern Recognition, vol. 46, 2013, pp. 27702782.

1726

Abstract: The smartphone is now an essential personal electronic device. Multimedia is prevalent and the preferred content on the smartphone and enormous amount of videos are shared on the phone. Diverse videos are downloaded and watched everywhere easily with the smartphone. QoE (Quality of Experience) is examined by measuring picture quality, continuity, and overall satisfaction in this study to assess users’ experiences with multimedia in stationary and walking usage contexts. Encoding factors such as frame rate and resolution directly affect the quality of videos. Proper settings of encoding factors were not, however, studied in the actual context. Smartphone owners watch videos while sitting, walking, and standing in various environments. Diverse settings of encoding elements for digital videos were compared in static and dynamic situations and efficient levels of these settings are suggested. Index
Keywords: Encoding, multimedia, QoE, smartphone, usage context.
References:
1. R. L. Stump, W. Gong, and Z. Li, “Exploring the digital divide in mobilephone adoption levels across countries”, Journal of Macro Marketing, vol. 28, no. 4, 2008, pp397412.
2. S. Buchinger, S, Kriglstein, S, Brandt, and H. Hlavacs, “A survey on user studies and technical aspects of mobile multimedia applications”, Entertainment Computing, vol. 2, no. 3, 2011, pp175190.
3. M. Copcu, Y. B. Salman, and H. I. Cheng, “The quality of perception for visual multimedia on the iPhone”, ICIC Express Letters, vol. 6, no. 3, 2012, pp. 711–716.
4. G. Ghinea, and J. P. Thomas, “Quality of perception: User quality of service in multimedia presentations, IEEE Transactions on Multimedia, vol. 7, no. 4, 2005, pp.786789
5. H. Jung, M. Copcu, Y. H. Kim, H. I. Cheng, “The quality of experience for multimedia on the iPhone in a transportation context”, ICIC Express Letter, vol. 7, no. 6, 2013, pp.19071912.
6. C. H. Hsu, and M. Hefeeda, “Flexible broadcasting of scalable video streams to heterogeneous mobile devices”, IEEE Transactions on Mobile Computing, vol. 10, no. 3, 2011, pp.406418.
7. M. Copcu, Effective setup of encoding factors to enhance QoP of moving images on mobile devices, PhD dissertation, 2012, Kyungsung University.
8. M. Copcu, H. –I. Cheng, “The quality of experience of multimedia on the smartphone in a walking context”, ICIC Express Letters Part B: Applications, vol. 5, no. 1, 2014, pp.163168.
9. J. Y. C. Chen, and J. E. Thropp, “Review of low frame effects on human performance”, IEEE Transactions on systems, man, and cybernetics, Part A: Systems and Humans, vol. 37, no. 6, 2007, pp.10631076.
10. R. T. Apteker, J. A. Fisher, V. S. Kisimov, and H. Neishlos, “Video acceptability and frame rate”, IEEE Multimedia, vol. 2, no. 3, 1995, pp.11391144.
11. G. Ghinea and J. P. Thomas, “QoS impact on user perception and understanding of multimedia video clips”, Proc. Of the 6th ACM conference on Multimedia,1998, pp.4954.
12. M. Lombard, T.B. Ditton, M. E. Grabe, and R. D. Reich, “The role of screen size in viewer response to television fare, Communication Reports, vol. 7, no.6, 1996, pp.95106.
13. J. D. McCarthy, M. A. Sasse, and D. Miras, “Sharp or smooth?: comparing the effects of quantization vs. frame rate for stream video”, Proc. Of CHI ’04, 2004, pp. 535542.

3033
