
International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378 (Online), Volume-13 Issue-11, October 2025

 25

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number:100.1/ijese.L261713111025
DOI:10.35940/ijese.L2617.13111025

Journal Website: www.ijese.org

Explainable Machine Learning Model for Android

Malware Detection

Divish Raj O, Vinay V Hegde

Abstract: This study addresses essential cybersecurity challenges

in malware detection for applications by developing an explainable

machine learning framework. The Stacking Ensemble approach

achieves 99.89% accuracy in malware detection while maintaining

high explainability through explainable AI (XAI) techniques. The

research supports Vector Machines, K-Nearest Neighbours,

Logistic Regression, Decision Trees, and Random Forest

classifiers with ensemble strategies (Stacking and Voting), used by

SHAP and LIME for transparency. The methodology shows that

permissions, different API calls, and opcode-related attributes are

the features to differentiate malicious applications. Experimental

results show that the Stacking Ensemble, which combines

individual classifiers across all metrics (accuracy, precision, recall,

F1-score), offers a transparent solution for application security

that addresses the black-box nature of traditional machine

learning models.

Index Terms: Threat Detection, Explainable AI, SHAP, LIME,

Ensemble Learning, Machine Learning, Application Security and

Permissions.

Nomenclature:

XAI: Explainable Artificial Intelligence

CNNs: Convolutional Neural Networks

IDS: Intrusion Detection Systems

SMOTE: Synthetic Minority Over-Sampling Technique

LIME: Local Interpretable Model-agnostic Explanations

RBF: Radial Basis Function

I. INTRODUCTION

The use of mobile applications and the increasing

complexity of digital ecosystems have heightened the

urgency for transparent threat-detection solutions, as Android

faces cybersecurity challenges due to its open-source

architecture and widespread use. This creates opportunities

for attackers but also compels defenders to innovate quickly

in the race against advanced malware. Ensemble learning

approaches achieve higher classification accuracy than

single-model methodologies. Alamro et al. introduced an

ensemble-based framework combining machine learning

models for Android malware detection, optimising both

detection rates and the handling of evolving threats.

Manuscript received on 27 September 2025 | Revised

Manuscript received on 06 October 2025 | Manuscript Accepted

on 15 October 2025 | Manuscript published on 30 October 2025.
*Correspondence Author(s)

Divish Raj O*, Department of Computer Science and Engineering, R V

College of Engineering, Bangalore (Karnataka), India. Email ID:
divish727@gmail.com, ORCID ID: 0009-0009-3570-1492

Dr. Vinay V Hegde, Department of Computer Science and Engineering,

R V College of Engineering, Bangalore (Karnataka), India. Email ID:
vinayvhegde@rvce.edu.in, ORCID ID: 0000-0002-4684-6541

© The Authors. Published by Blue Eyes Intelligence Engineering and

Sciences Publication (BEIESP). This is an open-access article under the

CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

With the success of these detection systems, the adoption of

machine learning in cybersecurity introduces new bugs. In

exceptional cases, ML-based security models may be

susceptible to adversarial attacks that exploit their decision

boundaries. Zhang et al. investigated black-box brute-force

attack methods that systematically probe and bypass ML-

based cyber defences, exposing potential blind spots in

widely deployed systems. This research underscores the need

not only for stronger models but also for advancing their

dependability, trustworthiness, and consistency. These

approaches integrate explainable artificial intelligence (XAI)

tools, such as SHAP and LIME, to provide understandability

and transparency. These XAI methods allow users and

analysts to understand and trust the automated decisions made

by the detection system. Moreover, it is essential for

maintaining confidence and compliance in security-sensitive

domains. The rapid iteration of both attack and defence

technologies in mobile devices underscores the importance of

adaptable, effective security strategies. State-of-the-art

research shows how adversarial attacks—ranging from black-

box brute-force exploits to code diversification that easily

destroys detection and can substantially lower the

effectiveness of conventional machine learning models.

These tactics expose critical bugs until defence frameworks

incorporate not just learning architectures but also

explainability and adversarial awareness. It is essential to

make a deeper diagnosis of model decisions in security-

sensitive environments. As adversarial tactics such as code

diversification and black-box evasion become more

sophisticated, coupling explainability with resilient

architectures becomes increasingly essential for maintaining

adequate, accountable security. This cycle of attack and

explanation supports breakthroughs in transparent,

trustworthy malware defence, ultimately fostering confidence

among users, administrators, and the cybersecurity

community. These insights shed light on the role of XAI in

detection accuracy, especially in evolving threat

environments.

II. BACKGROUND AND RELATED WORK

A. Machine Learning for Malware Detection

Machine learning is gaining popularity for detecting

malware by analysing its outputs — the structure or behaviour

of applications. There are two primary approaches: static

analysis, which analyses an app’s code or configuration files

without executing it, and dynamic analysis, which runs the

app in a controlled environment to observe its behaviour and

runtime. These analyses provide output that models can use to

classify applications as benign or

malicious.

http://doi.org/10.35940/ijese.L2617.13111025
http://doi.org/10.35940/ijese.L2617.13111025
http://www.ijese.org/
mailto:divish727@gmail.com
https://orcid.org/0009-0009-3570-1492
mailto:vinayvhegde@rvce.edu.in
https://orcid.org/0000-0002-4684-6541
https://www.openaccess.nl/en/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijese.L2617.13111025&domain=www.ijese.org

Explainable Machine Learning Model for Android Malware Detection

 26

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number:100.1/ijese.L261713111025
DOI:10.35940/ijese.L2617.13111025

Journal Website: www.ijese.org

B. Explainable AI for Malware Detection

SHapley Additive Explanations and Local Interpretable

Model-agnostic Explanations are Explainable AI tools that

improve transparency in malware detection models by

optimising their decision-making processes.

