OPENaACCESS

International Journal of Emerging Science and Engineering (IJESE)
ISSN: 2319-6378 (Online), Volume-13 Issue-11, October 2025

Explainable Machine Learning Model for Android

Malware Detection

Check for
updates

Divish Raj O, Vinay V Hegde

Abstract: This study addresses essential cybersecurity challenges
in malware detection for applications by developing an explainable
machine learning framework. The Stacking Ensemble approach
achieves 99.89% accuracy in malware detection while maintaining
high explainability through explainable AI (XAI) techniques. The
research supports Vector Machines, K-Nearest Neighbours,
Logistic Regression, Decision Trees, and Random Forest
classifiers with ensemble strategies (Stacking and Voting), used by
SHAP and LIME for transparency. The methodology shows that
permissions, different API calls, and opcode-related attributes are
the features to differentiate malicious applications. Experimental
results show that the Stacking Ensemble, which combines
individual classifiers across all metrics (accuracy, precision, recall,
Fl-score), offers a transparent solution for application security
that addresses the black-box nature of traditional machine
learning models.

Index Terms: Threat Detection, Explainable AI, SHAP, LIME,
Ensemble Learning, Machine Learning, Application Security and
Permissions.

Nomenclature:

XAI: Explainable Artificial Intelligence

CNNs: Convolutional Neural Networks

IDS: Intrusion Detection Systems

SMOTE: Synthetic Minority Over-Sampling Technique
LIME: Local Interpretable Model-agnostic Explanations
RBF: Radial Basis Function

I. INTRODUCTION

The use of mobile applications and the increasing

complexity of digital ecosystems have heightened the
urgency for transparent threat-detection solutions, as Android
faces cybersecurity challenges due to its open-source
architecture and widespread use. This creates opportunities
for attackers but also compels defenders to innovate quickly
in the race against advanced malware. Ensemble learning
approaches achieve higher -classification accuracy than
single-model methodologies. Alamro et al. introduced an
ensemble-based framework combining machine learning
models for Android malware detection, optimising both
detection rates and the handling of evolving threats.

Manuscript received on 27 September 2025 | Revised
Manuscript received on 06 October 2025 | Manuscript Accepted
on 15 October 2025 | Manuscript published on 30 October 2025.
*Correspondence Author(s)

Divish Raj O, Department of Computer Science and Engineering, R V
College of Engineering, Bangalore (Karnataka), India. Email ID:
divish727@gmail.com, ORCID ID: 0009-0009-3570-1492

Dr. Vinay V Hegde, Department of Computer Science and Engineering,
R V College of Engineering, Bangalore (Karnataka), India. Email ID:
vinayvhegde@rvce.edu.in, ORCID ID: 0000-0002-4684-6541

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open-access article under the
CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

Retrieval Number:100.1/ijese.L261713111025
DOI:10.35940/ijese.L2617.13111025
Journal Website: www.ijese.org

25

With the success of these detection systems, the adoption of
machine learning in cybersecurity introduces new bugs. In
exceptional cases, ML-based security models may be
susceptible to adversarial attacks that exploit their decision
boundaries. Zhang et al. investigated black-box brute-force
attack methods that systematically probe and bypass ML-
based cyber defences, exposing potential blind spots in
widely deployed systems. This research underscores the need
not only for stronger models but also for advancing their
dependability, trustworthiness, and consistency. These
approaches integrate explainable artificial intelligence (XAI)
tools, such as SHAP and LIME, to provide understandability
and transparency. These XAI methods allow users and
analysts to understand and trust the automated decisions made
by the detection system. Moreover, it is essential for
maintaining confidence and compliance in security-sensitive
domains. The rapid iteration of both attack and defence
technologies in mobile devices underscores the importance of
adaptable, effective security strategies. State-of-the-art
research shows how adversarial attacks—ranging from black-
box brute-force exploits to code diversification that easily
destroys detection and can substantially lower the
effectiveness of conventional machine learning models.
These tactics expose critical bugs until defence frameworks
incorporate not just learning architectures but also
explainability and adversarial awareness. It is essential to
make a deeper diagnosis of model decisions in security-
sensitive environments. As adversarial tactics such as code
diversification and black-box evasion become more
sophisticated, coupling explainability —with resilient
architectures becomes increasingly essential for maintaining
adequate, accountable security. This cycle of attack and
explanation supports breakthroughs in transparent,
trustworthy malware defence, ultimately fostering confidence
among users, administrators, and the cybersecurity
community. These insights shed light on the role of XAI in
detection accuracy, especially in evolving threat
environments.

II. BACKGROUND AND RELATED WORK

A. Machine Learning for Malware Detection

Machine learning is gaining popularity for detecting
malware by analysing its outputs — the structure or behaviour
of applications. There are two primary approaches: static
analysis, which analyses an app’s code or configuration files
without executing it, and dynamic analysis, which runs the
app in a controlled environment to observe its behaviour and
runtime. These analyses provide output that models can use to
classify applications as benign or
malicious.

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Exploring Innovation

http://doi.org/10.35940/ijese.L2617.13111025
http://doi.org/10.35940/ijese.L2617.13111025
http://www.ijese.org/
mailto:divish727@gmail.com
https://orcid.org/0009-0009-3570-1492
mailto:vinayvhegde@rvce.edu.in
https://orcid.org/0000-0002-4684-6541
https://www.openaccess.nl/en/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijese.L2617.13111025&domain=www.ijese.org

Explainable Machine Learning Model for Android Malware Detection

B. Explainable AI for Malware Detection

SHapley Additive Explanations and Local Interpretable
Model-agnostic Explanations are Explainable Al tools that
improve transparency in malware detection models by
optimising their decision-making processes.

Machine learning algorithms such as Decision Trees,
Neural Networks, and K-Nearest Neighbours often yield
outcomes that are either malware or not, without evidence.
SHAP and LIME help explain these results. SHAP assigns a
value to each feature (e.g., permissions or network activity)
and quantifies its contribution to the final prediction,
providing a global understanding of feature importance.
LIME, on the other hand, focuses on individual predictions by
giving inputs—such as removing a suspicious API call—and
analysing changes in the outcome, to which those inputs are
pivotal.

