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Abstract: This study addresses essential cybersecurity challenges 

in malware detection for applications by developing an explainable 

machine learning framework. The Stacking Ensemble approach 

achieves 99.89% accuracy in malware detection while maintaining 

high explainability through explainable AI (XAI) techniques. The 

research supports Vector Machines, K-Nearest Neighbours, 

Logistic Regression, Decision Trees, and Random Forest 

classifiers with ensemble strategies (Stacking and Voting), used by 

SHAP and LIME for transparency. The methodology shows that 

permissions, different API calls, and opcode-related attributes are 

the features to differentiate malicious applications. Experimental 

results show that the Stacking Ensemble, which combines 

individual classifiers across all metrics (accuracy, precision, recall, 

F1-score), offers a transparent solution for application security 

that addresses the black-box nature of traditional machine 

learning models. 

Index Terms: Threat Detection, Explainable AI, SHAP, LIME, 

Ensemble Learning, Machine Learning, Application Security and 

Permissions. 

Nomenclature: 

XAI: Explainable Artificial Intelligence  

CNNs: Convolutional Neural Networks  

IDS: Intrusion Detection Systems  

SMOTE: Synthetic Minority Over-Sampling Technique 

LIME: Local Interpretable Model-agnostic Explanations  

RBF: Radial Basis Function 

I. INTRODUCTION

The use of mobile applications and the increasing

complexity of digital ecosystems have heightened the 

urgency for transparent threat-detection solutions, as Android 

faces cybersecurity challenges due to its open-source 

architecture and widespread use. This creates opportunities 

for attackers but also compels defenders to innovate quickly 

in the race against advanced malware. Ensemble learning 

approaches achieve higher classification accuracy than 

single-model methodologies. Alamro et al. introduced an 

ensemble-based framework combining machine learning 

models for Android malware detection, optimising both 

detection rates and the handling of evolving threats.  
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With the success of these detection systems, the adoption of 

machine learning in cybersecurity introduces new bugs. In 

exceptional cases, ML-based security models may be 

susceptible to adversarial attacks that exploit their decision 

boundaries. Zhang et al. investigated black-box brute-force 

attack methods that systematically probe and bypass ML-

based cyber defences, exposing potential blind spots in 

widely deployed systems. This research underscores the need 

not only for stronger models but also for advancing their 

dependability, trustworthiness, and consistency. These 

approaches integrate explainable artificial intelligence (XAI) 

tools, such as SHAP and LIME, to provide understandability 

and transparency. These XAI methods allow users and 

analysts to understand and trust the automated decisions made 

by the detection system. Moreover, it is essential for 

maintaining confidence and compliance in security-sensitive 

domains. The rapid iteration of both attack and defence 

technologies in mobile devices underscores the importance of 

adaptable, effective security strategies. State-of-the-art 

research shows how adversarial attacks—ranging from black-

box brute-force exploits to code diversification that easily 

destroys detection and can substantially lower the 

effectiveness of conventional machine learning models. 

These tactics expose critical bugs until defence frameworks 

incorporate not just learning architectures but also 

explainability and adversarial awareness. It is essential to 

make a deeper diagnosis of model decisions in security-

sensitive environments. As adversarial tactics such as code 

diversification and black-box evasion become more 

sophisticated, coupling explainability with resilient 

architectures becomes increasingly essential for maintaining 

adequate, accountable security. This cycle of attack and 

explanation supports breakthroughs in transparent, 

trustworthy malware defence, ultimately fostering confidence 

among users, administrators, and the cybersecurity 

community. These insights shed light on the role of XAI in 

detection accuracy, especially in evolving threat 

environments. 

II. BACKGROUND AND RELATED WORK

A. Machine Learning for Malware Detection

Machine learning is gaining popularity for detecting

malware by analysing its outputs — the structure or behaviour 

of applications. There are two primary approaches: static 

analysis, which analyses an app’s code or configuration files 

without executing it, and dynamic analysis, which runs the 

app in a controlled environment to observe its behaviour and 

runtime. These analyses provide output that models can use to 

classify applications as benign or  

malicious. 
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B. Explainable AI for Malware Detection 

SHapley Additive Explanations and Local Interpretable 

Model-agnostic Explanations are Explainable AI tools that 

improve transparency in malware detection models by 

optimising their decision-making processes. 