Machine learning algorithms such as Decision Trees,

Neural Networks, and K-Nearest Neighbours often yield

outcomes that are either malware or not, without evidence.

SHAP and LIME help explain these results. SHAP assigns a

value to each feature (e.g., permissions or network activity)

and quantifies its contribution to the final prediction,

providing a global understanding of feature importance.

LIME, on the other hand, focuses on individual predictions by

giving inputs—such as removing a suspicious API call—and

analysing changes in the outcome, to which those inputs are

pivotal.

This understandability is essential. For instance, if a

Random Forest model identifies an Android app as malicious,

SHAP might show that 70% of the decision is due to abnormal

data uploads. In contrast, LIME shows that without having

such uploads, the app appears benign. This clarity allows

security analysts to validate the model’s reasoning, detect

biases, and improve accuracy. As malware advances evolve—

such as the sophisticated banking trojans seen in 2025—

combining the power of ML with the transparency of XAI to

build trustworthy, advanced malware detection systems.

III. LITERATURE SURVEY

In July 2021, Musikawan et al [4]. were the first to propose

AMDI-Droid, a deep learning-based framework designed to

advance the detection of Android malware significantly. In

their publication, Musikawan et al. described the different

functionalities and layers of AMDI-Droid, including its three-

layer blending (output) for each hidden layer of the CNN

subnetwork and a richer feature-extraction (exploiting)

subnetwork. The resulting daemons, like obfuscated malware,

were tested against benchmarks. AMDI-Droid outperforms

the other benchmarks tested, including static and dynamic

analysis. The research work on AMDI-Droid shows that, at a

96% significance level, it achieved high accuracy, precision,

and recall. AMDI-Droid is not just precise but also

outperforms the benchmarks it was tested against.

This presented (proposed) a novel technique to get a

significant enhancement in the detection of Android malware

by deploying a framework-based approach rather than

training the malware, which is mainly used in traditional

malware detection techniques. Also, because DL is used as

the malware detection tool, the research paper found that

AMDI-Droid outperforms all other detection techniques

presented so far.

The complexity of AMDI-Droid and the need to allocate

most of the computational power to achieve the required

output speed are the only points one should consider before

selecting AMDI-Droid as their high-powered detection

algorithm.

To replace the traditional malware-detection method,

Musicawan et al. proposed AMDI-Droid as the future of

Android malware detection in 2011. Proposed the same

(model) for the first time in the field, for AMDI-Droid to be

non-replaceable, but to serve as a benchmark for a (quite)

long-term prediction.

In July 2023, Alamro et al [1]. were the first to present

AAMD-OELAC [6] for the detection of Android malware, in

contrast to the approach proposed by Musicawan et al.,

namely AMDI-Droid. Indeed, AAMD-OELAC is still very

slow to reach the preset threshold for issuing a judgment on

data using the spectrum proposed by Alamro et al. Alamro et

al. proposed a different approach to detecting Android

malware compared to the proposed method. For me, ensemble

learning is the best approach to detecting malware in the near

future. In the research work by Alamro et al. on AAMD-

OELAC, they deployed an ensemble learning technique that

experts in preprocessing noisy datasets have used.

As our favourites are ensemble learning, I would

recommend that anyone selecting a malware detection tool

choose AMDI-Droid over AAMD-OELAC. As both are based

on deep learning, the ensemble learning technique for AMDI-

Droid outperforms the method proposed by Alamro et al.

Transparency, a cornerstone of this research, is advanced by

Explainable AI (XAI) tools such as SHAP and LIME.

[11] In 2022, Alani and Awad introduced PAIRED, a

lightweight Android malware detector model built with just

35 static features, including permissions and API calls, and

using SHAP for explainability. As PAIRED yields more than

98% accuracy with less resource use, it can be used for real-

time detection on any Android device. PAIRED explains the

reasons behind flagging an App, such as excessive network

access.

In 2022, Liu et al [16]. conducted a significant study to

understand the reasons for the high accuracy of the Machine

Learning model used for Android malware detection by

utilising so-called 'Explainable AI' to uncover the reasons

behind it. Surprisingly, they made an interesting discovery.

Many of these models achieve inflated accuracy of up to 99%,

not because they identify malicious patterns, but because of

temporal biases and artefacts in the training datasets.

By conducting a comprehensive XAI analysis across seven

datasets, they have reported findings that reveal that, in most

cases, the models tend to learn different patterns in the dataset

rather than detecting generalisable characteristics of malware.

For instance, some of the essential features learned by the

model could, in fact, be different temporal indicators that are

guaranteed to occur when the samples are collected but

cannot be proven to be actually malicious. The paper serves

to attract the attention of other researchers, always to cross-

check their model performance with/without explainable AI

techniques, as well as the datasets used.

The artefacts. Proposing their findings emphasises the need

for rigorous evaluation methodologies and transparent reports

on how and why models make predictions. This ensures that

detection systems would remain effective when deployed in

production environments.

Kirubavathi and Nithish [12] adopted a dynamic approach

in 2024. They combined Random Forest, XGBoost,

LightGBM, and KNN with a Random Forest meta-learner.

The CCCS-CICAndMal2020 dataset was used for

implementation. LIME improved

its framework, achieving 98%

accuracy. Class balancing was

performed using SMOTE.

http://doi.org/10.35940/ijese.L2617.13111025
http://doi.org/10.35940/ijese.L2617.13111025
http://www.ijese.org/

International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378 (Online), Volume-13 Issue-11, October 2025

 27

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number:100.1/ijese.L261713111025
DOI:10.35940/ijese.L2617.13111025

Journal Website: www.ijese.org

Feature ranking was done to reduce noise. They have

proposed a transparent, high-performance malware detection

system.