This understandability is essential. For instance, if a
Random Forest model identifies an Android app as malicious,
SHAP might show that 70% of the decision is due to abnormal
data uploads. In contrast, LIME shows that without having
such uploads, the app appears benign. This clarity allows
security analysts to validate the model’s reasoning, detect
biases, and improve accuracy. As malware advances evolve—
such as the sophisticated banking trojans seen in 2025—
combining the power of ML with the transparency of XAl to
build trustworthy, advanced malware detection systems.

I11. LITERATURE SURVEY

In July 2021, Musikawan et al [4]. were the first to propose
AMDI-Droid, a deep learning-based framework designed to
advance the detection of Android malware significantly. In
their publication, Musikawan et al. described the different
functionalities and layers of AMDI-Droid, including its three-
layer blending (output) for each hidden layer of the CNN
subnetwork and a richer feature-extraction (exploiting)
subnetwork. The resulting daemons, like obfuscated malware,
were tested against benchmarks. AMDI-Droid outperforms
the other benchmarks tested, including static and dynamic
analysis. The research work on AMDI-Droid shows that, at a
96% significance level, it achieved high accuracy, precision,
and recall. AMDI-Droid is not just precise but also
outperforms the benchmarks it was tested against.

This presented (proposed) a novel technique to get a
significant enhancement in the detection of Android malware
by deploying a framework-based approach rather than
training the malware, which is mainly used in traditional
malware detection techniques. Also, because DL is used as
the malware detection tool, the research paper found that
AMDI-Droid outperforms all other detection techniques
presented so far.

The complexity of AMDI-Droid and the need to allocate
most of the computational power to achieve the required
output speed are the only points one should consider before
selecting AMDI-Droid as their high-powered detection
algorithm.

To replace the traditional malware-detection method,
Musicawan et al. proposed AMDI-Droid as the future of
Android malware detection in 2011. Proposed the same
(model) for the first time in the field, for AMDI-Droid to be

Retrieval Number:100.1/ijese.L261713111025
DOI:10.35940/ijese.L2617.13111025
Journal Website: www.ijese.org

non-replaceable, but to serve as a benchmark for a (quite)
long-term prediction.

In July 2023, Alamro et al [1]. were the first to present
AAMD-OELAC [6] for the detection of Android malware, in
contrast to the approach proposed by Musicawan et al.,
namely AMDI-Droid. Indeed, AAMD-OELAC is still very
slow to reach the preset threshold for issuing a judgment on
data using the spectrum proposed by Alamro et al. Alamro et
al. proposed a different approach to detecting Android
malware compared to the proposed method. For me, ensemble
learning is the best approach to detecting malware in the near
future. In the research work by Alamro et al. on AAMD-
OELAC, they deployed an ensemble learning technique that
experts in preprocessing noisy datasets have used.

As our favourites are ensemble learning, I would
recommend that anyone selecting a malware detection tool
choose AMDI-Droid over AAMD-OELAC. As both are based
on deep learning, the ensemble learning technique for AMDI-
Droid outperforms the method proposed by Alamro et al.
Transparency, a cornerstone of this research, is advanced by
Explainable Al (XAI) tools such as SHAP and LIME.

[11] In 2022, Alani and Awad introduced PAIRED, a
lightweight Android malware detector model built with just
35 static features, including permissions and API calls, and
using SHAP for explainability. As PAIRED yields more than
98% accuracy with less resource use, it can be used for real-
time detection on any Android device. PAIRED explains the
reasons behind flagging an App, such as excessive network
access.

In 2022, Liu et al [16]. conducted a significant study to
understand the reasons for the high accuracy of the Machine
Learning model used for Android malware detection by
utilising so-called 'Explainable AI' to uncover the reasons
behind it. Surprisingly, they made an interesting discovery.
Many of these models achieve inflated accuracy of up to 99%,
not because they identify malicious patterns, but because of
temporal biases and artefacts in the training datasets.

By conducting a comprehensive XAl analysis across seven
datasets, they have reported findings that reveal that, in most
cases, the models tend to learn different patterns in the dataset
rather than detecting generalisable characteristics of malware.
For instance, some of the essential features learned by the
model could, in fact, be different temporal indicators that are
guaranteed to occur when the samples are collected but
cannot be proven to be actually malicious. The paper serves
to attract the attention of other researchers, always to cross-
check their model performance with/without explainable Al
techniques, as well as the datasets used.

The artefacts. Proposing their findings emphasises the need
for rigorous evaluation methodologies and transparent reports
on how and why models make predictions. This ensures that
detection systems would remain effective when deployed in
production environments.

Kirubavathi and Nithish [12] adopted a dynamic approach
in 2024. They combined Random Forest, XGBoost,

LightGBM, and KNN with a Random Forest meta-learner.
was

The CCCS-CICAndMal2020 dataset
implementation. LIME improved
its framework, achieving 98%
accuracy. Class balancing was
performed using SMOTE.

used for

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

26 © Copyright: All rights reserved.

Exploring Innovation

http://doi.org/10.35940/ijese.L2617.13111025
http://doi.org/10.35940/ijese.L2617.13111025
http://www.ijese.org/

OPENaACCESS

Feature ranking was done to reduce noise. They have
proposed a transparent, high-performance malware detection
system.

Smmarwar et al. [13] presented XAI-AMD-DL in 2023.
This is a deep learning approach to designing an explainable
Al for an Android malware detection system. This model
combines a Convolutional Neural Network (CNN) with Bi-
Gated Recurrent Units (Bi-GRU). This hybrid network can
simultaneously learn the malware's spatial and temporal
behaviours. Many deep learning models fail to provide
explainability. So the conventional deep learning models
cannot solve the problem. They have designed their deep
learning system with built-in methods to make it explainable.
This architecture was tested on standard benchmark datasets.
Their hybrid model outperformed both traditional
Convolutional Neural Networks (CNNs) and RNNs. In
addition, since they have conducted feature contribution
analysis, it provides some transparency to security
professionals, classifying their approach as the most reliable
Android malware detection model.

Rajalakshmi et al. [14] paved the way in 2024. They made
memory analysis their core approach, combined with
explainable Al, to improve their malware detection system.
Their conventional malware detection method showed a high
false-positive rate and was therefore taken in an innovative
direction; this work emphasises that traditional malware
detection methods show high accuracy. However, it fails to
detect versions of obfuscated malware because it cannot
access the file's memory.

