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Network Intrusion Detection Systems: A Systematic 

Literature Review of Hybrid Deep Learning 

Approaches

Abstract: Network Intrusion Detection Systems (NIDSs) have 

become standard security solutions that endeavours to discover 

unauthorized access to an organizational computer network by 

scrutinizing incoming and outgoing network traffic for signs of 

malicious activity. In recent years, deep learning based NIDSs 

have emerged as an active area of research in cybersecurity and 

several surveys have been done on these systems.  Although a 

plethora of surveys exists covering this burgeoning body of 

research, there lacks in the literature an empirical analysis of the 

different hybrid deep learning models. This paper presents a 

review of hybrid deep learning models for network intrusion 

detection and pinpoints their characteristics which researchers 

and practitioners are exploiting to develop modern NIDSs. The 

paper first elucidates the concept of network intrusion detection 

systems. Secondly, the taxonomy of hybrid deep learning 

techniques employed in designing NIDSs is presented. Lastly, a 

survey of the hybrid deep learning based NIDS is presented. The 

study adopted the systematic literature review methodology, a 

formal and systematic procedure by conducting bibliographic 

review, while defining explicit protocols for obtaining 

information. The survey results suggest that hybrid deep 

learning-based models yield desirable performance compared to 

other deep learning algorithms. The results also indicate that 

optimization, empirical risk minimization and model complexity 

control are the most important characteristics in the design of 

hybrid deep learning-based models. Lastly, key issues in the 

literature exposed in the research survey are discussed and then 

propose several potential future directions for researchers and 

practitioners in the design of deep learning methods for network 

intrusion detection. 

Keywords: Complexity Control, Empirical Risk Minimization, 

Hybrid Deep Learning, Network Intrusion Detection, 

Optimization.  

I. INTRODUCTION

The increasing growth and popularity of the Internet

coupled with the advent of the information age has 

revolutionized all aspects of our lives [1]. 
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Today, the Internet is an essential part of modern technology 

pertaining to transfer of data and information, thus 

necessitating a secure global network. Even though the 

Internet has given us considerable convenience, it has also 

brought about a multiplicity of network security threats, 

such as brute force attacks, Denial-of-Service, phishing, 

malware, Man-in-the-Middle, backdoors, and rootkits. 

These attacks can cause economic losses, loss of user 

privacy, loss of sensitive data such as business plans, loss of 

corporate reputation and even threatening national security 

[2]. Such threats have motivated researchers to design novel 

Network Intrusion Detection System (NIDS) that monitor, 

analyse and classify real-time network attacks and provide 

countermeasures to various network intrusions [3].  

The enormous, high-dimensional network traffic and how to 

precisely detect anomalous traffic is the principal task of 

intrusion detection systems. Two main categories of NIDSs 

based on the detection approach exists in the literature 

including the signature-based (misuse) and anomaly-based 

(user-behaviour) intrusion detection system [4]. Anomaly-

based NIDS are more striking for the research and 

practitioners as they are capable of detecting any deviation 

from the normal traffic pattern. As a result of recognizing 

differences in the features obtained from the network traffic, 

they are capable of efficiently detecting and intercepting 

network attacks in advance thus, effectively minimising the 

losses normally caused by network attacks [5]. In the recent 

years, machine learning approaches such as support vector 

machine, Naïve Bayes and decision trees have been used to 

develop effective NIDSs [6], [7]. However, application of 

these approaches is based on manually extracted features 

that may cause loss of the original flow information. In 

addition, these approaches have shown inefficiencies in 

detecting zero-day attacks, output high false positive alarms 

and are known to incur high computational costs thus 

reducing their implementation in real-time in actual 

situations [8]. 

Researchers have explored the possibility of deep learning 

techniques in the development of NIDS [9], [10]. The 

architecture comprising of deep learning and network 

intrusion detection has turn into a trending research topic in 

today’s network security domain. This has been occasioned 

by the significant ability of deep learning methods to 

automatically draw out discriminatory feature 

representations from voluminous high-dimensional amounts 

of data to generate models with better generalization 

capabilities [1]. 
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 In addition, over the last decade we have witnessed the 

discovery of powerful graphics processor units (GPUs) that 

supports processing voluminous and data [11]. 

Several studies have been reported that apply deep learning 

for intrusion detection systems achieving better performance 

by learning valuable information from big data [12]. 

Further, in the literature, researchers have proposed several 

hybrid deep learning models in the design of effective 

network intrusion detection systems [8], [13]. Convolutional 

neural network (CNN) and recurrent neural network (RNN) 

are gaining prominence in recent years in the network 

intrusion detection domain. For instance, CNN methods 

have demonstrated success in converting one-dimensional 

network traffic into two-dimensional grayscale images and 

then utilise the convolutional kernel to draw out definite 

features from the network traffic with the objective of 

increasing the detection rate and reducing false alarms. 

In this paper, we survey and analyse the hybrid deep 

learning based network intrusion detection models in the 

current literature covering the period between 2017 and 

2021. The study also highlights their characteristics which 

researchers and practitioners are exploiting to develop 

modern day NIDSs. The rest of this paper is organized as 

follows: Section 2 provides a brief background to Network 

intrusion detection and the deep learning approach in the 

design of network intrusion detection systems. Section 3 

presents the methodology used to give an in-depth analysis 

of the existing hybrid deep learning models in literature and 

presents their characteristics for network intrusions 

detection. The results and discussion of the findings are 

reported in section including a discussion and details the 

open research issues identified from the analysis. The paper 

conclusion and future research work is discussed in the last 

section. 

II. NETWORK INTRUSION DETECTION SYSTEMS 

Intrusion Detection Systems is defined as the “automation of 

intrusion detection process of finding events of violation of 

security policies or standard security practices in computer 

networks” [14]. Network Intrusion Detection Systems are 

designed to recognize different types of malicious network 

traffic and computer misuse, unable to be detected by a 

traditional firewall [15]. They are usually located in-side the 

network to monitor all incoming traffic, document existing 

threats and deter adversaries. Denning [16] pioneered the 

proposition of developing intrusion detection systems by 

utilizing Artificial Intelligence methods on security events to 

detect abnormal usage patterns and intrusion. Since then 

machine learning techniques are being employed as a 

conventional approach to developing network intrusion 

detection systems. Since 2010s, with the popularity of big 

data, high performance computing and cloud computing, 

NIDSs have received enormous attractions as a border 

checkpoint for the security of a network besides the 

development of machine learning paradigm to obtain better 

performance [17]. 

A. Taxonomy of Network Intrusion Detection 

Systems  

Liao, et al. [15] generally classified Intrusion Detection 

Systems (IDS) into two categories, namely, Anomaly-based 

Detection, and Signature-based Detection while [18] added 

Stateful Protocol Analysis. Signature-based detection, 

similarly well-known as misuse-detection, techniques 

identify an intrusion by matching patterns or signatures 

already in existence within the database with the event 

(either attack or intrusion) that was going on, the idea in 

which intrusion using the same pattern will be discovered. 