Machine learning algorithms such as Decision Trees, 

Neural Networks, and K-Nearest Neighbours often yield 

outcomes that are either malware or not, without evidence. 

SHAP and LIME help explain these results. SHAP assigns a 

value to each feature (e.g., permissions or network activity) 

and quantifies its contribution to the final prediction, 

providing a global understanding of feature importance. 

LIME, on the other hand, focuses on individual predictions by 

giving inputs—such as removing a suspicious API call—and 

analysing changes in the outcome, to which those inputs are 

pivotal. 

This understandability is essential. For instance, if a 

Random Forest model identifies an Android app as malicious, 

SHAP might show that 70% of the decision is due to abnormal 

data uploads. In contrast, LIME shows that without having 

such uploads, the app appears benign. This clarity allows 

security analysts to validate the model’s reasoning, detect 

biases, and improve accuracy. As malware advances evolve—

such as the sophisticated banking trojans seen in 2025—

combining the power of ML with the transparency of XAI to 

build trustworthy, advanced malware detection systems. 

III. LITERATURE SURVEY 

In July 2021, Musikawan et al [4]. were the first to propose 

AMDI-Droid, a deep learning-based framework designed to 

advance the detection of Android malware significantly. In 

their publication, Musikawan et al. described the different 

functionalities and layers of AMDI-Droid, including its three-

layer blending (output) for each hidden layer of the CNN 

subnetwork and a richer feature-extraction (exploiting) 

subnetwork. The resulting daemons, like obfuscated malware, 

were tested against benchmarks. AMDI-Droid outperforms 

the other benchmarks tested, including static and dynamic 

analysis. The research work on AMDI-Droid shows that, at a 

96% significance level, it achieved high accuracy, precision, 

and recall. AMDI-Droid is not just precise but also 

outperforms the benchmarks it was tested against. 

This presented (proposed) a novel technique to get a 

significant enhancement in the detection of Android malware 

by deploying a framework-based approach rather than 

training the malware, which is mainly used in traditional 

malware detection techniques. Also, because DL is used as 

the malware detection tool, the research paper found that 

AMDI-Droid outperforms all other detection techniques 

presented so far. 

The complexity of AMDI-Droid and the need to allocate 

most of the computational power to achieve the required 

output speed are the only points one should consider before 

selecting AMDI-Droid as their high-powered detection 

algorithm. 

To replace the traditional malware-detection method, 

Musicawan et al. proposed AMDI-Droid as the future of 

Android malware detection in 2011. Proposed the same 

(model) for the first time in the field, for AMDI-Droid to be 

non-replaceable, but to serve as a benchmark for a (quite) 

long-term prediction. 

In July 2023, Alamro et al [1]. were the first to present 

AAMD-OELAC [6] for the detection of Android malware, in 

contrast to the approach proposed by Musicawan et al., 

namely AMDI-Droid. Indeed, AAMD-OELAC is still very 

slow to reach the preset threshold for issuing a judgment on 

data using the spectrum proposed by Alamro et al. Alamro et 

al. proposed a different approach to detecting Android 

malware compared to the proposed method. For me, ensemble 

learning is the best approach to detecting malware in the near 

future. In the research work by Alamro et al. on AAMD-

OELAC, they deployed an ensemble learning technique that 

experts in preprocessing noisy datasets have used. 

As our favourites are ensemble learning, I would 

recommend that anyone selecting a malware detection tool 

choose AMDI-Droid over AAMD-OELAC. As both are based 

on deep learning, the ensemble learning technique for AMDI-

Droid outperforms the method proposed by Alamro et al. 

Transparency, a cornerstone of this research, is advanced by 

Explainable AI (XAI) tools such as SHAP and LIME.  

[11] In 2022, Alani and Awad introduced PAIRED, a 

lightweight Android malware detector model built with just 

35 static features, including permissions and API calls, and 

using SHAP for explainability. As PAIRED yields more than 

98% accuracy with less resource use, it can be used for real-

time detection on any Android device. PAIRED explains the 

reasons behind flagging an App, such as excessive network 

access. 

In 2022, Liu et al [16]. conducted a significant study to 

understand the reasons for the high accuracy of the Machine 

Learning model used for Android malware detection by 

utilising so-called 'Explainable AI' to uncover the reasons 

behind it. Surprisingly, they made an interesting discovery. 