Two authors of the present study, Patel and Ghosh [15],
presented AMD-XAI-ML, a machine learning-based Android
malware detection framework designed with explainability-
oriented smart computing aspects in 2024. Evasion
techniques like packing and encryption pose significant
challenges for creating an effective malware detection
system. The AMD-XAI-ML framework is well-engineered to
detect unknown malware variants while maintaining low
false-positive rates. Nine machine learning models are used
to compute AMD-XAI-ML on the CICAndMal2019 dataset.
Among all, the XGBoost function provides the highest
accuracy of 98.54%, while the random forest classifier offers
98.42%. It is seen that the decision tree classifier also
computes the best accuracy of about 98.23%.

Explainability can be achieved using XAI (eXplainable
Artificial Intelligence) techniques. So, the transparency of the
decision-making is well balanced with the performance of the
detection process. The cause plays a significant role in smart
devices that require minimal resources. The machine learning
model's explanation makes it easier for security analysts to
determine whether malware is present. For practical
deployment, a transparent model for detecting Android
malware is feasible and accurate.

Moustafa et al. gave a brief overview of the role of XAl in
IoT intrusion detection in 2023 [7]. In the different models
used to implement machine learning methods for IoT
intrusion detection, an interpretable model is needed to
explain the predictions. Overfitting is often a significant issue
in intrusion detection systems (IDS). So, trustworthiness is
also one of the key outcomes to be achieved by improving
machine learning methods and techniques.

Retrieval Number:100.1/ijese.L261713111025
DOI:10.35940/ijese.L2617.13111025
Journal Website: www.ijese.org

27

International Journal of Emerging Science and Engineering (IJESE)
ISSN: 2319-6378 (Online), Volume-13 Issue-11, October 2025

An efficient defence strategy is also needed to support plans
to develop a better IoT model. The real question about the bug
is whether there was interest in using SHAP and LIME as an
operational technique for [oT botnets in May 2024. The actual
questions are the botnet prediction model's loyalty and
sensitivity to the training data. So, one can conclude that the
bug in the Android malware is correctly explained. The SHAP
is providing the highest loyal reasoning for the prediction.
The SHAP is also accurate for the decision reached, as the
botnet traffic pattern matched that of the Android malware.
The model provides satisfying explanations and precise
predictions.

Kalakoti et al. proposed an operational technique for
applying SHAP and LIME to the [oT botnet in 2024. The bug
in the Android malware yields high predicted and correct
results when predicting the botnet traffic pattern. The real
decision for the bug in the malware is matched, and SHAP is
used for faithful or loyal reasoning to predict the traffic
pattern [8]. Kalakoti et al. contributed to the world of IOT
BOTNET in May 2024.

Chandana Snehal et al [17]. documented the proven,
unofficial results that it matches the proposed machine
learning and deep learning models for Android malware in
2024. The unexplored intrusion project is revealed by
Chandana Snehal et al. The botnet traffic pattern matched the
Android malware pattern, and SHAP is accurate. Kalakoti et
al. contributed to the use of botnet traffic patterns and their
performance in the operation of the Android malware.
Kalakoti and named their system to detect [oT botnets as XAI.
The entire process is designed to combine machine learning
(Random Forest) and deep learning (LSTM-CNN, BiLSTM)
with SHAP for detecting Android malware. Liverpool J also
used the LSTM-CNN with SHAP in October 2023 [3] to
operate the botnet and detect Android malware. This proposed
hybrid model combines the SMOTE technique for class-
imbalanced datasets and achieves accurate classification of
Android malware by leveraging better suspicious API usage
[8]. Officials made botnet traffic detection easier, making the
entire process easier to detect and act on. While scalability is
the primary advantage, there are also specific concerns.
Atedjio et al. [5] in 2024 developed a CycleGAN-based
defence method that included a gradient penalty to improve
stability and accuracy. It was introduced for the grey-box
setting where the attacker has only partial knowledge about
the detection model. In April 2024, Xu et al. [10] reported, in
one of their research papers on OFEI, a semi-black-box attack
in which they modified one feature per iteration, achieving a
98.25% evasion rate. Their Bayesian-uncertainty-based
countermeasure detected 99.28% of the above iterative
evasion attacks, highlighting the increasingly wvulnerable
future landscape. Shu and Yan [6] created EAGLE in July
2024, a method that uses LIME-based explanations to prevent
Android classifiers from achieving 92.4%-100% success
(33). The transferability of the attack across different models
is alarming, highlighting how the concept of eXplainable Al
(XAI) can enhance transparency while also widening the
attack surface. Zhang et al. [2] in 2020 proposed another
brute-force attack, the BFEAM
black-box attack, was
proposed, which uses the

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Exploring Innovation

http://doi.org/10.35940/ijese.L2617.13111025
http://doi.org/10.35940/ijese.L2617.13111025
http://www.ijese.org/

Explainable Machine Learning Model for Android Malware Detection

confidence scores and the attack rate of the proposed
detection model.

Iv. IV.METHODOLOGY

A. Dataset Description and Preprocessing

The TUANDROMD dataset serves as the primary resource
for the study, giving a publicly available collection of Android
application data. It has a diverse set of benign and malicious
applications determined through both static and dynamic
analysis. The dataset includes features, such as permissions,
which have the access requests made by an application; 4P/
calls, which give the system functions called by the
application; opcodes, referring to the low-level instructions
executed; and network features, which provide the application
with its communication behaviour and data transmissions
over the internet and security

B. Data Cleaning and Preprocessing

To prepare the dataset for machine learning, multiple
preprocessing steps are applied, including imputing numerical
values with the median and filling categorical values with the
mode. Numerical features are normalised using Min-Max
Scaling to handle different input ranges. Due to the class
imbalance—with more benign than malicious applications—
Synthetic Minority Over-sampling Technique (SMOTE) is
used to generate synthetic malware samples and balance the
dataset. The dataset is split into training and test sets at 80:20,
with stratified sampling to maintain the same class
distribution in each subset.

C. Feature Selection for Optimised Model Performance

To improve model performance and classification accuracy,
feature selection is performed before training. Two
approaches are used to identify the suitable features for
malware detection.

The first approach involved training a Random Forest
model and using Shapley Additive Explanations values to
evaluate feature importance. The top 50 features are selected
based on their mean absolute SHAP values. In the 2nd
approach, feature importance scores are directly taken from a
Random Forest classifier, and the 50 highest-ranked features
are considered for model training.