In other words, when there is a match between an intrusion 

signatures with that of a previous intrusion that already 

exists in the signature database, an alarm signal is triggered 

[19]. This technique is widely used in commercial products 

due to its predictability and precision. Nonetheless, for this 

method to be effective, it is essential to keep the database of 

signatures up-to-date. The weakness of this method is that it 

doesn’t recognize new non-existent attacks in the database 

[20]. Further, the increasing rate of zero-day attacks [21] has 

rendered signature-based detection techniques increasingly 

less effective since no previous existence of any such attacks 

signature. Khraisat, et al. [4] in their survey describes 

anomaly-based intrusion detection in networks as the action 

of identifying exceptional patterns in network traffic that do 

not conform to the predictable normal behaviour. These 

non-conforming patterns are frequently denoted as 

anomalies, exceptions, outliers, surprises, peculiarities, 

aberrations or discordant observations in various application 

domains [22]. A normal model of the behaviour of an 

information system can be generated using knowledge-

based, machine learning, or statistical-based methods. Any 

deviation noted between the model and the observed 

behavior is regarded as an anomaly, which is normally 

interpreted as an intrusion. Anomaly-based detection 

methods are also referred as behavior-based detection 

methods. Stateful Protocol Analysis, also known as 

specification-based detection, depend on ordinary profiles 

for specific protocols defined by the vendors. Normally, 

these network protocol models are usually grounded on 

standards of protocols from international organizations. 

Stateful Protocol Analysis acts on the network layer, 

transport layer, and the application layer making it more 

powerful than the above two methods [23].  

B. Deep learning Approach to Designing Network 

Intrusion Detection Systems 

Today, deep learning, a class of machine learning 

algorithms that uses artificial neural networks with multiple 

layers of nonlinear processing units to learn data 

representations is becoming a major contributor of the 

contemporary rise of Artificial Intelligence (AI) in nearly all 

walks of life [24], [25]. In recent years, deep learning 

models with multilayer processing architecture are 

presenting better performance compared to shallow learning 

or traditional machine learning algorithms [26]. Deep 

learning enables a neural network to learn hierarchies of 

information akin to the function of the human brain. The 

main benefit of deep learning is the colossal flexibility in 

designing each part of the architecture, resulting in several 

ways of discovering the most efficient activation functions 

or learning algorithms [27], [28].  
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A significant principle of deep learning is work out higher-

level features from lower-level ones from observational data 

[29]. Deep learning is mainly based on neural networks 

whose essential part is a neuron with a set of weights (w), an 

activation function (σ) and a set of biases (b). Based on 

these parameters, transformation can be expressed as 

follows: 

𝑎 = 𝜎 (𝑤𝑇𝑥 + 𝑏)                                                       (1) 

Where, 𝑥 is the inputs of neurons, and  𝑇 is matrix 

transpose. Deep learning approaches may be classified into 

three categories depending on architecture and techniques 

namely; discriminative (supervised), generative 

(unsupervised) and hybrid combining two (or more) 

methods [30]. 

i) Discriminative/Supervised Deep Learning Models 

Consider a classification task where we want to determine 

whether an email is either a spam or not given a set of words 

present in a particular email, where, labels: 𝑌 = 𝑦 and the 

features: 𝑋 = {𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛}. A joint distribution of the 

model can be denoted as: 

p(Y, X)  =  P(y, x1, x2, x3, . . . , xn)                                           (2) 

A discriminative architecture models the decision boundary 

between the classes by learning the conditional probability 

distribution 𝑝(𝑦|𝑥) [31] as shown in figure 1. The 

discriminative models makes predictions on the unseen data 

based on conditional probability which may be used either 

for classification or regression tasks.  They are described as 

‘deep’ since they use layers of latent or hidden variables. 

Discriminative models tend to outperform their generative 

counterparts in supervised tasks. However, they cannot learn 

from unlabelled data [32]. In addition, these models 

incapable of generating new data points. As a result, the 

definitive objective of discriminative models is to separate 

one class from another. Deep discriminative models include 

three approaches, namely, deep neural networks, recurrent 

neural networks, and convolutional neural networks. 

Discriminative models are computationally cheap while 

compared to generative models as well as have the 

advantage of being more robust to outliers, unlike the 

generative models. 

 

 

Figure 1: Discriminative/supervised models decision 

boundary (Source: [33]) 

ii) Generative/Unsupervised Deep Learning Models 

A generative architecture conspicuously models the actual 

distribution of respective classes and learns the joint 

probability distribution 𝑝(𝑥, 𝑦) in addition to determining 

𝑝(𝑦|𝑥) indirectly via the Bayes Theorem [31]. In other 

words, generative models focus on the distribution of a 

dataset to return a probability for a given example. They are 

regarded as a class of statistical models that can generate 

new data instances and use probability estimates and 

likelihood to model the data points to differentiate between 

different classes labels present in a dataset [33] as shown in 

figure 2.  

 

Figure 2: Generative/unsupervised models decision 

boundary (Source: [33]) 

Generative models can be used to learn representations, to 

handle exploration/exploitation trade-offs, and to make use 

of the large amounts of unlabelled data. Deep generative 

models can generate input examples from the feature 

learned by the model, which gives a way to understand the 

model behaviour [34]. However, these models are 

significantly affected by the presence of outliers. The aim is 

to combine the interpretable representations and quantified 

uncertainty offered by probabilistic models, with the 

flexibility and scalable learning of deep neural networks. As 

such, generative models are utilized in unsupervised 

learning in a scheme to perform tasks such as Likelihood 

and Probability estimation, modelling data points, define the 

phenomenon in data, and discriminate between classes 

based on these probabilities [33]. The generative models 

consists mainly of four approaches namely, restricted 

Boltzmann machine, deep auto encoders, deep belief 

networks, and generative adversarial networks.  

iii) Hybrid/Ensemble Deep Learning Models 

The hybrid deep learning, also called ensemble learning 

approaches are a progressive method that combine multiple 

learning algorithms to take excellent properties of each 

algorithm to obtain better generalization performance result 

[35]. Hybrid deep learning techniques provide more 

accurate and less computationally expensive solutions. In 

the literature, most of the deep hybrid deep learning models 

refers to an architecture that makes use of both generative 

and discriminative components. For instance, a hybrid 

model combining CNN that explore and learn spatial 

features from images and LSTM to learn and depict 

temporal patterns. Figure 3 shows a visual representation of 

a hybrid deep learning model combining CNN and LSTM.  
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Figure 3: A Visual representation of an architecture of 

the CNN-LSTM network (source: [36]) 

In ensemble modelling, the combination may be 

implemented by aggregating the output from each algorithm 

with two main objectives: reducing the model error and 

maintaining its generalization. The technique to implement 

such an aggregation may be realized using some techniques 

such as voting, averaging, boosting, bagging, stacking and 

Negative correlation learning [26]. 

III. METHODOLOGY 

In this paper, we conducted a systematic literature review of 

the hybrid deep learning-based NIDS and investigated 

published journal articles 2017 and 2021. Systematic 

literature review is a methodology normally followed by 

researchers to identify, examine, and extract essential 

information from the literature related to particular research 

topics [37]. The systematic literature review was conducted 

in two phases: First, we identified the information resource 

(search engine) and keywords and executed a query for 

obtaining an initial list of published articles. Secondly, the 

study applied a specific criteria on the initial list to choose 

the best articles, store them into a final list for the review. 