Many of these models achieve inflated accuracy of up to 99%, 

not because they identify malicious patterns, but because of 

temporal biases and artefacts in the training datasets. 

By conducting a comprehensive XAI analysis across seven 

datasets, they have reported findings that reveal that, in most 

cases, the models tend to learn different patterns in the dataset 

rather than detecting generalisable characteristics of malware. 

For instance, some of the essential features learned by the 

model could, in fact, be different temporal indicators that are 

guaranteed to occur when the samples are collected but 

cannot be proven to be actually malicious. The paper serves 

to attract the attention of other researchers, always to cross-

check their model performance with/without explainable AI 

techniques, as well as the datasets used.  

The artefacts. Proposing their findings emphasises the need 

for rigorous evaluation methodologies and transparent reports 

on how and why models make predictions. This ensures that 

detection systems would remain effective when deployed in 

production environments. 

Kirubavathi and Nithish [12] adopted a dynamic approach 

in 2024. They combined Random Forest, XGBoost, 

LightGBM, and KNN with a Random Forest meta-learner. 

The CCCS-CICAndMal2020 dataset was used for 

implementation. LIME improved  

its framework, achieving 98% 

accuracy. Class balancing was 

performed using SMOTE. 
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Feature ranking was done to reduce noise. They have 

proposed a transparent, high-performance malware detection 

system. 

Smmarwar et al. [13] presented XAI-AMD-DL in 2023. 

This is a deep learning approach to designing an explainable 

AI for an Android malware detection system. This model 

combines a Convolutional Neural Network (CNN) with Bi-

Gated Recurrent Units (Bi-GRU). This hybrid network can 

simultaneously learn the malware's spatial and temporal 

behaviours. Many deep learning models fail to provide 

explainability. So the conventional deep learning models 

cannot solve the problem. They have designed their deep 

learning system with built-in methods to make it explainable. 

This architecture was tested on standard benchmark datasets. 

Their hybrid model outperformed both traditional 

Convolutional Neural Networks (CNNs) and RNNs. In 

addition, since they have conducted feature contribution 

analysis, it provides some transparency to security 

professionals, classifying their approach as the most reliable 

Android malware detection model. 

Rajalakshmi et al. [14] paved the way in 2024. They made 

memory analysis their core approach, combined with 

explainable AI, to improve their malware detection system. 

Their conventional malware detection method showed a high 

false-positive rate and was therefore taken in an innovative 

direction; this work emphasises that traditional malware 

detection methods show high accuracy. However, it fails to 

detect versions of obfuscated malware because it cannot 

access the file's memory. 

Two authors of the present study, Patel and Ghosh [15], 

presented AMD-XAI-ML, a machine learning-based Android 

malware detection framework designed with explainability-

oriented smart computing aspects in 2024. Evasion 

techniques like packing and encryption pose significant 

challenges for creating an effective malware detection 

system. The AMD-XAI-ML framework is well-engineered to 

detect unknown malware variants while maintaining low 

false-positive rates. Nine machine learning models are used 

to compute AMD-XAI-ML on the CICAndMal2019 dataset. 

Among all, the XGBoost function provides the highest 

accuracy of 98.54%, while the random forest classifier offers 

98.42%. It is seen that the decision tree classifier also 

computes the best accuracy of about 98.23%. 

Explainability can be achieved using XAI (eXplainable 

Artificial Intelligence) techniques. So, the transparency of the 

decision-making is well balanced with the performance of the 

detection process. The cause plays a significant role in smart 

devices that require minimal resources. The machine learning 

model's explanation makes it easier for security analysts to 

determine whether malware is present. For practical 

deployment, a transparent model for detecting Android 

malware is feasible and accurate. 

Moustafa et al. gave a brief overview of the role of XAI in 

IoT intrusion detection in 2023 [7]. In the different models 

used to implement machine learning methods for IoT 

intrusion detection, an interpretable model is needed to 

explain the predictions. Overfitting is often a significant issue 

in intrusion detection systems (IDS). So, trustworthiness is 

also one of the key outcomes to be achieved by improving 

machine learning methods and techniques. 

An efficient defence strategy is also needed to support plans 

to develop a better IoT model. The real question about the bug 

is whether there was interest in using SHAP and LIME as an 

operational technique for IoT botnets in May 2024. The actual 

questions are the botnet prediction model's loyalty and 

sensitivity to the training data. So, one can conclude that the 

bug in the Android malware is correctly explained. The SHAP 

is providing the highest loyal reasoning for the prediction. 