Both approaches show that permissions, API calls, and
opcode-related attributes are the most important for
distinguishing between benign and malicious applications and
for reducing the dataset to features that improve performance
and yield higher model performance and classification
accuracy.

D. Machine Learning Models and Ensemble Learning for
Malware Detection

This study used different machine learning algorithms and

ensemble techniques to improve malware detection
performance. The models are classifiers such as Support
Vector Machines, K-Nearest Neighbours, Logistic

Regression, Decision Trees, and Random Forest.
Forests.

SVMs are trained using various kernel functions—Ilinear,
polynomial, and radial basis function (RBF)—to capture both

Retrieval Number:100.1/ijese.L261713111025
DOI:10.35940/ijese.L2617.13111025
Journal Website: www.ijese.org

complex and straightforward decision boundaries. KNN
classification works by examining the k nearest neighbours in
the feature space. Logistic Regression modelled the
probability that an application is malicious. Decision Trees
generated rule-based decisions through recursive partitioning,
and Random Forests used multiple decision trees to improve
prediction and stability.

To further improve predictive accuracy, ensemble learning
techniques such as Stacking and Voting are implemented. In
Stacking, individual base learner models (SVM, KNN,
Decision Tree, and Random Forest) are trained separately, and
a Logistic Regression model acts as the meta-learner to
combine their predictions. Voting ensembles aggregated
predictions from all classifiers—hard voting selected the
majority class, while soft voting averaged class probabilities
to get the final output.

These models were designed to strengthen individual
learners and improve the quality, dependability,
trustworthiness, and consistency of malware detection
systems.

E. Explainability and Feature Importance Analysis Using
SHAP and LIME

To improve the understandability of model predictions and
address the black-box nature of complex classifiers, Shapley
Additive Explanations and Local Interpretable Model-
agnostic Explanations are used.

i. Global Feature Importance Using SHAP: SHAP is
used to categorise the overall contribution of each
feature to the model’s decision-making process. By
calculating SHAP values across all test samples, global
feature importance is calculated. The importance score
for a given feature f; is calculated as the mean of the
absolute SHAP values over all N test instances, as

proved below:
1 —
(fi) =+ Z|
i=1 SHAP; || (1)

Here, SHAP; ;) represents the SHAP value of feature f; for
the j* sample.

it. Local Instance-Based Understandability Using LIME:
LIME is used to explain individual predictions. It
generates a dataset X by altering the input features and
fits a surrogate model g, typically a linear model, to
approximate the behaviours of the original model f:
V'=g(X,2)(2)
where)" is the predicted outcome, 1 is a locality-aware
weighting function, and X contains the instances. This local
explanation helps understand how specific features influenced
the model’s decision for a given sample.

Importance

F. Feature Correlation Analysis

A correlation heatmap is generated to analyse feature
interdependencies. When two features show high correlation,
one could be removed to reduce redundancy. The Pearson
correlation coefficient between
features X;and Xjis defined as:

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

28 © Copyright: All rights reserved.

Exploring Innovation

http://doi.org/10.35940/ijese.L2617.13111025
http://doi.org/10.35940/ijese.L2617.13111025
http://www.ijese.org/

OPENaACCESS

(X X,) = Yoy (KXo — X)) (X — X))
VI, Xk~ X2 T, (X X,
(3
Where X ;and X ; are the mean values of features .X; and X;,
respectively, this analysis ensured that only informative and
non-redundant features are red, boosting model performance.

3

G. Performance Evaluation

We computed how effectively various machine learning
models identified Android malware by determining key
metrics such as accuracy, precision, recall, and F1-score.
Among the traditional models—Support Vector Machines
with Linear, RBF, and Polynomial kernels, K-Nearest
Neighbours, Decision Tree, and Logistic Regression—each
contributed approximately 11.0% to 11.1% in overall
performance.

The Stacking Ensemble method, in particular, is good, as
reflected in the comparative performance pie chart, achieving
the highest combined scores across all metrics. This shows its
ability to merge the strengths of multiple base classifiers and
enhance a meta-classifier, thereby improving predictive
accuracy and efficiency. It confirms that different base learner
models and meta learner models, and their outcomes through
a final learning step, provide a better malware detection
strategy.

The ensemble learning methods demonstrated superior
consistency and interpretability for essential applications,
such as Android malware detection.

V. RESULTS AND DISCUSSION

This section presents the experimental results and discusses
the determination of the proposed malware detection
framework, including performance evaluation, feature
importance analysis (SHAP and LIME), and explainability.
Existing research has demonstrated the effectiveness of
machine learning for detecting Android malware. The
accuracy of models depends on the choice of features, the
quality of data, and the complexity of the machine learning
model. A multi-approach combining both static and dynamic
features has proved more effective than relying on either type
alone.

A. Model Performance Visualisation

Figure 1 presents a bar chart comparing the accuracy of
various machine learning models in detecting Android
malware. The models are Support Vector Machines with
Linear, RBF, and Polynomial kernels; K-Nearest Neighbours;
Logistic Regression; Decision Tree; and Random Forest.
Among these, Random Forest achieved the highest accuracy
of 0.9978, followed closely by Decision Tree at 0.9922. The
SVM with an RBF kernel also demonstrated strong
performance, recording an accuracy of 0.9933. In contrast,
Logistic Regression showed the lowest accuracy at 0.9877.
This shows how ensemble-based models, such as Random
Forest and Decision Tree, outperform individual classifiers in
malware detection tasks. Handling complex patterns and noise

Retrieval Number:100.1/ijese.L261713111025
DOI:10.35940/ijese.L2617.13111025
Journal Website: www.ijese.org

29

International Journal of Emerging Science and Engineering (IJESE)
ISSN: 2319-6378 (Online), Volume-13 Issue-11, October 2025

is significant, making them more preferable for essential
applications.

Comparison of ML Algorithms on Malware Detection Dataset

0.9978

0.9933

0.9922

0.9877

<«
&
&
<

[Fig.1: Comparison of Model Accuracy for Android
Malware Detection Across Different Classifiers]

Table 1 summarizes the classification performance of
different machine learning models applied to the
TUANDROMD dataset. The performance of each model is
computed using four metrics: accuracy, precision, recall, and
Fl-score. The results show that ensemble models (Stacking
and Voting) outperformed individual classifiers, achieving the
highest accuracy and quality.