Figure 4 shows the methodology adopted.  

 

Figure 4: Methodology used for the study 

A. Objectives of the review 

The main objective of the review was to synthesize available 

research on hybrid deep learning approaches for NIDS 

design. Through the systematic literature review, the study 

attempted to answer the following research questions:  

i. What are the recent hybrid deep learning 

approaches adopted for the design NIDS?  

ii. What are the salient characteristics of hybrid deep 

learning-based NIDS? and  

iii. What is the future scope of research in hybrid deep 

learning-based NIDS? 

B. Review Protocol 

The preparation of a review protocol is a vital constituent a 

systematic review process. It demonstrates that a systematic 

review is thoughtfully organized and that which is planned 

is evidently documented before the review starts. 

Essentially, this promotes consistency in conducting the 

review, research integrity, accountability and transparency 

of the eventual completed review. The study adopted the 

Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses (PRISMA) developed by [38] as the review 

protocol. PRISMA entails a 17-item checklist that is 

envisioned to aid the preparation and reporting of a robust 

protocol for the systematic review. 

C. Information Sources 

Since the existing data in the internet is enormous, we 

considered three search engines namely, Google Scholar, 

Worldwide Science and Core owing to their capacity to 

search from almost all the well-known databases. The 

documents generated were journal articles and conference 

papers. Selection of the work considered was based on the 

relevance of the title, abstract and the full article. 

D. Search Strategy 

This section summaries the process used to generate the 

search terms, the searching strategy, and the search 

documentation. As shown in figure 1, first we identified the 

search engine and keywords for the article search so that we 

answer the research question in a meaningful way. The 

study executed a search query using the initial keyword 

“network intrusion detection” and adjusted the filter to 

restrict and obtain the journal articles published between the 

years 2017 and 2021. 

The search query was further refined to include other 

keywords as signature-based network intrusion detection 

and network anomaly detection with the combination of 

hybrid deep learning to get additional relevant articles. The 

gathered articles were stored as an initial list. The gathered 

papers were then scanned for inclusion and exclusion based 

a search criteria to determine relevant articles for further 

analysis. Based on the criteria, final list was largely 

completed afterwards, by using a backward and forward 

snowballing strategy that consists of using the reference list 

of the selected papers and the citations to these papers to 

identify additional papers. 
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E. Selection Criteria  

An inclusion and exclusion criteria ensure that only relevant 

studies are incorporated in data analysis. Selection of 

articles for inclusion in the SLR charted a three-stage 

process that entails: (a) initial selection of articles by 

considering the title; (b) selection of articles based upon 

reading the abstract; and (c) further selection of articles after 

reading through the papers. The PRISMA flow chart that 

describes the selection of the articles was used and is shown 

in figure 5. In summary, the following criteria was used for 

inclusion and exclusion: 

a) Include those articles which were written in the 

English language 

b) Include articles based on hybrid deep learning 

techniques.  

c) Include journal articles that are cited and fully 

referenced. 

d) Include articles published between the period January 

2017 and December 2021.  

e) Exclude conference papers, case studies, reviews and 

survey articles. 

f) Exclude articles not categorized as peer-reviewed. 

g) Exclude document’s digital object identifier (DOI) 

equivalent to the DOI of another document. 

F. Quality Assurance 

Quality systematic reviews demand good quality literature 

searches as well as accuracy in reporting. A checklist was 

prepared for use to evaluate the quality of each paper with 

only papers that were deemed to meet the evaluation criteria 

included in the systematic review. An analysis of the quality 

of the papers selected after applying the inclusion/exclusion 

criteria was carried out.  

 

Figure 5: PRISMA flow chart for the selection of the 

articles 

G. Data Extraction and Synthesis 

The authors created a spreadsheet such that each row of the 

spreadsheet represented an article published in the 

respecting academic databases for the years 2017–2021 

inclusive. For specific articles, relevant bibliographic 

information was captured (e.g., title, author, database, page 

numbers) together with a hyperlink to the article. Primarily, 

as a key part of the first phase of this analysis, the abstract 

for every article was captured. The inclusion of an article for 

the final review followed a two-phase approach. The first 

phase entailed reading the abstract and coding the article as 

either relevant or not to the review. An article’s relevance 

was determined by rating the information contained in the 

abstract against the search terms identified above. The 

columns considered in the review were as follows: the 

authors, publication date, article type (e.g. journal), and 

technique-based taxonomy. Retrieval of this information 

was related to the research questions.  

IV. RESULTS AND DISCUSSION 

In this study, we focused on analyzing hybrid deep 

learning based approaches for designing network intrusion 

detection through a systematic literature review. This review 

considered journal articles and conference papers published 

between 2017 and 2021. From the search, journal articles 

and conference papers containing the terms hybrid deep 

learning, and network intrusion detection were retrieved 

from the identified databases. Further, though snowballing 

search other relevant journal articles and conference papers 

were identified and added even if they were not from the 

identified databases. Table 1 shows the articles retrieved for 

analysis.  

Table 1: Relevant journal articles retrieved 

Search Engine 
Initial List of 

articles 

Final List of 

articles 

Google Scholar 101 32 

World Wide Science 98 14 

Core 54 9 

Snowballing - 12 

  253 67 

Out of the 67 papers synthesized, 49 were journal articles 

and 18 were conference papers. Figure 6 shows the 

distribution of the articles on hybrid deep learning-based 

NIDS over the years. We observed that most of the research 

on hybrid deep learning-based NIDS were published in 

journal articles between the years 2020 and 2021.  

 

Figure 6: Distribution of articles on hybrid deep 

learning-based NIDS over the years 
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A. Hybrid Deep Learning Based NIDS 

The authors sort to establish the recent hybrid deep learning 

approaches adopted for the design NIDS. Several hybrid 

deep learning methods have been proposed for deployment 

in network intrusion detections systems. Hybrid 

architectures incorporate both generative and discriminative 

models. Also referred as ensemble architectures, they 

combining different algorithms so as to build capacity to fill 

the gaps of network intrusion detection models and get the 

best results. Table 2 presents the summary of the techniques 

and area of intrusion detection focused from the papers 

reviewed. Hybrid deep learning-based NIDSs can be built in 

different ways and for quite different purposes. The 

following describes the various approaches available.  

i). Algorithmic Hybrid Models 

In algorithmic deep learning models, techniques or 

algorithms are hybridized to perform a single task together. 

For example, Alqahtani [39] developed a novel hybrid 

optimized long short-term memory (LSTM) model whereby 

firefly swarm optimization was integrated with LSTM to 

reduce the computational overhead, which in turn increases 

the prediction accuracy. D dataset. An architectural model 

presented by Zeng et al. [40] proposed a hybrid neural 

network with a stack auto encoder to evaluate the traffic 

features and selected the best feature vectors from the 

network traffic as labels. Ma et al. [41] developed a hybrid 

intrusion detection system for the evaluation of multiple 

types of flow features using a hybrid one-dimensional 

convolutional network and evaluated in real-time the 

efficacy of the proposed system using the ISCX-IDS-2012 

and CIC-IDS-2017 datasets. In a study by ElSayed, et al. 