Smmarwar et al. [13] presented XAI-AMD-DL in 2023.

This is a deep learning approach to designing an explainable

AI for an Android malware detection system. This model

combines a Convolutional Neural Network (CNN) with Bi-

Gated Recurrent Units (Bi-GRU). This hybrid network can

simultaneously learn the malware's spatial and temporal

behaviours. Many deep learning models fail to provide

explainability. So the conventional deep learning models

cannot solve the problem. They have designed their deep

learning system with built-in methods to make it explainable.

This architecture was tested on standard benchmark datasets.

Their hybrid model outperformed both traditional

Convolutional Neural Networks (CNNs) and RNNs. In

addition, since they have conducted feature contribution

analysis, it provides some transparency to security

professionals, classifying their approach as the most reliable

Android malware detection model.

Rajalakshmi et al. [14] paved the way in 2024. They made

memory analysis their core approach, combined with

explainable AI, to improve their malware detection system.

Their conventional malware detection method showed a high

false-positive rate and was therefore taken in an innovative

direction; this work emphasises that traditional malware

detection methods show high accuracy. However, it fails to

detect versions of obfuscated malware because it cannot

access the file's memory.

Two authors of the present study, Patel and Ghosh [15],

presented AMD-XAI-ML, a machine learning-based Android

malware detection framework designed with explainability-

oriented smart computing aspects in 2024. Evasion

techniques like packing and encryption pose significant

challenges for creating an effective malware detection

system. The AMD-XAI-ML framework is well-engineered to

detect unknown malware variants while maintaining low

false-positive rates. Nine machine learning models are used

to compute AMD-XAI-ML on the CICAndMal2019 dataset.

Among all, the XGBoost function provides the highest

accuracy of 98.54%, while the random forest classifier offers

98.42%. It is seen that the decision tree classifier also

computes the best accuracy of about 98.23%.

Explainability can be achieved using XAI (eXplainable

Artificial Intelligence) techniques. So, the transparency of the

decision-making is well balanced with the performance of the

detection process. The cause plays a significant role in smart

devices that require minimal resources. The machine learning

model's explanation makes it easier for security analysts to

determine whether malware is present. For practical

deployment, a transparent model for detecting Android

malware is feasible and accurate.

Moustafa et al. gave a brief overview of the role of XAI in

IoT intrusion detection in 2023 [7]. In the different models

used to implement machine learning methods for IoT

intrusion detection, an interpretable model is needed to

explain the predictions. Overfitting is often a significant issue

in intrusion detection systems (IDS). So, trustworthiness is

also one of the key outcomes to be achieved by improving

machine learning methods and techniques.

An efficient defence strategy is also needed to support plans

to develop a better IoT model. The real question about the bug

is whether there was interest in using SHAP and LIME as an

operational technique for IoT botnets in May 2024. The actual

questions are the botnet prediction model's loyalty and

sensitivity to the training data. So, one can conclude that the

bug in the Android malware is correctly explained. The SHAP

is providing the highest loyal reasoning for the prediction.

The SHAP is also accurate for the decision reached, as the

botnet traffic pattern matched that of the Android malware.

The model provides satisfying explanations and precise

predictions.

Kalakoti et al. proposed an operational technique for

applying SHAP and LIME to the IoT botnet in 2024. The bug

in the Android malware yields high predicted and correct

results when predicting the botnet traffic pattern. The real

decision for the bug in the malware is matched, and SHAP is

used for faithful or loyal reasoning to predict the traffic

pattern [8]. Kalakoti et al. contributed to the world of IOT

BOTNET in May 2024.

Chandana Snehal et al [17]. documented the proven,

unofficial results that it matches the proposed machine

learning and deep learning models for Android malware in

2024. The unexplored intrusion project is revealed by

Chandana Snehal et al. The botnet traffic pattern matched the

Android malware pattern, and SHAP is accurate. Kalakoti et

al. contributed to the use of botnet traffic patterns and their

performance in the operation of the Android malware.

Kalakoti and named their system to detect IoT botnets as XAI.

The entire process is designed to combine machine learning

(Random Forest) and deep learning (LSTM-CNN, BiLSTM)

with SHAP for detecting Android malware. Liverpool J also

used the LSTM-CNN with SHAP in October 2023 [3] to

operate the botnet and detect Android malware. This proposed

hybrid model combines the SMOTE technique for class-

imbalanced datasets and achieves accurate classification of

Android malware by leveraging better suspicious API usage

[8]. Officials made botnet traffic detection easier, making the

entire process easier to detect and act on. While scalability is

the primary advantage, there are also specific concerns.

Atedjio et al. [5] in 2024 developed a CycleGAN-based

defence method that included a gradient penalty to improve

stability and accuracy. It was introduced for the grey-box

setting where the attacker has only partial knowledge about

the detection model. In April 2024, Xu et al. [10] reported, in

one of their research papers on OFEI, a semi-black-box attack

in which they modified one feature per iteration, achieving a

98.25% evasion rate. Their Bayesian-uncertainty-based

countermeasure detected 99.28% of the above iterative

evasion attacks, highlighting the increasingly vulnerable

future landscape. Shu and Yan [6] created EAGLE in July

2024, a method that uses LIME-based explanations to prevent

Android classifiers from achieving 92.4%-100% success

(33). The transferability of the attack across different models

is alarming, highlighting how the concept of eXplainable AI

(XAI) can enhance transparency while also widening the

attack surface. Zhang et al. [2] in 2020 proposed another

brute-force attack, the BFAM

black-box attack, was

proposed, which uses the

http://doi.org/10.35940/ijese.L2617.13111025
http://doi.org/10.35940/ijese.L2617.13111025
http://www.ijese.org/

Explainable Machine Learning Model for Android Malware Detection

 28

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number:100.1/ijese.L261713111025
DOI:10.35940/ijese.L2617.13111025

Journal Website: www.ijese.org

confidence scores and the attack rate of the proposed

detection model.