Table I: Classification Performance of Machine Learning
Models on Tuandromd dataset

Model Accuracy | Precision | Recall | F1-Score
SVM (Linear) 0.9899 0.9873 0.9812 0.9842
SVM (RBF) 0.9933 0.9876 0.9916 0.9896
SVM (Polynomial) 0.9888 0.9754 0.9909 0.9829
KNN 0.9922 0.9909 0.9847 0.9877
Logistic Regression 0.9877 0.9838 0.9778 0.9807
Decision Tree 0.9922 0.9951 0.9806 0.9876
Random Forest 0.9978 0.9986 0.9944 0.9965
Stacking Ensemble 0.9989 0.9993 0.9972 0.9983
Voting Ensemble 0.9966 0.9958 0.9937 0.9948

B. Performance Distribution Across Models

The performance distribution among the computed
models—SVM (Linear, RBF, Polynomial), KNN, Logistic
Regression, Decision Tree, Random Forest, Stacking
Ensemble, and Voting Ensemble—is remarkably balanced,
with each contributing roughly 11.0%—11.2% to the overall
accuracy, precision, recall, and F1-score metrics. This even
spread shows that no single model overwhelmingly dominates
across all criteria. However, the Stacking Ensemble slightly
outpaces the rest at 11.2%, indicating its effectiveness at
aggregating diverse classifiers to improve generalisation.

It is observed that each model occupies a roughly equal
slice, ranging from 11.0% to 11.2%, indicating a balanced
evaluation across performance metrics. The Stacking
Ensemble stands out slightly at 11.2%, indicating it edges out
the others when all metrics are considered together. Random
Forest and Decision Tree also hold strong positions at 11.2%
and 11.1%, respectively, while SVM (Polynomial) and KNN
sit at the lower end with 11.0%.

This performance spread indicates model optimisation, but
it also signals diminishing returns from incremental
improvements within individual models. The Stacking
Ensemble model achieved the
highest accuracy, followed by
the Voting Ensemble,
demonstrating the advantage

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Exploring Innovation

http://doi.org/10.35940/ijese.L2617.13111025
http://doi.org/10.35940/ijese.L2617.13111025
http://www.ijese.org/

Explainable Machine Learning Model for Android Malware Detection

of combining multiple classifiers. Random Forest and
Decision Tree also perform robustly, enabling them to handle
complex feature interactions and non-linear patterns.
Meanwhile, models like SVM (Polynomial) and KNN, though
marginally behind, still maintain strong performance,
reflecting the total competitiveness of traditional models in
malware detection contexts.

i. Analysis of Performance: Random Forest achieved the
highest accuracy at 99.88%, showing its knack for
handling malware classification. The Bagging
Classifier is not far behind, reaching 99.77%, further
demonstrating the effectiveness of ensemble learning
methods. XGBoost and CatBoost achieved slightly
lower accuracies of 99.32% and 99.44%, respectively,
but still showed strong performance in detecting
malware.

These results show that ensemble methods—particularly
those based on bagging, such as Random Forest and Bagging
Classifier—outperform boosting-based models in this
specific dataset. The findings show the quality and strength of
bagging ensembles when applied to the malware detection
task.

C. Feature Importance Analysis

Figure 2 visualizes the feature importance taken from a
Random Forest classifier. The bar chart arranges features by
their calculated importance values, with the most influential
features along the x-axis and their corresponding feature
names on the y-axis. This visualisation helps identify which
features have the most significant impact on the model’s
decision-making.

RECEIVE_BOOT_COMPLETED

Ljava/net/URL;->openConnection

GET_TASKS

KILL_BACKGROUND_PROCESSES

VIBRATE

SYSTEM_ALERT_WINDOW
Landroid/location/LocationManager;->getLastKkgoodwarewnlLocation
WAKE_LOCK

READ_EXTERNAL_STORAGE

RECEIVE_SMS

WRITE_EXTERNAL_STORAGE

Feature value

Landroid/telephony/TelephonyManager;->getLinelNumber
Ljava/lang/Runtime;->exec

Ljava/lang/System;->load
Ljava/lang/System;->loadLibrary

READ_PHONE_STATE

WRITE_SETTINGS

BLUETOOTH

BATTERY_STATS

Landroid/content/pm/PackageManager;->getinstalledApplications

————— " Low
—2.50.0 255

SHAP value (impact on model out

[Fig.2: SHAP-Based Feature Selection]

D. LIME Prediction Analysis

Figure 3 presents the Local Interpretable Model-agnostic
Explanations (LIME) analysis for a specific benign
application instance. The model demonstrated 100%
confidence in its benign classification. Key contributing
features include the absence of permissions such as
VIBRATE, KILL BACKGROUND PROCESSES, and
SYSTEM ALERT WINDOW, all of which had values of 0,
determining that the app does not access these potentially
intrusive functionalities.

Retrieval Number:100.1/ijese.L261713111025
DOI:10.35940/ijese.L2617.13111025
Journal Website: www.ijese.org

Additional permissions, such as RECEIVE SMS and
ACCESS CACHE FILESYSTEM, are also disabled, further
supporting the benign classification. While the app makes
specific API calls such as Ljava/net/URL; —openConnection
and Landroid/location/LocationManager,

LIME’s explainability provides a clear rationale for the
model’s decision-making process, confirming that the absence
of typical malicious indicators yields a high-confidence
benign prediction.

LIME Explanation for Malware Prediction - Instance 0

VIBRATE <= 0.00
KILL_BACKGROUND_PROCESSES <= 0.00
SYSTEM_ALERT_WINDOW <= 0.00
Ljava/net/URL;->openConnection > 0,00
ACCESS_CACHE_FILESYSTEM <= 0.00
RECEIVE_SMS <= 0,00

Landroid/location/Loc ocation > 0.00

->getl

L geManager; ations <= 0,00

WRITE_SETTINGS <= 0.00

ACCESS_MTK_MMHW <= 0.00

[Fig.3: LIME Explanation for Malware Prediction —
Instance 0]

E. SHAP Explainability Analysis

To ensure our model isn’t just a mysterious black box, we
used Shapley Additive Explanations to understand what’s
driving its decisions and how each feature contributes. SHAP
gives us the complete clarity of what’s pushing the model to
flag an app as malware or not.