The SHAP is also accurate for the decision reached, as the 

botnet traffic pattern matched that of the Android malware. 

The model provides satisfying explanations and precise 

predictions. 

Kalakoti et al. proposed an operational technique for 

applying SHAP and LIME to the IoT botnet in 2024. The bug 

in the Android malware yields high predicted and correct 

results when predicting the botnet traffic pattern. The real 

decision for the bug in the malware is matched, and SHAP is 

used for faithful or loyal reasoning to predict the traffic 

pattern [8]. Kalakoti et al. contributed to the world of IOT 

BOTNET in May 2024. 

Chandana Snehal et al [17]. documented the proven, 

unofficial results that it matches the proposed machine 

learning and deep learning models for Android malware in 

2024. The unexplored intrusion project is revealed by 

Chandana Snehal et al. The botnet traffic pattern matched the 

Android malware pattern, and SHAP is accurate. Kalakoti et 

al. contributed to the use of botnet traffic patterns and their 

performance in the operation of the Android malware. 

Kalakoti and named their system to detect IoT botnets as XAI. 

The entire process is designed to combine machine learning 

(Random Forest) and deep learning (LSTM-CNN, BiLSTM) 

with SHAP for detecting Android malware. Liverpool J also 

used the LSTM-CNN with SHAP in October 2023 [3] to 

operate the botnet and detect Android malware. This proposed 

hybrid model combines the SMOTE technique for class-

imbalanced datasets and achieves accurate classification of 

Android malware by leveraging better suspicious API usage 

[8]. Officials made botnet traffic detection easier, making the 

entire process easier to detect and act on. While scalability is 

the primary advantage, there are also specific concerns. 

Atedjio et al. [5] in 2024 developed a CycleGAN-based 

defence method that included a gradient penalty to improve 

stability and accuracy. It was introduced for the grey-box 

setting where the attacker has only partial knowledge about 

the detection model. In April 2024, Xu et al. [10] reported, in 

one of their research papers on OFEI, a semi-black-box attack 

in which they modified one feature per iteration, achieving a 

98.25% evasion rate. Their Bayesian-uncertainty-based 

countermeasure detected 99.28% of the above iterative 

evasion attacks, highlighting the increasingly vulnerable 

future landscape. Shu and Yan [6] created EAGLE in July 

2024, a method that uses LIME-based explanations to prevent 

Android classifiers from achieving 92.4%-100% success 

(33). The transferability of the attack across different models 

is alarming, highlighting how the concept of eXplainable AI 

(XAI) can enhance transparency while also widening the 

attack surface. Zhang et al. [2] in 2020 proposed another 

brute-force attack, the BFAM  

black-box attack, was 

proposed, which uses the 
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confidence scores and the attack rate of the proposed 

detection model. 

IV. IV. METHODOLOGY 

A. Dataset Description and Preprocessing 

The TUANDROMD dataset serves as the primary resource 

for the study, giving a publicly available collection of Android 

application data. It has a diverse set of benign and malicious 

applications determined through both static and dynamic 

analysis. The dataset includes features, such as permissions, 

which have the access requests made by an application; API 

calls, which give the system functions called by the 

application; opcodes, referring to the low-level instructions 

executed; and network features, which provide the application 

with its communication behaviour and data transmissions 

over the internet and security 

B. Data Cleaning and Preprocessing 

To prepare the dataset for machine learning, multiple 

preprocessing steps are applied, including imputing numerical 

values with the median and filling categorical values with the 

mode. Numerical features are normalised using Min-Max 

Scaling to handle different input ranges. Due to the class 

imbalance—with more benign than malicious applications—

Synthetic Minority Over-sampling Technique (SMOTE) is 

used to generate synthetic malware samples and balance the 

dataset. The dataset is split into training and test sets at 80:20, 

with stratified sampling to maintain the same class 

distribution in each subset. 

C. Feature Selection for Optimised Model Performance 

To improve model performance and classification accuracy, 

feature selection is performed before training. Two 

approaches are used to identify the suitable features for 

malware detection. 

The first approach involved training a Random Forest 

model and using Shapley Additive Explanations values to 

evaluate feature importance. The top 50 features are selected 

based on their mean absolute SHAP values. In the 2nd 

approach, feature importance scores are directly taken from a 

Random Forest classifier, and the 50 highest-ranked features 

are considered for model training. 