[42] a hybrid deep learning approach based on the CNN was 

used to classify the flow traffic into either normal or 

malicious attack classes in Software-defined network 

environment. 

ii). Cooperative Hybrid Models 

Diverse techniques are utilized to conduct a variety of 

independent tasks that are then combined in some way to 

yielding a holistic system. For instance, Megantara and 

Ahmad [43] proposed one technique for both signature-

based detection and anomaly-based detection. In their work, 

the signature based detection employs a known set of rules 

(indicators) from the system attack database to postulate 

whether an activity is malicious or not, whereas anomaly-

based detection recognises the attack based on uncommon 

user behaviour patterns. In case users perform unusual 

actions or activities, then it can be flagged as an attack. The 

work of Yao, et al [44] proposed an intrusion detection 

model founded on the cross layer feature fusion of a LSTM 

and CNN networks for Advanced Metering Infrastructure. 

In this cooperative arrangement, the CNN component 

identifies regional features to capture global features, 

whereas the LSTM component capture periodic features 

using the memory function.   

iii). Hierarchical Hybrid Models 

In a hierarchical architecture, the IDS includes different 

methods that accomplish different tasks at each level. For 

instance, Khan [45] proposed a convolutional recurrent 

neural network (CRNN) that was employed to build a deep 

learning-based hybrid intrusion detection framework that 

can predict and classify malicious cyberattacks in the 

network. The study of [46] and the model presented by [47] 

demonstrate the hierarchical hybrid deep learning models 

for network intrusion detection. The study by Wang, et al. 

[46] presented a hierarchical hybrid deep learning 

architecture that incorporated feature representation learning 

and dimensionality reduction of network traffic features to 

improve the efficiency and effectiveness of the resultant 

model.  

In [48] the authors proposed a hybrid model dubbed 

STDeepGraph that was designed based on identifying the 

flow-to-flow resemblance of network communication 

graphs. In this case, the model was a hierarchical 

combination of a CNN and LSTM with graph similarity 

measures capable of learning high-dimensional 

representations from the network traffic. The approach 

exploited graph structures as supplementary prior 

information, feature extraction via graph Laplacian matrix, 

and the hybrid deep learning algorithms to learn long-term 

information on communication graphs.  

Table 2: Summary of Hybrid Deep Learning Based NIDS 

Ref. Year Deep Learning Algorithms Intrusion Detection Approach Dataset Used 

[49]  2020 
CNN and a weight-dropped, LSTM 

(WDLSTM) 
Intrusion detection in big data environments UNSW-NB15 

[50] 2020 CNN and LSTM 
Analyze network traffic information of network raw 
dataset from both spatial and temporal dimensions 

CICIDS2017 

[51]  2021 
Feed Forward, LSTM, and Gated 

Recurrent Unit 

Analyze network traffic information network raw 

dataset 
Kyoto Honeypot Dataset 

[35] 2021 CNN and LSTM 
Intrusion detection system for imbalanced dataset on 

big data environment 

CIDDS-001 (for 
multiclass),UNS-NB15 

(for binary classification) 

[52] 2020 CNN and LSTM Improving detection  accuracy in NIDSs NSL KDD. 

[53]  2020 CNN and LSTM 

Cuda-enabled DL-driven architecture that makes use 
of the predictive power of LSTM and CNN for timely 

and efficient detection of multi-vector threats and 

attacks in Software defined network (SDN) 

CICIDS2017 

[54] 2021 

weighted deep belief network (HW-

DBN) with improved Gaussian–

Bernoulli restricted Boltzmann 
machine and  weighted deep neural 

networks (WDNN) 

Enhancing IoT network intrusion detection CICIDS2017 
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[55] 2021 2-D CNN, (RNN) and (MLP) For detection of 9 Cyber Attacks versus normal flow.  
Kitsune Network attack 
dataset 

[56] 2021 CNN and GRU 
Detection of anomalous activities in Internet of 

Things (IoTs) networks 

BoT-IoT, IoT Network 

Intrusion, MQTT-IoT-

IDS2020, and IoT-23 

[57] 2021 DNN and LSTM 
Improve detection rate and reduce false positive rate 

in NIDSs 
KDD CUP 99 

[58] 2021 Hybrid-DBN 
Secure network by controlling network traffic in 

Industrial control systems (ICS). 

actual data of the 

industrial control system 
in the water tank 

[59] 2020 CNN and LSTM 

An architecture normalizing UTF-8 character 

encoding for Spatial Feature Learning so as to 
sufficiently find the characteristics of real-time HTTP 

traffic without calculating entropy, encryption, and 

compression 

CSIC-2010, CICIDS2017, 

fixed real-time data 

[60] 2021 CNN and LSTM 
A hybrid CNN-LSTM model to detect brute-force 
attacks in encrypted traffic in protocols such as 

SMTPS, IMAPS, HTTPS, FTPS, and SSH. 

Real-world traffic from a 
Tor exit node on the 

Internet. 

[61] 2021 
Long short-term memory autoencoder 
(LAE) and deep bidirectional long 

short-term memory (BLSTM) 

A scheme that reduce the feature dimensionality of 

large-scale IoT network traffic data 
BoT-IoT 

[62] 2019 Conv-LSTM 

Two-stage learning platform for both Anomaly-based 

and Signature-base classification approaches network 
intrusion detection  

ISCX-UNB 

[63] 2021 LSTM an Autoencoder (AE) 
cyber-attacks Intrusion Detection in connected and 

autonomous vehicles (CAVs) 
NSL-KDD 

[64] 2019 LeNet-5 (CNN) and LSTM 

A deep hierarchical network that incorporates 

improved to learn both the spatial and temporal 

features from original network flow and used to 
detect abnormal flow. 

CICIDS2017, CTU 

dataset 

[65] 2020 
A Stacked Autoencoder and Feed 

forward neural network 

Detection of normal and abnormal behaviour in 

networks  
CICIDS2017 

[66] 2018 
DBN and Probabilistic Neural 
Network (PNN). 

Improve the detection rate and classification accuracy 
of NIDSs  

NSL-KDD 

[67] 2021 
unsupervised Sparse autoencoder 
(SAE) with smoothed l1 

regularization and DNN 

A two-stage hybrid intrusion detection scheme that 

improves overall performance in detection rate and 

low false positive rate.   
 

KDDCup99, NSL-KDD 

and UNSW-NB15. 

[68] 2020 
Spider monkey optimization (SMO) 

algorithm and DNN 

improve the detection rate and classification accuracy 

of NIDSs  

NSL-KDD and KDD Cup 

99 

[69] 2021 

Cuda Deep Neural Network Long 

Short-Term Memory (CuDNNLSTM) 

and LSTM 

A hybrid deep learning approach to identify attacks in 

networks. 

 

Kitsune Network attack 

dataset 

[70] 2021 CNN and DNN 
A Forward Feature Selection (FFS) method for 
detecting distributed denial of service attacks in 

Software Defined Networks.  