Figure 4 shows a SHAP waterfall plot that breaks down
which features tipped the scales for a specific malware call.
The heavy features pushing toward a malware label are
RECEIVE SMS, READ EXTERNAL STORAGE, and
RECEIVE BOOT COMPLETED—these are the kind of
permissions malware loves to grab for sneaky access and
sticking around after a reboot. On the flip side, stuff like
SYSTEM ALERT WINDOW and KILL BACKGROUND
PROCESSES, the other way, but their pull is lower.

SHAP enables a detailed understanding of how different
app attributes influence the final prediction—whether the
model flags an app as malicious or safe. As a traditional
feature importance metric, SHAP assigns a value to each
feature based on cooperative game theory, ranking them by
how much they push the prediction toward or away from
“malware.”

This kind of insight is crucial. It not only improves trust in
high-performing models such as Stacking Ensemble and
Random Forest, but also supports developers and security
analysts in verifying whether the flagged behaviours actually
make sense, ensuring that alerts are both actionable and
interpretable. In most evolving threats, such as Android
malware in 2025, this transparency is a technical and
operational requirement.

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

30 © Copyright: All rights reserved.

Exploring Innovation

http://doi.org/10.35940/ijese.L2617.13111025
http://doi.org/10.35940/ijese.L2617.13111025
http://www.ijese.org/

OPENaACCESS

RECEIVE_SMS

fix)

READ_EXTERNAL_STORAGE
RECEIVE_BOOT_COMPLETED
VIBRATE
Ljava/net/URL;->openConnection
SYSTEM_ALERT_WINDOW
GET_TASKS

WAKE_LOCK
KILL_BACKGROUND_PROCESSES

232 other features

0.75
ElfX)]

[Fig.4: SHAP Waterfall Plot for Individual Malware
Classification]

0.80

Figure 5 presents the SHAP feature importance bar chart for
the stacking ensemble model, highlighting the most influential
features contributing to malware classification. At the top of
the list is KILL BACKGROUND PROCESSES, which is
commonly associated with malicious behaviour aimed at
interfering with background processes to avoid detection.
Other essential features are SYSTEM ALERT WINDOW and
GET TASKS, both of which are frequently exploited by
malware to manipulate system-level functionalities.

SHAP Feature Importance (Bar Chart} for Stacking Ensemble

s greksrounn processes
systeu e wowoo -
secen soor_cowpLeTeD
verse
et s
avatmetRL->opencomecton
WeiTe exernal sToeact
eAD Exteaal STorec
sea0 prone srare
T

v Lock
recene St T
were semivGs
LiavatangSystem:->load _
ccess i STare -
Lavalang/System;->loadUibrary _
Liavafang/Runtime:->exec _
Gavaerypto/Cipner->dofinel -

LandrodtelphonyTelephonyanager ->getDevced -

et
Qer->9

002 003

Mean Absolute SHAP Value

00

[Fig.5: SHAP Feature Importance Bar Chart for
Stacking Ensemble Model]

Figure 6 presents the SHAP summary plot, illustrating how
various features interact and how their SHAP values vary
across different instances. Features such as ACCESS ALL _
DOWNLOADS and ACCESS CACHE FILESYSTEM exhibit
significant variability, indicating their context-dependent
influence on the model’s predictions. These findings support
the notion that permission-based features are central to
effective Android malware detection, aligning with previous
research on malicious application behaviour.

Collectively, the SHAP visualisations underscore the
critical role of permissions in identifying threats and validate
the emphasis placed by the stacking ensemble model. What
distinguishes SHAP in this context is not only its capability to
rank features by importance but also its ability to reveal when
and how a feature contributes. This facilitates a deeper, more

Retrieval Number:100.1/ijese.L261713111025
DOI:10.35940/ijese.L2617.13111025
Journal Website: www.ijese.org

31

International Journal of Emerging Science and Engineering (IJESE)
ISSN: 2319-6378 (Online), Volume-13 Issue-11, October 2025

interpretable understanding of the model’s decision-making
process, bridging the gap between complex machine learning
outputs and human-explainable insights.

SOUESEmary Plot for Stacking Ensemble
|

ACCESS_ALL_DOWNLOADS

———raaaaas

ACCESS CACHE_FILESYSTEM

P

1 0100 0.1
HAP Interaction value

[Fig.6: SHAP Summary Plot Showing Feature
Interactions]

The LIME analysis confirms that specific Android
permissions significantly impact malware classification. The
ability to interpret model decisions through explainable Al
techniques improves trust and dependability and enhances the
consistency of automated malware detection systems. This
analysis integrates SHAP-based global feature explanations
with LIME-based local insights to create a more robust
framework for understandability. The results suggest that
while LIME gives local feature contributions for an individual
prediction, SHAP offers a more comprehensive analysis by

0100 O
Si

evaluating feature importance at both regional and global
levels.

F. SHAP Heatmap Analysis

SHAP Correlation Heatmap: The correlation heatmap
shown in Figure 7 visualises the pairwise relationships
between SHAP values of different features, offering
insights into how these features influence the model’s
predictions. Positive correlations (highlighted in red)
indicate features that contribute similarly to malware
classification, while negative correlations (highlighted
in blue) reveal inverse relationships in their SHAP
impacts.

For instance, features such as ACCESS LOCATION EXTRA
COMMANDS and AC-

CESS SHARED DATA display a strong positive correlation,

indicating they often co-occur in malware samples and jointly
influence the prediction outcome. Conversely, weak or

1

negative correlations may point to independent or opposing
roles in the model’s decision logic.

This correlation map is particularly valuable for identifying
feature dependencies and potential redundancies, enabling
further optimisation of the feature set used in the malware
detection model.

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Exploring Innovation

http://doi.org/10.35940/ijese.L2617.13111025
http://doi.org/10.35940/ijese.L2617.13111025
http://www.ijese.org/

Explainable Machine Learning Model for Android Malware Detection

SHAP Correlation Heatmap for Stacking Ensemble

5

Features

Fig.7: SHAP Correlation Heatmap Showing Feature
Relationships]

ii. SHAP Feature Importance Heatmap: The heatmap
presented in Figure 8 illustrates SHAP values across
numerous individual samples, enabling a granular and
straightforward understanding of feature contributions
in the malware classification task. Features with
similarly high SHAP values across samples show
strong influence on prediction outcomes, whereas
features with near-zero or neutral values have less
impact.