Both approaches show that permissions, API calls, and 

opcode-related attributes are the most important for 

distinguishing between benign and malicious applications and 

for reducing the dataset to features that improve performance 

and yield higher model performance and classification 

accuracy. 

D. Machine Learning Models and Ensemble Learning for 

Malware Detection 

This study used different machine learning algorithms and 

ensemble techniques to improve malware detection 

performance. The models are classifiers such as Support 

Vector Machines, K-Nearest Neighbours, Logistic 

Regression, Decision Trees, and Random Forest. 

Forests. 

SVMs are trained using various kernel functions—linear, 

polynomial, and radial basis function (RBF)—to capture both 

complex and straightforward decision boundaries. KNN 

classification works by examining the k nearest neighbours in 

the feature space. Logistic Regression modelled the 

probability that an application is malicious. Decision Trees 

generated rule-based decisions through recursive partitioning, 

and Random Forests used multiple decision trees to improve 

prediction and stability. 

To further improve predictive accuracy, ensemble learning 

techniques such as Stacking and Voting are implemented. In 

Stacking, individual base learner models (SVM, KNN, 

Decision Tree, and Random Forest) are trained separately, and 

a Logistic Regression model acts as the meta-learner to 

combine their predictions. Voting ensembles aggregated 

predictions from all classifiers—hard voting selected the 

majority class, while soft voting averaged class probabilities 

to get the final output. 

These models were designed to strengthen individual 

learners and improve the quality, dependability, 

trustworthiness, and consistency of malware detection 

systems. 

E. Explainability and Feature Importance Analysis Using 

SHAP and LIME 

To improve the understandability of model predictions and 

address the black-box nature of complex classifiers, Shapley 

Additive Explanations and Local Interpretable Model-

agnostic Explanations are used. 

i. Global Feature Importance Using SHAP: SHAP is 

used to categorise the overall contribution of each 

feature to the model’s decision-making process. By 

calculating SHAP values across all test samples, global 

feature importance is calculated. The importance score 

for a given feature fi is calculated as the mean of the 

absolute SHAP values over all N test instances, as 

proved below: 

 Importance SHAPj, i| (1) 

Here, SHAPj (i) represents the SHAP value of feature fi for 

the jth sample. 

ii. Local Instance-Based Understandability Using LIME: 

LIME is used to explain individual predictions. It 

generates a dataset X′ by altering the input features and 

fits a surrogate model g, typically a linear model, to 

approximate the behaviours of the original model f: 

yˆ= g(X′,λ) (2) 

where yˆ is the predicted outcome, λ is a locality-aware 

weighting function, and X′ contains the instances. This local 

explanation helps understand how specific features influenced 

the model’s decision for a given sample. 

F. Feature Correlation Analysis 

A correlation heatmap is generated to analyse feature 

interdependencies. When two features show high correlation, 

one could be removed to reduce redundancy. The Pearson 

correlation coefficient between  

features Xi and Xj is defined as: 

http://doi.org/10.35940/ijese.L2617.13111025
http://doi.org/10.35940/ijese.L2617.13111025
http://www.ijese.org/


International Journal of Emerging Science and Engineering (IJESE)  

ISSN: 2319–6378 (Online), Volume-13 Issue-11, October 2025 

                                           29 

Published By: 
Blue Eyes Intelligence Engineering 

and Sciences Publication (BEIESP) 

© Copyright: All rights reserved. 

Retrieval Number:100.1/ijese.L261713111025 
DOI:10.35940/ijese.L2617.13111025 

Journal Website: www.ijese.org 

 

Where X¯
i and X¯

j are the mean values of features Xi and Xj, 

respectively, this analysis ensured that only informative and 

non-redundant features are red, boosting model performance. 

G. Performance Evaluation 

We computed how effectively various machine learning 

models identified Android malware by determining key 

metrics such as accuracy, precision, recall, and F1-score. 

Among the traditional models—Support Vector Machines 

with Linear, RBF, and Polynomial kernels, K-Nearest 

Neighbours, Decision Tree, and Logistic Regression—each 

contributed approximately 11.0% to 11.1% in overall 

performance. 