CICIDS2017 

[71] 2021 

hybrid rule-based feature selection 

and deep feedforward neural network 

model 

A deep learning-based intrusion detection paradigm 

for Industrial Internet of Things Network with hybrid 
rule-based feature selection to train and verify 

information captured from TCP/IP packets.  

NSL-KDD and UNSW- 
NB15. 

[72] 2021 
Autoencoder with improved genetic 
algorithm  (IGA-BP) 

Address problems of slow detection rate and easy to 
get into local optimality for NIDSs 

KDD CUP99 

[73] 2019 

improved restricted Boltzmann 

machine and gradient descent-based 
SVM 

Anomaly detection architecture for suspicious flow 

detection in the context of social multimedia in  
Software defined networks (SDN) 

Carnegie Mellon 

University (CMU)-based 
insider threat dataset 

[74] 2021 

Cuda-deep neural network, gated 

recurrent unit (Cu- DNNGRU), and 

Cuda-bidirectional long short-term 
memory (Cu-BLSTM 

An SDN-enabled deep-learning-driven framework for 

threats detection in an IoT environment 
CICIDS2018 

[75] 2020 
Convolutional-auto encoder (Conv-

AE) 
Misuse attack detection in NIDSs CSE-CIC-IDS2018 

[76] 2019 
Grey wolf optimization (GWO) and 
CNN 

Improved network anomaly detection accuracy in 
NIDSs 

DARPA'98 and KDD'99 

[77] 2021 
Multi-head attention mechanism and a 

skip-LSTM 

A better generalizability model named HALNet  for 

detection of Command and Control (C&C) malwares 

CCE2021 and 

CICIDS2017 

[78] 2021 LSTM, CNN), and SVM 
A hybrid semantic deep learning (HSDL) model for 
secure cloud storage and intrusion detection 

NSL-KDD and UNSW-
NB15 

[79] 2021 Hybrid LSTM 

SDN-enabled architecture used to detect sophisticated 

cyber-attacks in fog-to-IoT environment as well as 
identify new attacks targeting IoT devices and other 

threats 

Coburg Intrusion 

Detection Data Set 
(CIDDS-001) flow-based 

dataset 

[80] 2021 CNN and GRU 
Model for detection of anomalies in encrypted 

network traffic 

NSL-KDD, UNSW-

NB15, and CIC-IDS-2017 
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[81] 2019 Ensemble CNN 
An Ensemble architecture for efficient detection of 
DDoS in SDNs. 

ISCX IDS 2012 

[82] 2021 CNN and LSTM  
Achieve high accuracy, thus improving the detection 

rate in NIDSs 

DARPA and CIC-

IDS2018 

[83] 2020 
CNN and LSTM with Jumping Gene 
adapted NSGA-II multi-objective 

optimization 

Improving DDoS Attacks detection in IoT Networks CISIDS2017 

[84] 2020 
Deep Sparse AutoEncoder (DSAE), 

DNN and LSTM 

Ensemble model for network anomaly and cyber-

attack detection in IoT environment 

IoT-23, LITNET-2020, 

and NetML-2020. 

[85] 2021 

CNN and LSTM for binary 

classification;  

CNN and gate recurrent unit (GRU) 
for multiclass classification) 

Achieve high accuracy, thus improving the detection 

rate in NIDSs 
ISCX IDS 2012 

[86] 2019 Bloomfilter and k-NN 

Anomaly detection in gas pipeline  supervisory 

control and data acquisition (SCADA)  systems 

among ground devices in industry control systems 

Mississippi  State  

University’s  in-house  

SCADA  dataset  

[87] 2021 CNN and LSTM 

Combines base CNN and LSTM as an ensemble 

approach and used the Stacking algorithm in 

combination with a neural network as a meta learner 
to detect network intrusions 

CCD-IDSv1 

[88] 2020 

Dendritic Cell Algorithm (DCA) and 

Self Normalizing Neural Network 

(SNN 

A DeepDCA model for detection of IoT Attacks 

Using Artificial Immune System, classify IoT 

intrusion and reduce the false alarm generation 

IoT-Bot 

[48] 2019 CNN and LSTM 

Learn high-dimensional representations from the 

network traffic. The technique utilize graph structures 

as the supplementary prior information, feature 
extraction using the graph Laplacian matrix for long-

term information learning on communication graphs 

UNSW-NB15 and 

CICIDS-2017 

[89] 2021 DBN-LSSVM 
Achieve high accuracy, thus improving the detection 
rate detection rates for known attack types in NIDSs 

KDD CUP 99 

[90] 2021 CNN and Bi-LSTM 

A new deep learning-based hyperparameter search 

(HPS) model  known as HPS-CBL developed for 

intrusion detection in big data environments. 

UNSW-NB15 

[91] 2021 CNN and LSTM 

A SDN-enabled framework for timely and efficient 

detection of sophisticated Internet of Medical Things 

(IoMT) malwares 

IoT-23 

[92] 2021 CNN and LSTM 
Masquerade attack detection using Schonlau data set 
and the Green-berg datasets 

Greenberg and Schonlau 

[93] 2021 DBN and deep auto encoders 
Proposed a SecureDeepNet-IoT model for detecting 

IoT-based intrusions. 
UNSW-NB15 

[94] 2021 CNN and LSTM 
detect botnet attacks, namely, Mirai and BASHLITE, 

on nine commercial IoT devices 

Real N-BaIoT dataset 

extracted from a real 

system 

[95] 2018 CNN, LSTM and DNN 
A model for extracting spatial-temporal information 
from raw web traffic data. 

Yahoo! Webscope S5 

[96] 2020 
CNN and weight-dropped LSTM 

(WDLSTM) 

Achieve high accuracy, thus improving the detection 

rate detection rates for known attack types in NIDSs 
 IDS big data  

[97] 2020 
CNN and conventional learning 

classifier system (LCS)  

detecting database intrusion via insider attack based 
on the RBAC mechanism with Feature selection 

using Genetic Algorithms 

Synthetic query dataset 
based on the RBAC 

mechanism  

[98] 2021 Model  fusion  of two DNNs 
Anomaly  detection  and  classification of various 
network attacks in large-scale and highly imbalanced 

traffic dataset 

ZYELL’s real-world 

dataset 

[99] 2021 CNN and RNN 

A hybrid framework that captures local and temporal 

features to predict and classify malicious cyberattacks 
in the network 

CSE-CIC-DS2018 

[100] 2019 CNN and RNN 

Network-based payload classification approach 

without feature engineering to support and improve 
accuracy and detection rate end-to-end.  