IV. IV. METHODOLOGY

A. Dataset Description and Preprocessing

The TUANDROMD dataset serves as the primary resource

for the study, giving a publicly available collection of Android

application data. It has a diverse set of benign and malicious

applications determined through both static and dynamic

analysis. The dataset includes features, such as permissions,

which have the access requests made by an application; API

calls, which give the system functions called by the

application; opcodes, referring to the low-level instructions

executed; and network features, which provide the application

with its communication behaviour and data transmissions

over the internet and security

B. Data Cleaning and Preprocessing

To prepare the dataset for machine learning, multiple

preprocessing steps are applied, including imputing numerical

values with the median and filling categorical values with the

mode. Numerical features are normalised using Min-Max

Scaling to handle different input ranges. Due to the class

imbalance—with more benign than malicious applications—

Synthetic Minority Over-sampling Technique (SMOTE) is

used to generate synthetic malware samples and balance the

dataset. The dataset is split into training and test sets at 80:20,

with stratified sampling to maintain the same class

distribution in each subset.

C. Feature Selection for Optimised Model Performance

To improve model performance and classification accuracy,

feature selection is performed before training. Two

approaches are used to identify the suitable features for

malware detection.

The first approach involved training a Random Forest

model and using Shapley Additive Explanations values to

evaluate feature importance. The top 50 features are selected

based on their mean absolute SHAP values. In the 2nd

approach, feature importance scores are directly taken from a

Random Forest classifier, and the 50 highest-ranked features

are considered for model training.

Both approaches show that permissions, API calls, and

opcode-related attributes are the most important for

distinguishing between benign and malicious applications and

for reducing the dataset to features that improve performance

and yield higher model performance and classification

accuracy.

D. Machine Learning Models and Ensemble Learning for

Malware Detection

This study used different machine learning algorithms and

ensemble techniques to improve malware detection

performance. The models are classifiers such as Support

Vector Machines, K-Nearest Neighbours, Logistic

Regression, Decision Trees, and Random Forest.

Forests.

SVMs are trained using various kernel functions—linear,

polynomial, and radial basis function (RBF)—to capture both

complex and straightforward decision boundaries. KNN

classification works by examining the k nearest neighbours in

the feature space. Logistic Regression modelled the

probability that an application is malicious. Decision Trees

generated rule-based decisions through recursive partitioning,

and Random Forests used multiple decision trees to improve

prediction and stability.

To further improve predictive accuracy, ensemble learning

techniques such as Stacking and Voting are implemented. In

Stacking, individual base learner models (SVM, KNN,

Decision Tree, and Random Forest) are trained separately, and

a Logistic Regression model acts as the meta-learner to

combine their predictions. Voting ensembles aggregated

predictions from all classifiers—hard voting selected the

majority class, while soft voting averaged class probabilities

to get the final output.

These models were designed to strengthen individual

learners and improve the quality, dependability,

trustworthiness, and consistency of malware detection

systems.

E. Explainability and Feature Importance Analysis Using

SHAP and LIME

To improve the understandability of model predictions and

address the black-box nature of complex classifiers, Shapley

Additive Explanations and Local Interpretable Model-

agnostic Explanations are used.

i. Global Feature Importance Using SHAP: SHAP is

used to categorise the overall contribution of each

feature to the model’s decision-making process. By

calculating SHAP values across all test samples, global

feature importance is calculated. The importance score

for a given feature fi is calculated as the mean of the

absolute SHAP values over all N test instances, as

proved below:

 Importance SHAPj, i| (1)

Here, SHAPj (i) represents the SHAP value of feature fi for

the jth sample.

ii. Local Instance-Based Understandability Using LIME:

LIME is used to explain individual predictions. It

generates a dataset X′ by altering the input features and

fits a surrogate model g, typically a linear model, to

approximate the behaviours of the original model f:

yˆ= g(X′,λ) (2)

where yˆ is the predicted outcome, λ is a locality-aware

weighting function, and X′ contains the instances. This local

explanation helps understand how specific features influenced

the model’s decision for a given sample.

F. Feature Correlation Analysis

A correlation heatmap is generated to analyse feature

interdependencies. When two features show high correlation,

one could be removed to reduce redundancy. The Pearson

correlation coefficient between

features Xi and Xj is defined as:

http://doi.org/10.35940/ijese.L2617.13111025
http://doi.org/10.35940/ijese.L2617.13111025
http://www.ijese.org/

International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378 (Online), Volume-13 Issue-11, October 2025

 29

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number:100.1/ijese.L261713111025
DOI:10.35940/ijese.L2617.13111025

Journal Website: www.ijese.org

Where X¯
i and X¯

j are the mean values of features Xi and Xj,

respectively, this analysis ensured that only informative and

non-redundant features are red, boosting model performance.

G. Performance Evaluation

We computed how effectively various machine learning

models identified Android malware by determining key

metrics such as accuracy, precision, recall, and F1-score.

Among the traditional models—Support Vector Machines

with Linear, RBF, and Polynomial kernels, K-Nearest

Neighbours, Decision Tree, and Logistic Regression—each

contributed approximately 11.0% to 11.1% in overall

performance.

The Stacking Ensemble method, in particular, is good, as

reflected in the comparative performance pie chart, achieving

the highest combined scores across all metrics. This shows its

ability to merge the strengths of multiple base classifiers and

enhance a meta-classifier, thereby improving predictive

accuracy and efficiency. It confirms that different base learner

models and meta learner models, and their outcomes through

a final learning step, provide a better malware detection

strategy.