This outcome aids explainability by clearly identifying
which permissions or behaviours are most responsible for the
classification decisions made by the stacking ensemble model.
For example, permissions related to writing to external
storage or interacting with high-level system APIs result in
higher SHAP values, indicating their substantial influence in

flagging malicious behaviour.

SHAP Heatmap for Stacking Ensemble

ACCESS ALL DOWNLOADS +
ACCESS MTK MMEW :
actvityCalled = = :
AUTORUN_MANAGER LICENSE_SERVICE(.autorun) = = = — 015
BIND_GET_INSTALL REFERRER SERVICE = ::

BIND_VOICE INTERACTION
BROADCAST_PACKAGE REMOVED -
CAPTURE AUDIO_OUTPUT =
CHANGE WIFLSTATE &
DEVICE POWER
FACTORY TEST =
GLOBAL SEARCH
INTERACT_ACROSS USERS
MANAGE DOCUMENTS &
MOUNT_FORMAT FILESYSTEMS
¢

-005

Features

READ_DATABASES &
READ MESSAGES

READ_SYNC STATS
FECENE SMS

SDCARD VRITE i
SET DEBUG APP -
SET WALLPAPER HINTS < =
WNIRSTALL_SHORTCUT
WAl

\TE
VIRITE_EXTERNAL STORAGE <
WRITE SETTINGS

‘Lmq:apame‘ht!p.‘lmpud\en!}DeVau?!Ht!pChen! >exeme-*u,w* o = R T = e
[Fig.8: SHAP Feature Importance Heatmap for Stacking
Ensemble. This Heatmap Illustrates SHAP Values Across

multiple Samples, Highlighting the Most and Least
Contributing Features in Malware Detection]

VI CONCLUSION

This study proposed an explainable ensemble-based
approach for Android malware detection, integrating SHAP
and LIME to improve model understandability. Using SHAP-
based feature selection, the most influential permissions and
API calls are identified, thereby improving model
performance. Among the computed models, the ensemble

techniques—particularly ~ the Stacking and Voting
Retrieval Number:100.1/ijese.L261713111025
DOI:10.35940/ijese.L2617.13111025
Journal Website: www.ijese.org

classifiers—have shown superior accuracy and quality
compared to individual -classifiers. The inclusion of
explainability tools yielded meaningful insights into model
behaviour, thereby increasing transparency and enabling
automated cybersecurity systems.

FUTURE WORK

Future work will explore expanding the range and volume
of datasets to improve the process across a broader spectrum
of malware and variants. More advanced explainability
techniques, such as DeepSHAP and multi-explainable Al
frameworks, will be introduced in the future to improve the
understandability of complex deep learning models. Real-
time deployment strategies for mobile environments will also
be developed, with a focus on performance, accuracy and
cyber threats.

DECLARATION STATEMENT

After aggregating input from all authors, I must verify the
accuracy of the following information as the article's author.

= Conlflicts of Interest/ Competing Interests: Based on
my understanding, this article has no conflicts of
interest.

= Funding Support: This article has not been funded by
any organizations or agencies. This independence
ensures that the research is conducted with objectivity
and without any external influence.

= Ethical Approval and Consent to Participate: The
content of this article does not necessitate ethical
approval or consent to participate with supporting

documentation.

= Data Access Statement and Material
Availability: The adequate resources of this article are
publicly accessible.

= Author’s Contributions: The authorship of this article
is contributed equally to all participating individuals.

REFERENCES

1. H. Alamro, W. Mtouaa, S. Aljameel, A. S. Salama, M. A. Hamza, and A.
Y. Othman, "Automated Android Malware Detection Using Optimal
Ensemble Learning Approach for Cybersecurity," *IEEE Access*, vol.
11, pp. 72509-72517, 2023.

DOI: http://doi.org/10.1109/ACCESS.2023.3294263

2. S. Zhang, X. Xie, and Y. Xu, "A Brute-Force Black-Box Method to
Attack Machine Learning-Based Systems in Cybersecurity," *IEEE
Access*, vol. 8, pp. 128250-128263, 2020.

DOIL: http://doi.org/10.1109/ACCESS.2020.3008495

3. M. B. Mwangi and S. M. Cheng, "An Adversarial Attack on ML-Based
IoT Malware Detection Using Binary Diversification Techniques,"
IEEE Access, vol. 12, pp. 175563-175578, 2024.

DOIL: http://doi.org/10.1109/ACCESS.2024.3506841

4. P. Musikawan, Y. Kongsorot, 1. You, and C. So-In, "An Improved Deep
Learning Neural Network for the Detection and Identification of Android
Malware," *IEEE Access*, vol. 11, pp. 115475-115487, 2023. DOI:
http://doi.org/10.1109/ACCESS.2023.3324524

5. F.S. Atedjio, J.-P. Lienou, F. F. Nelson, S. S. Shetty, and C. A. Kamhoua,
"CycleGAN-Gradient Penalty for Enhancing Android Adversarial
Malware Detection in Grey Box Setting," *IEEE Access*, vol. 12, pp.
42513-42526, 2024.

DOIL: http://doi.org/10.1109/ACCESS.2024.3377938

6. Z. Shu and G. Yan, "EAGLE: Evasion Attacks Guided by Local
Explanations Against Android Malware
Classification," *IEEE Transactions
On Dependable and Secure
Computing*, vol. 21, no. 6, pp.
5436-5451, Nov.-Dec. 2024.

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

32 © Copyright: All rights reserved.

Exploring Innovation

http://doi.org/10.35940/ijese.L2617.13111025
http://doi.org/10.35940/ijese.L2617.13111025
http://www.ijese.org/
http://doi.org/10.1109/ACCESS.2023.3294263
http://doi.org/10.1109/ACCESS.2020.3008495
http://doi.org/10.1109/ACCESS.2024.3506841
http://doi.org/10.1109/ACCESS.2023.3324524
http://doi.org/10.1109/ACCESS.2024.3377938

OPENaACCESS

DOI: http://doi.org/10.1109/TDSC.2024.3363446

7. N. Moustafa, N. Koroniotis, M. Keshk, A. Y. Zomaya, and Z. Tari,
"Explainable Intrusion Detection for Cyber Defences in the Internet of
Things: Opportunities and Solutions," *I[EEE Communications Surveys
& Tutorials*, vol. 25, no. 3, pp. 1775-1807, third quarter 2023. DOIL:
http://doi.org/10.1109/COMST.2023.3280465