DARPA1998 

[101] 2019 
improved conditional variational  

Auto Encoder  (ICVAE)  and DNN   

Improving the detection rate of imbalanced attacks by 

automatically reducing data dimension, learning and 

exploring potential sparse representations between 
network data features and classes 

NSL-KDD and UNSW-

NB15 

[102] 2020 
Adversarial Auto-encoder (AAE) and 

Generative Adversarial Nets (GAN 

Employs semi-supervised learning to build a NIDS 

for network intrusion detection  
NSL-KDD 

[103] 2020 

Model voting ensemble, ensemble 

adversarial training, and query 
detection using MLP,  CNN,  and  

Conv-LSTM 

A general framework dubbed Tiki-Taka, for 
evaluating the robustness of deep learning-based 

NIDS against adversarial manipulations with the aim 

of increasing the NIDS' resistance to attacks while 
engaging such evasion techniques 

CSE-CIC-IDS2018 

[104] 2021 CNN and LSTM 

Model based on the association and combination of 

individual deep learning models to achieve better 
results in network intrusion detection 

UNS-NB15 
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[105] 2021 CNN, LSTM and SVM 
Hybrid semantic deep learning (HSDL) architecture 
that classifies the intrusion present in the text 

alongside its corresponding attack class 

NSL-KDD and UNSW-
NB15. 

 

[106] 2019 
CNN, LSTM, and Stacked Auto-
Encoder (SAE) 

Deep-Full-Range (DFR ) model that learns spatial, 

temporal and extracting features from coding 
characteristics capable of classifying encrypted traffic 

and malware traffic 

ISCX VPN-nonVPN 

traffic dataset and ISCX 

2012  

[46] 2017 CNN and LSTM 
A hierarchical spatial-temporal features-based 
intrusion detection system (HAST-IDS) architecture 

for designing NIDSs 

DARPA1998 and 

ISCX2012 

[107] 2020 
CNN and quasi-recurrent neural 

network (QRNN).   

Improve threats classification performance in Cyber 

Threat Intelligence for Secure Smart City that 
comprise a large number of sensors that constantly 

generate a significant amounts of sensitive data such 

as credit card numbers, location coordinates, and 
medical records.  

ToN_IoT 

[108] 2020 DBN and GRU 

Combines both dynamic analysis and static analysis 

technology to deal with spread use of obfuscation in 
android malware detection 

Android PRAGuard 

[109] 2021 CNN and WDLSTM 

Improve speed and extract meaningful features from 

network traffic in big data environments for effective 

intrusion detection 

UNSW-NB15 

[110] 2019 CNN and  LSTM 

Intrusions detection on a large-scale network by using 

CNN and LSTM algorithms for spatial and temporal 

feature learning in the traffic data  

NSL-KDD and UNSW-
NB15 

[111]   2018 CNN and  LSTM 

Significantly increase accuracy of intrusions detection 

in networks where CNN is used for feature extraction 

before LSTM layer and classify the packet traffic. 

NSL-KDD 

[112] 2021 Feature fusion of CNN and LSTM 
Extraction of spatial-temporal information from 
network traffic for network intrusion discovery 

scenarios of video surveillance system (VSS). 

KDD  Cup  99   

B. Characteristics of Hybrid Deep Learning-Based 

Models   

The literature review sought to establish the salient 

characteristics of hybrid deep learning-based models. From 

the reviewed papers, the following are the characteristics of 

the hybrid deep learning-based models in the design of 

network intrusion detection.  

i.) Approximation 

Majority of the hybrid deep learning-based models exploit 

neural networks in the design of NIDS. Neural networks are 

considered to be universal function approximators. They 

have the capacity to approximate any function arbitrarily 

well, when presented with enough neurons. The success of 

deep learning techniques rests in their capacity to estimate 

complex unknown functional forms for the relationship 

between the predictors and the outcome variable [113]. The 

authors further posits that the accuracy of the approximation 

function is dependent on the neural network structure, 

characterized by the number, dependence and hierarchy 

between the nodes within and across layers. Essentially, a 

neural network successfully implements a mapping which 

approximates a function that is learned based on a given set 

of input-output value pairs. Substantial developments in 

understanding the approximation capabilities of neural 

networks has been made in the works of [113], [114], [115], 

[116]. According to these authors, deep neural networks 

perform better approximation compared to shallow networks 

due to their ability to mimic any compositional structure 

inherent in the target function; an ability that shallow 

networks cannot have.  The universal approximation 

theorem advanced by [117] postulates that considering only 

continuous activation functions 𝜎, at that point, a standard 

feed forward neural network consisting of one hidden layer 

as shown in figure 3 is capable of approximating any 

continuous multivariate function 𝑓, to any given 

approximation threshold, ℰ on condition that 𝜎 is non- 

 

polynomial. The objective of a feed-forward network is to 

approximate a given function 𝑓. Considering a classifier, 

𝑦 = 𝑓(𝑥) maps an input 𝑥 to a category 𝑦.  

Such a feed-forward neural network determines a mapping 

𝑦 = 𝑓(𝑥; 𝛉) that learns the value of the parameters 𝛉 that 

yields the most outstanding function approximation from a 

sample dataset(𝑥𝑖 , 𝑦𝑖)𝑖=1
𝑛 .  

 

Figure 7: Feed forward neural network 

In his study [115], explicitly quantified the number of 

hidden units essential for neural network approximation. A 

standard neural network is determined by its architecture 

and weights. Considering a feedforward neural network with 

𝑛 input units, 𝑚 output units, and with one or more hidden 

layers, denotes a computational model ℳ which can 

calculate a given class of functions 𝜌: ℝ𝑛  →  ℝ𝑡 , where 

𝜌 = 𝜌𝑤  is parametrized by 𝑊 (referred as weights of ℳ).  

Yarotsky [114] demonstrated that in the optimal 

approximations by neural networks the weights generally 

discontinuously depend on the approximated function, and 

that many nonlinear approximation schemes involve some 

form of discontinuity, often explicitly.  
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The author proved that using very deep fully connected 

networks of depth 𝐿 ~ 𝑊 one can approximate function 𝑓 

with good propagation of errors 𝑂 (𝜔𝑓 (𝑂( 𝑊−
2

𝑣  ))) that 

are not attainable with less deep networks. In the literature, 

it is widely recognized that deeper models can reduce the 

number of computational units (hidden units) needed to 

approximate the target function by a factor that is 

exponential in the depth of the feedforward neural network 

[118]. In the wok of [119], it was demonstrated that deep 

networks are better when the complexity is computed in 

terms of the rank of certain tensors. Mhaskar and Poggio 

[116] also proved that good propagation of errors enables 

researchers to lift theorems on approximation power of 

shallow networks to those of deep networks if all the 

constituent functions are Lipschitz continuous [120]. Table 

3 presents the results in approximation-theoretic networks 

that have multiple hidden layers.  

Table 3: Approximation-theoretic results for networks 

with multiple hidden layers 

S/No. Authors    

  General 

Functions 

Continuous 

Functions 

Functions 

With Their 
Derivatives 

1 [121]    

2 [122]    

3 [123]    

4 [124]    

5 [125]    

There are a plethora of neural network architectures and 

activation functions. For instance, in their work [125] 

acknowledged existence of a function which, though 

expressible through a small three-layer network, can be 

represented using a very large two-layer network; where the 

total number of neurons in the network determines its size. 

Mhaskar and Poggio [116] also proved that the results for 

continuous activation functions in deep convolutional neural 

networks are similar to the results in [125].  