The ensemble learning methods demonstrated superior

consistency and interpretability for essential applications,

such as Android malware detection.

V. RESULTS AND DISCUSSION

This section presents the experimental results and discusses

the determination of the proposed malware detection

framework, including performance evaluation, feature

importance analysis (SHAP and LIME), and explainability.

Existing research has demonstrated the effectiveness of

machine learning for detecting Android malware. The

accuracy of models depends on the choice of features, the

quality of data, and the complexity of the machine learning

model. A multi-approach combining both static and dynamic

features has proved more effective than relying on either type

alone.

A. Model Performance Visualisation

Figure 1 presents a bar chart comparing the accuracy of

various machine learning models in detecting Android

malware. The models are Support Vector Machines with

Linear, RBF, and Polynomial kernels; K-Nearest Neighbours;

Logistic Regression; Decision Tree; and Random Forest.

Among these, Random Forest achieved the highest accuracy

of 0.9978, followed closely by Decision Tree at 0.9922. The

SVM with an RBF kernel also demonstrated strong

performance, recording an accuracy of 0.9933. In contrast,

Logistic Regression showed the lowest accuracy at 0.9877.

This shows how ensemble-based models, such as Random

Forest and Decision Tree, outperform individual classifiers in

malware detection tasks. Handling complex patterns and noise

is significant, making them more preferable for essential

applications.

[Fig.1: Comparison of Model Accuracy for Android

Malware Detection Across Different Classifiers]

Table I summarizes the classification performance of

different machine learning models applied to the

TUANDROMD dataset. The performance of each model is

computed using four metrics: accuracy, precision, recall, and

F1-score. The results show that ensemble models (Stacking

and Voting) outperformed individual classifiers, achieving the

highest accuracy and quality.

Table I: Classification Performance of Machine Learning

Models on Tuandromd dataset

Model Accuracy Precision Recall F1-Score
SVM (Linear) 0.9899 0.9873 0.9812 0.9842
SVM (RBF) 0.9933 0.9876 0.9916 0.9896
SVM (Polynomial) 0.9888 0.9754 0.9909 0.9829
KNN 0.9922 0.9909 0.9847 0.9877
Logistic Regression 0.9877 0.9838 0.9778 0.9807
Decision Tree 0.9922 0.9951 0.9806 0.9876
Random Forest 0.9978 0.9986 0.9944 0.9965
Stacking Ensemble 0.9989 0.9993 0.9972 0.9983
Voting Ensemble 0.9966 0.9958 0.9937 0.9948

B. Performance Distribution Across Models

The performance distribution among the computed

models—SVM (Linear, RBF, Polynomial), KNN, Logistic

Regression, Decision Tree, Random Forest, Stacking

Ensemble, and Voting Ensemble—is remarkably balanced,

with each contributing roughly 11.0%–11.2% to the overall

accuracy, precision, recall, and F1-score metrics. This even

spread shows that no single model overwhelmingly dominates

across all criteria. However, the Stacking Ensemble slightly

outpaces the rest at 11.2%, indicating its effectiveness at

aggregating diverse classifiers to improve generalisation.

It is observed that each model occupies a roughly equal

slice, ranging from 11.0% to 11.2%, indicating a balanced

evaluation across performance metrics. The Stacking

Ensemble stands out slightly at 11.2%, indicating it edges out

the others when all metrics are considered together. Random

Forest and Decision Tree also hold strong positions at 11.2%

and 11.1%, respectively, while SVM (Polynomial) and KNN

sit at the lower end with 11.0%.

This performance spread indicates model optimisation, but

it also signals diminishing returns from incremental

improvements within individual models. The Stacking

Ensemble model achieved the

highest accuracy, followed by

the Voting Ensemble,

demonstrating the advantage

http://doi.org/10.35940/ijese.L2617.13111025
http://doi.org/10.35940/ijese.L2617.13111025
http://www.ijese.org/

Explainable Machine Learning Model for Android Malware Detection

 30

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number:100.1/ijese.L261713111025
DOI:10.35940/ijese.L2617.13111025

Journal Website: www.ijese.org

of combining multiple classifiers. Random Forest and

Decision Tree also perform robustly, enabling them to handle

complex feature interactions and non-linear patterns.

Meanwhile, models like SVM (Polynomial) and KNN, though

marginally behind, still maintain strong performance,

reflecting the total competitiveness of traditional models in

malware detection contexts.

i. Analysis of Performance: Random Forest achieved the

highest accuracy at 99.88%, showing its knack for

handling malware classification. The Bagging

Classifier is not far behind, reaching 99.77%, further

demonstrating the effectiveness of ensemble learning

methods. XGBoost and CatBoost achieved slightly

lower accuracies of 99.32% and 99.44%, respectively,

but still showed strong performance in detecting

malware.

These results show that ensemble methods—particularly

those based on bagging, such as Random Forest and Bagging

Classifier—outperform boosting-based models in this

specific dataset. The findings show the quality and strength of

bagging ensembles when applied to the malware detection

task.

C. Feature Importance Analysis

Figure 2 visualizes the feature importance taken from a

Random Forest classifier. The bar chart arranges features by

their calculated importance values, with the most influential

features along the x-axis and their corresponding feature

names on the y-axis. This visualisation helps identify which

features have the most significant impact on the model’s

decision-making.

[Fig.2: SHAP-Based Feature Selection]

D. LIME Prediction Analysis

Figure 3 presents the Local Interpretable Model-agnostic

Explanations (LIME) analysis for a specific benign

application instance. The model demonstrated 100%

confidence in its benign classification. Key contributing

features include the absence of permissions such as

VIBRATE, KILL BACKGROUND PROCESSES, and

SYSTEM ALERT WINDOW, all of which had values of 0,

determining that the app does not access these potentially

intrusive functionalities.