The Stacking Ensemble method, in particular, is good, as 

reflected in the comparative performance pie chart, achieving 

the highest combined scores across all metrics. This shows its 

ability to merge the strengths of multiple base classifiers and 

enhance a meta-classifier, thereby improving predictive 

accuracy and efficiency. It confirms that different base learner 

models and meta learner models, and their outcomes through 

a final learning step, provide a better malware detection 

strategy. 

The ensemble learning methods demonstrated superior 

consistency and interpretability for essential applications, 

such as Android malware detection. 

V. RESULTS AND DISCUSSION 

This section presents the experimental results and discusses 

the determination of the proposed malware detection 

framework, including performance evaluation, feature 

importance analysis (SHAP and LIME), and explainability. 

Existing research has demonstrated the effectiveness of 

machine learning for detecting Android malware. The 

accuracy of models depends on the choice of features, the 

quality of data, and the complexity of the machine learning 

model. A multi-approach combining both static and dynamic 

features has proved more effective than relying on either type 

alone. 

A. Model Performance Visualisation 

Figure 1 presents a bar chart comparing the accuracy of 

various machine learning models in detecting Android 

malware. The models are Support Vector Machines with 

Linear, RBF, and Polynomial kernels; K-Nearest Neighbours; 

Logistic Regression; Decision Tree; and Random Forest. 

Among these, Random Forest achieved the highest accuracy 

of 0.9978, followed closely by Decision Tree at 0.9922. The 

SVM with an RBF kernel also demonstrated strong 

performance, recording an accuracy of 0.9933. In contrast, 

Logistic Regression showed the lowest accuracy at 0.9877. 

This shows how ensemble-based models, such as Random 

Forest and Decision Tree, outperform individual classifiers in 

malware detection tasks. Handling complex patterns and noise 

is significant, making them more preferable for essential 

applications. 

 

[Fig.1: Comparison of Model Accuracy for Android 

Malware Detection Across Different Classifiers] 

Table I summarizes the classification performance of 

different machine learning models applied to the 

TUANDROMD dataset. The performance of each model is 

computed using four metrics: accuracy, precision, recall, and 

F1-score. The results show that ensemble models (Stacking 

and Voting) outperformed individual classifiers, achieving the 

highest accuracy and quality. 

Table I: Classification Performance of Machine Learning 

Models on Tuandromd dataset 

Model Accuracy Precision Recall F1-Score 
SVM (Linear) 0.9899 0.9873 0.9812 0.9842 
SVM (RBF) 0.9933 0.9876 0.9916 0.9896 
SVM (Polynomial) 0.9888 0.9754 0.9909 0.9829 
KNN 0.9922 0.9909 0.9847 0.9877 
Logistic Regression 0.9877 0.9838 0.9778 0.9807 
Decision Tree 0.9922 0.9951 0.9806 0.9876 
Random Forest 0.9978 0.9986 0.9944 0.9965 
Stacking Ensemble 0.9989 0.9993 0.9972 0.9983 
Voting Ensemble 0.9966 0.9958 0.9937 0.9948 

B. Performance Distribution Across Models 

The performance distribution among the computed 

models—SVM (Linear, RBF, Polynomial), KNN, Logistic 

Regression, Decision Tree, Random Forest, Stacking 

Ensemble, and Voting Ensemble—is remarkably balanced, 

with each contributing roughly 11.0%–11.2% to the overall 

accuracy, precision, recall, and F1-score metrics. This even 

spread shows that no single model overwhelmingly dominates 

across all criteria. However, the Stacking Ensemble slightly 

outpaces the rest at 11.2%, indicating its effectiveness at 

aggregating diverse classifiers to improve generalisation. 

It is observed that each model occupies a roughly equal 

slice, ranging from 11.0% to 11.2%, indicating a balanced 

evaluation across performance metrics. The Stacking 

Ensemble stands out slightly at 11.2%, indicating it edges out 

the others when all metrics are considered together. Random 

Forest and Decision Tree also hold strong positions at 11.2% 

and 11.1%, respectively, while SVM (Polynomial) and KNN 

sit at the lower end with 11.0%. 

This performance spread indicates model optimisation, but 

it also signals diminishing returns from incremental 

improvements within individual models. The Stacking 

Ensemble model achieved the  

highest accuracy, followed by  

the Voting Ensemble, 

demonstrating the advantage 
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of combining multiple classifiers. Random Forest and 

Decision Tree also perform robustly, enabling them to handle 

complex feature interactions and non-linear patterns. 