In the surveyed papers, the Rectified Linear Units (ReLU), a 

linear piecewise function which directly gives an output if 

the input is positive and outputs zero if the input is negative, 

is normally adopted as a default activation function, helping 

the neural network better perform and train mainly because 

the neural networks are multilayered [118], [126], [127]. 

The multilayer networks cannot use hyperbolic tangent and 

sigmoid activation functions due to the vanishing gradient 

problem [128]. The vanishing gradient problem is a 

consequence of the depth of the network. In 

backpropagation algorithms, the model weights are adjusted 

in proportion to the gradient error where the error vector 

may shrink exponentially, causing the gradients in model to 

vanish as it approaches the early layers of the network. 

ii.) Empirical Risk Minimization 

Empirical risk minimization (ERM) is a principle that most 

neural network optimizations presently follow, that is, the 

error or risk of a learner trained using known empirical data 

(training samples), also known as "empirical error" or 

"training error" [129]. As a theory in statistical learning, 

ERM outlines a collection of learning algorithms that gives 

theoretical bounds on the performance of such algorithms. 

Consequently, ERM helps delineate a good classification 

and regression learning function from a bad one [130] and 

are based on replacing (or approximating) the average 

prediction error with the empirical risk incurred by a 

predictor when applied to a finite set of labelled data points 

(the training set).  

If we assume that we have chosen a particular hypothesis 

space ℋ, that comprises of all computationally feasible 

predictor maps ℎ, in machine learning tasks such as 

classification or regression, it is important to determine 

which predictor map ℎ out of all the maps in the hypothesis 

space ℋ. Machine learning methods aim at finding the 

predictor ℎ ∈ ℋ with minimal average prediction error. 

There is need to describe a measure of the loss (or error) 

incurred when the predictor ℎ(𝑥) is used whereas the true 

label is 𝑦. The loss function can be formally defined as:  

ℒ: 𝔁 x 𝓎 x ℋ ↦ ℝ                                                              (3) 

Where the loss ℒ((𝒙, 𝑦)ℎ) incurred is measured by 

predicting the label 𝑦 of a data point by means of the 

prediction ℎ(𝒙)(=: �̂�). The calculation of the empirical error 

is greatly expensive even for a moderate sample size 𝑛, 

since it necessitates averaging 𝑂(𝑛𝑑) terms [131]. The ERM 

is a valuable technique whereby a good approximation of 

globally optimal classifier maybe attained to provide a good 

statistical classification result. As such, ERM is employed to 

define the risk (loss) function especially in supervised 

learning tasks where the idea is to learn a predictor map 

having a small training error.  

𝜀 ≔ (1   𝒯 ) ∑ ℒ(𝑔, (𝒙, 𝑦)) (𝑥,𝑦) ∈ 𝒯                                 (4) 

The training error is calculated on a given set of data points 

that are labelled; 

𝒯 ⊆ 𝒟 =  {(𝒙(1), 𝑦(1)), (𝒙(2), 𝑦(2)) , … , (𝒙(𝑚), 𝑦(𝑚))}      (5) 

Where the true label values 𝑦(𝑖) are known and the set 𝒟 

stand for all available labelled data points. Here, the training 

error 𝜀 (𝑔) is given by the average loss incurred on some 

labelled (training) data 𝒯 ⊆ 𝒟. The utmost application of 

the ERM principle is the learning of a predictor map from a 

model class that best fits the sample through solving: 

𝑔 ̂ ∈ 𝑎𝑟𝑔 min
𝑔∈ℋ

 𝜀(𝑔)                                                            (6) 

Where the strict subset 𝒯 ⊂ 𝒟 of all data points that are 

labelled is employed to compute the training error and the 

remainder of the data points  𝒟\𝒯 not used during the 

training, validate the predictor learnt. In the surveyed 

literature, ERM covers many of the popular learning 

methods and is extensively used in practice based on the 

papers reviewed. 

iii.) Optimization and Model Complexity Control 

Zhou [132] opined that popular of deep learning 

applications are logically formulated as non-convex 

optimization owing to the complex mechanism of the 

underlying model.  
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Novak, et al. [133] also observed that neural networks are 

prominently non-convex models with extreme capacity that 

train fast and generalize well. Moreover, neural networks 

consists of several symmetric configurations for instance, 

exchanging intermediate neurons, hence considered as non-

convex. Through the advent of deep learning, researchers 

needed to progressively manage non-convex optimization, 

more predominantly on account of the benefits hidden 

behind its complexity. A non-convex optimization is any 

problem where the objective or any of the constraints are 

non-convex [134] particularly because such algorithms 

operate in high-dimensional spaces. In the reviewed papers, 

all the NIDS models were tested on datasets with high 

dimensional data. The liberty to express the learning 

problem as a non-convex optimization problem grants 

immense modelling power to the designer of an algorithm 

[135]. In the surveyed literature, local optimization methods 

are widely used in applications where there is value in 

finding a good point, if not the very best. In their work, 

[136] demonstrated that deep neural networks are 

acquiescent to optimization by gradient descent despite 

being non-convex. Model complexity arises in the context of 

predictive learning and adaptive estimation of dependencies 

from finite data [137]. According to [138] the complexity of 

the network is contingent on suitable measures of 

complexity of the space of functions realized by the network 

such as VC-dimension, covering numbers and Rademacher 

numbers. Over time, researchers have acknowledged that the 

key to suitable predictive mode performance is in the control 

of the complexity of the neural network. The authors [138] 

further posit that model complexity may possibly be 

controlled during optimization by introducing a constraint, 

usually in the form of a regularization penalty, on the mean 

of the weights. Assuming that we have chosen a particular 

hypothesis space ℋ that entails all computationally feasible 

predictor maps ℎ. Generally, model overfitting occur mainly 

because the hypothesis space ℋ is extremely huge for the 

sample size 𝑛. Obviously, the complexity of the hypothesis 

space (that is, the size of ℋ) attainable relies on the quantity 

of training data available. Figure 4 illustrates the 

relationship between model complexity, true risk, and the 

empirical risk for a particular training dataset.  

 

Figure 8: Relationship between Model Complexity, 

Empirical Risk and True Risk  

One method in avoiding model overfitting is to choose ℋ to 

guarantee suitability for the sample size. Several 

mechanisms exists to control the model complexity, which 

are in reality quite similar in operation. In the literature, two 

frequently used approaches are:  

a) Structural risk minimization  

Consider ℋ1,ℋ2, … , ℋ𝑛  as a sequence of growing sized 

spaces. For instance, one normally has ℋ𝑘 ⊂  ℋ𝑘+1 and  ∪

ℋ𝑘 =  ℋ. Assuming the training data 𝒟𝑛 , one can find ℎ̂𝑛 

by reducing  

ℎ̂𝑛 = 𝑎𝑟𝑔 min
ℎ∈ℋ𝑛 

�̂�𝑛 (ℎ)                                      (7) 

b) Penalized empirical risk minimization.  