Additional permissions, such as RECEIVE SMS and

ACCESS CACHE FILESYSTEM, are also disabled, further

supporting the benign classification. While the app makes

specific API calls such as Ljava/net/URL; →openConnection

and Landroid/location/LocationManager;

LIME’s explainability provides a clear rationale for the

model’s decision-making process, confirming that the absence

of typical malicious indicators yields a high-confidence

benign prediction.

[Fig.3: LIME Explanation for Malware Prediction –

Instance 0]

E. SHAP Explainability Analysis

To ensure our model isn’t just a mysterious black box, we

used Shapley Additive Explanations to understand what’s

driving its decisions and how each feature contributes. SHAP

gives us the complete clarity of what’s pushing the model to

flag an app as malware or not.

Figure 4 shows a SHAP waterfall plot that breaks down

which features tipped the scales for a specific malware call.

The heavy features pushing toward a malware label are

RECEIVE SMS, READ EXTERNAL STORAGE, and

RECEIVE BOOT COMPLETED—these are the kind of

permissions malware loves to grab for sneaky access and

sticking around after a reboot. On the flip side, stuff like

SYSTEM ALERT WINDOW and KILL BACKGROUND

PROCESSES, the other way, but their pull is lower.

SHAP enables a detailed understanding of how different

app attributes influence the final prediction—whether the

model flags an app as malicious or safe. As a traditional

feature importance metric, SHAP assigns a value to each

feature based on cooperative game theory, ranking them by

how much they push the prediction toward or away from

“malware.”

This kind of insight is crucial. It not only improves trust in

high-performing models such as Stacking Ensemble and

Random Forest, but also supports developers and security

analysts in verifying whether the flagged behaviours actually

make sense, ensuring that alerts are both actionable and

interpretable. In most evolving threats, such as Android

malware in 2025, this transparency is a technical and

operational requirement.

http://doi.org/10.35940/ijese.L2617.13111025
http://doi.org/10.35940/ijese.L2617.13111025
http://www.ijese.org/

International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378 (Online), Volume-13 Issue-11, October 2025

 31

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number:100.1/ijese.L261713111025
DOI:10.35940/ijese.L2617.13111025

Journal Website: www.ijese.org

[Fig.4: SHAP Waterfall Plot for Individual Malware

Classification]

Figure 5 presents the SHAP feature importance bar chart for

the stacking ensemble model, highlighting the most influential

features contributing to malware classification. At the top of

the list is KILL BACKGROUND PROCESSES, which is

commonly associated with malicious behaviour aimed at

interfering with background processes to avoid detection.

Other essential features are SYSTEM ALERT WINDOW and

GET TASKS, both of which are frequently exploited by

malware to manipulate system-level functionalities.

[Fig.5: SHAP Feature Importance Bar Chart for

Stacking Ensemble Model]

Figure 6 presents the SHAP summary plot, illustrating how

various features interact and how their SHAP values vary

across different instances. Features such as ACCESS ALL

DOWNLOADS and ACCESS CACHE FILESYSTEM exhibit

significant variability, indicating their context-dependent

influence on the model’s predictions. These findings support

the notion that permission-based features are central to

effective Android malware detection, aligning with previous

research on malicious application behaviour.

Collectively, the SHAP visualisations underscore the

critical role of permissions in identifying threats and validate

the emphasis placed by the stacking ensemble model. What

distinguishes SHAP in this context is not only its capability to

rank features by importance but also its ability to reveal when

and how a feature contributes. This facilitates a deeper, more

interpretable understanding of the model’s decision-making

process, bridging the gap between complex machine learning

outputs and human-explainable insights.

[Fig.6: SHAP Summary Plot Showing Feature

Interactions]

The LIME analysis confirms that specific Android

permissions significantly impact malware classification. The

ability to interpret model decisions through explainable AI

techniques improves trust and dependability and enhances the

consistency of automated malware detection systems. This

analysis integrates SHAP-based global feature explanations

with LIME-based local insights to create a more robust

framework for understandability. The results suggest that

while LIME gives local feature contributions for an individual

prediction, SHAP offers a more comprehensive analysis by

evaluating feature importance at both regional and global

levels.

F. SHAP Heatmap Analysis

i. SHAP Correlation Heatmap: The correlation heatmap

shown in Figure 7 visualises the pairwise relationships

between SHAP values of different features, offering

insights into how these features influence the model’s

predictions. Positive correlations (highlighted in red)

indicate features that contribute similarly to malware

classification, while negative correlations (highlighted

in blue) reveal inverse relationships in their SHAP

impacts.

For instance, features such as ACCESS LOCATION EXTRA

COMMANDS and AC-

CESS SHARED DATA display a strong positive correlation,

indicating they often co-occur in malware samples and jointly

influence the prediction outcome. Conversely, weak or

negative correlations may point to independent or opposing

roles in the model’s decision logic.

This correlation map is particularly valuable for identifying

feature dependencies and potential redundancies, enabling

further optimisation of the feature set used in the malware

detection model.

http://doi.org/10.35940/ijese.L2617.13111025
http://doi.org/10.35940/ijese.L2617.13111025
http://www.ijese.org/

Explainable Machine Learning Model for Android Malware Detection

 32

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number:100.1/ijese.L261713111025
DOI:10.35940/ijese.L2617.13111025

Journal Website: www.ijese.org

Fig.7: SHAP Correlation Heatmap Showing Feature

Relationships]

ii. SHAP Feature Importance Heatmap: The heatmap

presented in Figure 8 illustrates SHAP values across

numerous individual samples, enabling a granular and

straightforward understanding of feature contributions

in the malware classification task. Features with

similarly high SHAP values across samples show

strong influence on prediction outcomes, whereas

features with near-zero or neutral values have less

impact.