Meanwhile, models like SVM (Polynomial) and KNN, though 

marginally behind, still maintain strong performance, 

reflecting the total competitiveness of traditional models in 

malware detection contexts. 

i. Analysis of Performance: Random Forest achieved the 

highest accuracy at 99.88%, showing its knack for 

handling malware classification. The Bagging 

Classifier is not far behind, reaching 99.77%, further 

demonstrating the effectiveness of ensemble learning 

methods. XGBoost and CatBoost achieved slightly 

lower accuracies of 99.32% and 99.44%, respectively, 

but still showed strong performance in detecting 

malware. 

These results show that ensemble methods—particularly 

those based on bagging, such as Random Forest and Bagging 

Classifier—outperform boosting-based models in this 

specific dataset. The findings show the quality and strength of 

bagging ensembles when applied to the malware detection 

task. 

C. Feature Importance Analysis 

Figure 2 visualizes the feature importance taken from a 

Random Forest classifier. The bar chart arranges features by 

their calculated importance values, with the most influential 

features along the x-axis and their corresponding feature 

names on the y-axis. This visualisation helps identify which 

features have the most significant impact on the model’s 

decision-making. 

 

 

[Fig.2: SHAP-Based Feature Selection] 

D. LIME Prediction Analysis 

Figure 3 presents the Local Interpretable Model-agnostic 

Explanations (LIME) analysis for a specific benign 

application instance. The model demonstrated 100% 

confidence in its benign classification. Key contributing 

features include the absence of permissions such as 

VIBRATE, KILL BACKGROUND PROCESSES, and 

SYSTEM ALERT WINDOW, all of which had values of 0, 

determining that the app does not access these potentially 

intrusive functionalities. 

Additional permissions, such as RECEIVE SMS and 

ACCESS CACHE FILESYSTEM, are also disabled, further 

supporting the benign classification. While the app makes 

specific API calls such as Ljava/net/URL; →openConnection 

and Landroid/location/LocationManager;  

LIME’s explainability provides a clear rationale for the 

model’s decision-making process, confirming that the absence 

of typical malicious indicators yields a high-confidence 

benign prediction. 

 

 

[Fig.3: LIME Explanation for Malware Prediction – 

Instance 0] 

E. SHAP Explainability Analysis 

To ensure our model isn’t just a mysterious black box, we 

used Shapley Additive Explanations to understand what’s 

driving its decisions and how each feature contributes. SHAP 

gives us the complete clarity of what’s pushing the model to 

flag an app as malware or not. 

Figure 4 shows a SHAP waterfall plot that breaks down 

which features tipped the scales for a specific malware call. 

The heavy features pushing toward a malware label are 

RECEIVE SMS, READ EXTERNAL STORAGE, and 

RECEIVE BOOT COMPLETED—these are the kind of 

permissions malware loves to grab for sneaky access and 

sticking around after a reboot. On the flip side, stuff like 

SYSTEM ALERT WINDOW and KILL BACKGROUND 

PROCESSES, the other way, but their pull is lower. 

SHAP enables a detailed understanding of how different 

app attributes influence the final prediction—whether the 

model flags an app as malicious or safe. As a traditional 

feature importance metric, SHAP assigns a value to each 

feature based on cooperative game theory, ranking them by 

how much they push the prediction toward or away from 

“malware.” 

This kind of insight is crucial. It not only improves trust in 

high-performing models such as Stacking Ensemble and 

Random Forest, but also supports developers and security 

analysts in verifying whether the flagged behaviours actually 

make sense, ensuring that alerts are both actionable and 

interpretable. In most evolving threats, such as Android 

malware in 2025, this transparency is a technical and 

operational requirement. 
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[Fig.4: SHAP Waterfall Plot for Individual Malware 

Classification] 

Figure 5 presents the SHAP feature importance bar chart for 

the stacking ensemble model, highlighting the most influential 

features contributing to malware classification. At the top of 

the list is KILL BACKGROUND PROCESSES, which is 

commonly associated with malicious behaviour aimed at 

interfering with background processes to avoid detection. 

Other essential features are SYSTEM ALERT WINDOW and 

GET TASKS, both of which are frequently exploited by 

malware to manipulate system-level functionalities. 