This entails defining penalty function : ℋ ↦ ℝ+and 

determine  ℎ̂𝑛 as shown in the ensuing optimization 

procedure: 

ℎ̂𝑛 =  𝑎𝑟𝑔 min
ℎ∈ℋ

1

𝑛
 ∑ ℓ(𝑦𝑖

𝑛
𝑖=1 , ℎ(𝑥𝑖)) + ⋋𝑛 (ℎ)              (8) 

Where ⋋𝑛 > 0  provides a balanced trade-off between 

model complexity and goodness-of-fit. Actually, there is a 

regular need to select ℋ𝑛  or ⋋𝑛 based on the training data in 

order to attain a good balance between model complexity 

and goodness-of-fit. In the literature, gradient descent 

algorithms are the most popular techniques for optimizing 

deep learning related models. These techniques utilize 

similar learning rate to adjust all parameters of the model. 

Such techniques include Stochastic Gradient Descent, Mini 

batching, Nesterov Accelerated Gradient Descent, 

Momentum and Adam which are classified as classical 

iterative optimization algorithms. More recently, new 

variants of adaptive methods have similarly been proposed. 

According to [139], new optimization techniques have been 

developed that adaptively modify the learning rate per 

parameter throughout the training process. These techniques 

are used to change the attributes of weights and learning rate 

in order to reduce the model losses and are considered 

adaptive gradient methods mainly employed in both 

supervised and unsupervised tasks [140]. Based on the 

literature review, it is observed that the Adaptive 

Momentum (Adam) optimization technique [141] is the 

prevalent technique employed for optimizing many of the 

deep learning-based models. Adam combines the RMSprop 

and momentum techniques, that are known to use the 

squared gradient for scaling the learning rate parameters 

similar to RMSprop and works the same way as the 

momentum by adding averages of moving gradients. 

Together with its variant, Adam computes adaptive learning 

rates for every parameter by coalescing the concepts of 

momentum and adaptive gradient retaining an exponentially 

decaying average of past gradients. Besides, these 

algorithms are known as first-order adaptive optimization 

algorithms owing to their super-fast convergence speed 

while solving large scale optimization tasks [142]. The 

adaptive gradient methods iteratively update parameters by 

moving them to the direction of the negative gradient of the 

cost function with non-fixed learning rate. Further, the 

problem of rapid decay of learning rate is addressed by 

scaling down the gradient by the square roots of exponential 

moving average of past squared gradients [143].  
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The analysis results demonstrates that the effective learning 

rate, in theory, grows over time in a fairly quick manner 

during model training and evaluation.  

C. Open Challenges and Future Research Issues 

Finally, the literature review sought to evaluate the future 

scope of research in hybrid deep learning-based NIDSs. In 

this section, we outline open challenges and highlight 

possible future research directions. Hybrid deep learning-

based modeling revel in the benefits of both generative and 

discriminative learning. In effect, hybridization may outdo 

the others in terms of demonstrated performance. From the 

review, hybridization or ensembles of these techniques have 

proved to yield better performance in regard to accuracy, 

detection rate and reduction of false alarm rates. Regardless 

of the many years of development and enormous efforts by 

the researchers, current hybrid deep learning-based NIDSs 

still encounters challenges while improving detection 

accuracy as well as minimizing false alarm rates and in 

detecting new intrusions [6]. To address these gaps, scholars 

have focused on building NIDSs that capitalize on deep 

learning methods that have the capacity to improve the 

detection accuracy of known and unknown attacks and have 

strong generalizability.  The effect of the overfitting 

problem during the execution of such deep learning 

algorithms [8] is still an area that requires further research 

particularly in the design of NIDSs. Neural networks suffer 

from generalization errors due to their special structure or 

the regularization techniques used during training. As such, 

suitable regularization techniques are required to control the 

generalization error particularly in deep neural network 

models. Regularization prevent overfitting of models to the 

training data, where modification are made to the learning 

algorithm with the intention to minimise its generalization 

error rather than its training error [144]. A main constituent 

in creation of an efficient NIDS is the preprocessing of 

network traffic and identification of important features that 

is indispensable for building robust classifier [145]. 

Developing NIDS in a dynamically changing computing 

environment require fast and suitable feature selection [146] 

and dimensionality reduction methods remains a challenging 

matter given that most of the network IDS are dependent on 

the deployed environment [20]. Further, the high latitude 

and non-linear characteristics of computer network data 

make the network intrusion detection work difficult to break 

through [147]. Therefore, future research should focus on 

approaches that extracts significant and relevant features 

from voluminous amount of noisy, high-dimensional, and 

unlabelled network traffic data. Again, the choice and use of 

an appropriate dataset is a major issue in the design of 

hybrid deep learning-based NIDSs. Hybrid deep learning-

based models  comes  at  the  expense  of  being  more  

complex,  thus  harder  to maintain and explain. Further, 

they similarly require more resources and time to analyze 

the network activities [148]. In their work [149] concluded 

that low-complexity models have a small norm of Hessian 

matrix with respect to model parameters. Thus, the property 

of the Hessian denotes that the volume of good minima 

dominates over that of poor ones, which ultimately yields an 

almost sure convergence to good solutions, as demonstrated 

by various empirical results obtained from the reviewed 

papers. Future research in this area need to consider 

mechanisms for reducing the computational complexity in 

their designs [150]. Most of the hybrid deep learning-based 

NIDS has focused on discriminative/supervised learning [1]. 

Discriminative architectures that are applied in the design of 

NIDS largely comprise of DNN, CNN, and RNN, together 

with their variants. Future research should take into account 

optimization, model complexity control, and applicability, 

consistent with the nature of the data. This would be a novel 

contribution in the domain, which arguably can be a key 

future aspect in discriminative learning. 

V. CONCLUSION 

Network security issues are becoming increasingly 

prominent with deep learning attracting the attention of 

scholars in network security domain. Hybrid deep learning 

approaches have been recommended and distinguished to be 

ideal in identifying network attacks more accurately. In this 

study we sought to synthesize available research on hybrid 

deep learning-based approaches for NIDSs design. Through 

the systematic literature review, the study endeavoured to 

answer the following three research questions: what are the 

recent hybrid deep learning approaches adopted for the 

design NIDS? What are the salient characteristics of hybrid 

deep learning-based NIDS? and What is the future scope of 

research in hybrid deep learning-based NIDS? Through the 

detailed review, we selected 67 papers published in peer 

reviewed journals and conference papers between 2027 and 

2021. The study presented a structured and comprehensive 

systematic literature review of hybrid deep learning-based 

NIDSs. A taxonomy of deep learning approaches was 

presented taking into account the deep networks for 

discriminative or supervised learning, generative or 

unsupervised learning, and finally hybrid learning that can 

be used to design a variety of hybrid systems. Our focus was 

on hybrid based systems where the study described their 

categorization into either algorithmic, cooperative or 

hierarchical architectures. We also detailed the salient 

characteristics exhibited by these architectures in the design 

of such hybrid systems. The study finally presented a 

summary and discussion on the open challenges still facing 

hybrid deep learning-based NIDSs and the potential future 

research directions in the area. The authors opine that our 

study points in a promising path to the design of NIDSs and 

can be utilized for future research and implementations 

targeting other relevant application fields by academicians 

and industry professionals.  
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