This outcome aids explainability by clearly identifying

which permissions or behaviours are most responsible for the

classification decisions made by the stacking ensemble model.

For example, permissions related to writing to external

storage or interacting with high-level system APIs result in

higher SHAP values, indicating their substantial influence in

flagging malicious behaviour.

[Fig.8: SHAP Feature Importance Heatmap for Stacking

Ensemble. This Heatmap Illustrates SHAP Values Across

multiple Samples, Highlighting the Most and Least

Contributing Features in Malware Detection]

VI. CONCLUSION

This study proposed an explainable ensemble-based

approach for Android malware detection, integrating SHAP

and LIME to improve model understandability. Using SHAP-

based feature selection, the most influential permissions and

API calls are identified, thereby improving model

performance. Among the computed models, the ensemble

techniques—particularly the Stacking and Voting

classifiers—have shown superior accuracy and quality

compared to individual classifiers. The inclusion of

explainability tools yielded meaningful insights into model

behaviour, thereby increasing transparency and enabling

automated cybersecurity systems.

FUTURE WORK

Future work will explore expanding the range and volume

of datasets to improve the process across a broader spectrum

of malware and variants. More advanced explainability

techniques, such as DeepSHAP and multi-explainable AI

frameworks, will be introduced in the future to improve the

understandability of complex deep learning models. Real-

time deployment strategies for mobile environments will also

be developed, with a focus on performance, accuracy and

cyber threats.

DECLARATION STATEMENT

After aggregating input from all authors, I must verify the

accuracy of the following information as the article's author.

▪ Conflicts of Interest/ Competing Interests: Based on

my understanding, this article has no conflicts of

interest.

▪ Funding Support: This article has not been funded by

any organizations or agencies. This independence

ensures that the research is conducted with objectivity

and without any external influence.

▪ Ethical Approval and Consent to Participate: The

content of this article does not necessitate ethical

approval or consent to participate with supporting

documentation.

▪ Data Access Statement and Material

Availability: The adequate resources of this article are

publicly accessible.

▪ Author’s Contributions: The authorship of this article

is contributed equally to all participating individuals.

REFERENCES

1. H. Alamro, W. Mtouaa, S. Aljameel, A. S. Salama, M. A. Hamza, and A.
Y. Othman, "Automated Android Malware Detection Using Optimal

Ensemble Learning Approach for Cybersecurity," *IEEE Access*, vol.
11, pp. 72509-72517, 2023.

DOI: http://doi.org/10.1109/ACCESS.2023.3294263

2. S. Zhang, X. Xie, and Y. Xu, "A Brute-Force Black-Box Method to

Attack Machine Learning-Based Systems in Cybersecurity," *IEEE

Access*, vol. 8, pp. 128250-128263, 2020.

DOI: http://doi.org/10.1109/ACCESS.2020.3008495
3. M. B. Mwangi and S. M. Cheng, "An Adversarial Attack on ML-Based

IoT Malware Detection Using Binary Diversification Techniques,"

IEEE Access, vol. 12, pp. 175563-175578, 2024.
DOI: http://doi.org/10.1109/ACCESS.2024.3506841

4. P. Musikawan, Y. Kongsorot, I. You, and C. So-In, "An Improved Deep

Learning Neural Network for the Detection and Identification of Android
Malware," *IEEE Access*, vol. 11, pp. 115475-115487, 2023. DOI:

http://doi.org/10.1109/ACCESS.2023.3324524

5. F. S. Atedjio, J.-P. Lienou, F. F. Nelson, S. S. Shetty, and C. A. Kamhoua,
"CycleGAN-Gradient Penalty for Enhancing Android Adversarial

Malware Detection in Grey Box Setting," *IEEE Access*, vol. 12, pp.

42513-42526, 2024.
DOI: http://doi.org/10.1109/ACCESS.2024.3377938

6. Z. Shu and G. Yan, "EAGLE: Evasion Attacks Guided by Local

Explanations Against Android Malware
Classification," *IEEE Transactions

On Dependable and Secure

Computing*, vol. 21, no. 6, pp.
5436-5451, Nov.-Dec. 2024.

http://doi.org/10.35940/ijese.L2617.13111025
http://doi.org/10.35940/ijese.L2617.13111025
http://www.ijese.org/
http://doi.org/10.1109/ACCESS.2023.3294263
http://doi.org/10.1109/ACCESS.2020.3008495
http://doi.org/10.1109/ACCESS.2024.3506841
http://doi.org/10.1109/ACCESS.2023.3324524
http://doi.org/10.1109/ACCESS.2024.3377938

International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378 (Online), Volume-13 Issue-11, October 2025

 33

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number:100.1/ijese.L261713111025
DOI:10.35940/ijese.L2617.13111025

Journal Website: www.ijese.org

DOI: http://doi.org/10.1109/TDSC.2024.3363446
7. N. Moustafa, N. Koroniotis, M. Keshk, A. Y. Zomaya, and Z. Tari,

"Explainable Intrusion Detection for Cyber Defences in the Internet of

Things: Opportunities and Solutions," *IEEE Communications Surveys
& Tutorials*, vol. 25, no. 3, pp. 1775-1807, third quarter 2023. DOI:

http://doi.org/10.1109/COMST.2023.3280465

8. R. Kalakoti, H. Bahsi, and S. Nomm, "Improving IoT Security With
Explainable AI: Quantitative Evaluation of Explainability for IoT Botnet

Detection," *IEEE Access*, vol. 12, pp. 85648-85666, 2024. DOI:

http://doi.org/10.1109/ACCESS.2024.3413615
9. A. Rashid and J. Such, "MalProtect: Stateful Defence Against

Adversarial Query Attacks in ML-Based Malware Detection," *IEEE

Transactions on Dependable and Secure Computing*, vol. 20, no. 4, pp.
3165-3179, July-Aug. 2023.