8. R. Kalakoti, H. Bahsi, and S. Nomm, "Improving IoT Security With
Explainable Al: Quantitative Evaluation of Explainability for [oT Botnet
Detection," *IEEE Access*, vol. 12, pp. 85648-85666, 2024. DOI:
http://doi.org/10.1109/ACCESS.2024.3413615

9. A. Rashid and J. Such, "MalProtect: Stateful Defence Against
Adversarial Query Attacks in ML-Based Malware Detection," *IEEE
Transactions on Dependable and Secure Computing*, vol. 20, no. 4, pp.
3165-3179, July-Aug. 2023.
DOI: http://doi.org/10.1109/TDSC.2022.3194598

10. G. Xu, G. Xin, L. Jiao, J. Liu, S. Liu, M. Feng, and X. Zheng, "OFEL: A
Semi-Black-Box Android Adversarial Sample Attack Framework
Against DLaaS," *IEEE Access*, vol. 12, pp. 59673-59688, 2024.
DOI: http://doi.org/10.1109/ACCESS.2024.3392823

11. M. M. Alani and A. 1. Awad, "PAIRED: An Explainable Lightweight
Android Malware Detection System," *IEEE Access*, vol. 10, pp.
73214-73228, 2022.
DOI: http://doi.org/10.1109/ACCESS.2022.3189390

12. G. Kirubavathi and S. Nithish, "Dynamic Ensemble Learning
Framework Improved with XAI To Detect Android Malware," in *Proc.
2024 International Conference on Intelligent Systems for Cybersecurity
(ISCS)*, Dehradun, India, May 2024, pp. 1-6.
DOIL: http://doi.org/10.1109/ISCS61804.2024.10581285

13. S. K. Smmarwar, G. P. Gupta, and S. Kumar, "An Explainable Al
Approach for Android Malware Detection Using Deep Learning
Techniques," in *Proc. 2023 IEEE World Conference on Applied
Intelligence and Computing (AIC)*, Sonbhadra, India, July 2023, pp.
467-472. DOL: http://doi.org/10.1109/A1C57670.2023.10263905

14. R. Rajalakshmi, S. Pallavi, U. Naresh, S. Telang, and S. Kiran,
"Advancing Malware Detection Using Memory Analysis and
Explainable AI Approach," in *Proc. 2nd International Conference on
Intelligent Cyber Physical Systems and IoT (ICoICI)*, Chennai, India,
Nov. 2024, pp. 463-468.
DOIL: http://doi.org/10.1109/ICoICI58642.2024.10486624

15. A. Patel and S. M. Ghosh, "Android Malware Detection Using
Explainable Machine Learning for Secure Computing," in *Proc. 2024
OPJU International Technology Conference (OTCON)*, Raigarh, India,
June 2024, pp. 1-6.
DOIL: http://doi.org/10.1109/0TCON60325.2024.10687498

16. Y. Liu, C. Tantithamthavorn, L. Li, and Y. Liu, "Explainable Al for
Android Malware Detection: Towards Understanding Why the Models
Perform So Well?" in *Proc. 2022 IEEE 33rd International Symposium
on Software Dependability, trustworthiness, and consistency
Engineering (ISSRE)*, Charlotte, NC, USA, Oct. 2022, pp. 169-180.
DOIL: http://doi.org/10.1109/ISSRE55969.2022.00026

17. M. S. Chandana Snehal, V. Nagoor, S. Rohit, R. S., S. K. Thangavel, K.
Srinivasan, and P. Kapoor, "Towards Explainability Using ML and Deep
Learning Models for Malware Threat Detection," *IEEE Access*, vol.
12, pp. 89441-89459, 2024.
DOIL: http://doi.org/10.1109/ACCESS.2024.3419062

AUTHOR’S PROFILE

Divish Raj O holds a Bachelor of Engineering in Computer

Science and Engineering from JNN College of Engineering.

Shimoga, and a Master of Technology in Computer Network

Engineering from RV College of Engineering. Bengaluru.

My academic work includes projects on a 3D authentication

system using a Rubik's Cube and on automation
implementations leveraging Ansible, Kubernetes, and scripting. I have over
2 years of professional experience working with both startups and
multinational corporations, during which I gained expertise in cloud
automation, including devOps tools and network systems. My interests
include cybersecurity, automation, and distributed system design.

Dr Vinay V. Hegde is an Associate Professor in the
Department of Computer Science and Engineering at RV
College of Engineering, Bengaluru. With 17 years of
teaching and 13 years of research experience, his areas of
interest include Natural Language Processing and Machine
LA Learning. He has published over 80 papers in reputed
journals and conferences. A CCNA-certified professional, he also serves as a
training partner in the Cisco Networking Academy, as a mentor for Atal
Tinkering Labs by NITI Aayog. The Government of India actively supports
innovation among students across schools in Northeast India.

Retrieval Number:100.1/ijese.L261713111025
DOI:10.35940/ijese.L2617.13111025
Journal Website: www.ijese.org

International Journal of Emerging Science and Engineering (IJESE)
ISSN: 2319-6378 (Online), Volume-13 Issue-11, October 2025

Disclaimer/Publisher’s Note: The statements, opinions and
data contained in all publications are solely those of the
individual author(s) and contributor(s) and not of the Blue
Eyes Intelligence Engineering and Sciences Publication
(BEIESP)/ journal and/or the editor(s). The Blue Eyes
Intelligence Engineering and Sciences Publication (BEIESP)
and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods,
instructions, or products referred to in the content.

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Exploring Innovation

http://doi.org/10.35940/ijese.L2617.13111025
http://doi.org/10.35940/ijese.L2617.13111025
http://www.ijese.org/
http://doi.org/10.1109/TDSC.2024.3363446
http://doi.org/10.1109/COMST.2023.3280465
http://doi.org/10.1109/ACCESS.2024.3413615
http://doi.org/10.1109/TDSC.2022.3194598
http://doi.org/10.1109/ACCESS.2024.3392823
http://doi.org/10.1109/ACCESS.2022.3189390
http://doi.org/10.1109/ISCS61804.2024.10581285
http://doi.org/10.1109/AIC57670.2023.10263905
http://doi.org/10.1109/ICoICI58642.2024.10486624
http://doi.org/10.1109/OTCON60325.2024.10687498
http://doi.org/10.1109/ISSRE55969.2022.00026
http://doi.org/10.1109/ACCESS.2024.3419062