DOI: http://doi.org/10.1109/TDSC.2022.3194598

10. G. Xu, G. Xin, L. Jiao, J. Liu, S. Liu, M. Feng, and X. Zheng, "OFEI: A
Semi-Black-Box Android Adversarial Sample Attack Framework

Against DLaaS," *IEEE Access*, vol. 12, pp. 59673-59688, 2024.

DOI: http://doi.org/10.1109/ACCESS.2024.3392823
11. M. M. Alani and A. I. Awad, "PAIRED: An Explainable Lightweight

Android Malware Detection System," *IEEE Access*, vol. 10, pp.

73214-73228, 2022.
DOI: http://doi.org/10.1109/ACCESS.2022.3189390

12. G. Kirubavathi and S. Nithish, "Dynamic Ensemble Learning

Framework Improved with XAI To Detect Android Malware," in *Proc.
2024 International Conference on Intelligent Systems for Cybersecurity

(ISCS)*, Dehradun, India, May 2024, pp. 1-6.
DOI: http://doi.org/10.1109/ISCS61804.2024.10581285

13. S. K. Smmarwar, G. P. Gupta, and S. Kumar, "An Explainable AI

Approach for Android Malware Detection Using Deep Learning
Techniques," in *Proc. 2023 IEEE World Conference on Applied

Intelligence and Computing (AIC)*, Sonbhadra, India, July 2023, pp.

467-472. DOI: http://doi.org/10.1109/AIC57670.2023.10263905
14. R. Rajalakshmi, S. Pallavi, U. Naresh, S. Telang, and S. Kiran,

"Advancing Malware Detection Using Memory Analysis and

Explainable AI Approach," in *Proc. 2nd International Conference on
Intelligent Cyber Physical Systems and IoT (ICoICI)*, Chennai, India,

Nov. 2024, pp. 463-468.

DOI: http://doi.org/10.1109/ICoICI58642.2024.10486624

15. A. Patel and S. M. Ghosh, "Android Malware Detection Using

Explainable Machine Learning for Secure Computing," in *Proc. 2024

OPJU International Technology Conference (OTCON)*, Raigarh, India,
June 2024, pp. 1-6.

DOI: http://doi.org/10.1109/OTCON60325.2024.10687498

16. Y. Liu, C. Tantithamthavorn, L. Li, and Y. Liu, "Explainable AI for
Android Malware Detection: Towards Understanding Why the Models

Perform So Well?" in *Proc. 2022 IEEE 33rd International Symposium

on Software Dependability, trustworthiness, and consistency
Engineering (ISSRE)*, Charlotte, NC, USA, Oct. 2022, pp. 169-180.

DOI: http://doi.org/10.1109/ISSRE55969.2022.00026

17. M. S. Chandana Snehal, V. Nagoor, S. Rohit, R. S., S. K. Thangavel, K.
Srinivasan, and P. Kapoor, "Towards Explainability Using ML and Deep

Learning Models for Malware Threat Detection," *IEEE Access*, vol.

12, pp. 89441-89459, 2024.
DOI: http://doi.org/10.1109/ACCESS.2024.3419062

AUTHOR’S PROFILE

Divish Raj O holds a Bachelor of Engineering in Computer
Science and Engineering from JNN College of Engineering.

Shimoga, and a Master of Technology in Computer Network

Engineering from RV College of Engineering. Bengaluru.
My academic work includes projects on a 3D authentication

system using a Rubik's Cube and on automation

implementations leveraging Ansible, Kubernetes, and scripting. I have over
2 years of professional experience working with both startups and

multinational corporations, during which I gained expertise in cloud

automation, including devOps tools and network systems. My interests
include cybersecurity, automation, and distributed system design.

Dr Vinay V. Hegde is an Associate Professor in the

Department of Computer Science and Engineering at RV

College of Engineering, Bengaluru. With 17 years of
teaching and 13 years of research experience, his areas of

interest include Natural Language Processing and Machine

Learning. He has published over 80 papers in reputed
journals and conferences. A CCNA-certified professional, he also serves as a

training partner in the Cisco Networking Academy, as a mentor for Atal

Tinkering Labs by NITI Aayog. The Government of India actively supports
innovation among students across schools in Northeast India.

Disclaimer/Publisher’s Note: The statements, opinions and

data contained in all publications are solely those of the

individual author(s) and contributor(s) and not of the Blue

Eyes Intelligence Engineering and Sciences Publication

(BEIESP)/ journal and/or the editor(s). The Blue Eyes

Intelligence Engineering and Sciences Publication (BEIESP)

and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods,

instructions, or products referred to in the content.

http://doi.org/10.35940/ijese.L2617.13111025
http://doi.org/10.35940/ijese.L2617.13111025
http://www.ijese.org/
http://doi.org/10.1109/TDSC.2024.3363446
http://doi.org/10.1109/COMST.2023.3280465
http://doi.org/10.1109/ACCESS.2024.3413615
http://doi.org/10.1109/TDSC.2022.3194598
http://doi.org/10.1109/ACCESS.2024.3392823
http://doi.org/10.1109/ACCESS.2022.3189390
http://doi.org/10.1109/ISCS61804.2024.10581285
http://doi.org/10.1109/AIC57670.2023.10263905
http://doi.org/10.1109/ICoICI58642.2024.10486624
http://doi.org/10.1109/OTCON60325.2024.10687498
http://doi.org/10.1109/ISSRE55969.2022.00026
http://doi.org/10.1109/ACCESS.2024.3419062