 

 

[Fig.5: SHAP Feature Importance Bar Chart for 

Stacking Ensemble Model] 

Figure 6 presents the SHAP summary plot, illustrating how 

various features interact and how their SHAP values vary 

across different instances. Features such as ACCESS ALL 

DOWNLOADS and ACCESS CACHE FILESYSTEM exhibit 

significant variability, indicating their context-dependent 

influence on the model’s predictions. These findings support 

the notion that permission-based features are central to 

effective Android malware detection, aligning with previous 

research on malicious application behaviour. 

Collectively, the SHAP visualisations underscore the 

critical role of permissions in identifying threats and validate 

the emphasis placed by the stacking ensemble model. What 

distinguishes SHAP in this context is not only its capability to 

rank features by importance but also its ability to reveal when 

and how a feature contributes. This facilitates a deeper, more 

interpretable understanding of the model’s decision-making 

process, bridging the gap between complex machine learning 

outputs and human-explainable insights. 

 

 

[Fig.6: SHAP Summary Plot Showing Feature 

Interactions] 

The LIME analysis confirms that specific Android 

permissions significantly impact malware classification. The 

ability to interpret model decisions through explainable AI 

techniques improves trust and dependability and enhances the 

consistency of automated malware detection systems. This 

analysis integrates SHAP-based global feature explanations 

with LIME-based local insights to create a more robust 

framework for understandability. The results suggest that 

while LIME gives local feature contributions for an individual 

prediction, SHAP offers a more comprehensive analysis by 

evaluating feature importance at both regional and global 

levels. 

F. SHAP Heatmap Analysis 

i. SHAP Correlation Heatmap: The correlation heatmap 

shown in Figure 7 visualises the pairwise relationships 

between SHAP values of different features, offering 

insights into how these features influence the model’s 

predictions. Positive correlations (highlighted in red) 

indicate features that contribute similarly to malware 

classification, while negative correlations (highlighted 

in blue) reveal inverse relationships in their SHAP 

impacts. 

For instance, features such as ACCESS LOCATION EXTRA 

COMMANDS and AC- 

CESS SHARED DATA display a strong positive correlation, 

indicating they often co-occur in malware samples and jointly 

influence the prediction outcome. Conversely, weak or 

negative correlations may point to independent or opposing 

roles in the model’s decision logic. 

This correlation map is particularly valuable for identifying 

feature dependencies and potential redundancies, enabling 

further optimisation of the feature set used in the malware 

detection model. 
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Fig.7: SHAP Correlation Heatmap Showing Feature 

Relationships] 

ii. SHAP Feature Importance Heatmap: The heatmap 

presented in Figure 8 illustrates SHAP values across 

numerous individual samples, enabling a granular and 

straightforward understanding of feature contributions 

in the malware classification task. Features with 

similarly high SHAP values across samples show 

strong influence on prediction outcomes, whereas 

features with near-zero or neutral values have less 

impact. 

This outcome aids explainability by clearly identifying 

which permissions or behaviours are most responsible for the 

classification decisions made by the stacking ensemble model. 

For example, permissions related to writing to external 

storage or interacting with high-level system APIs result in 

higher SHAP values, indicating their substantial influence in 

flagging malicious behaviour. 

 

[Fig.8: SHAP Feature Importance Heatmap for Stacking 

Ensemble. This Heatmap Illustrates SHAP Values Across 

multiple Samples, Highlighting the Most and Least 

Contributing Features in Malware Detection] 

VI. CONCLUSION 

This study proposed an explainable ensemble-based 

approach for Android malware detection, integrating SHAP 

and LIME to improve model understandability. Using SHAP-

based feature selection, the most influential permissions and 

API calls are identified, thereby improving model 

performance. Among the computed models, the ensemble 

techniques—particularly the Stacking and Voting 

classifiers—have shown superior accuracy and quality 

compared to individual classifiers. The inclusion of 

explainability tools yielded meaningful insights into model 

behaviour, thereby increasing transparency and enabling 

automated cybersecurity systems. 

FUTURE WORK 

Future work will explore expanding the range and volume 

of datasets to improve the process across a broader spectrum 

of malware and variants. More advanced explainability 

techniques, such as DeepSHAP and multi-explainable AI 

frameworks, will be introduced in the future to improve the 

understandability of complex deep learning models. Real-

time deployment strategies for mobile environments will also 

be developed, with a focus on performance, accuracy and 

cyber threats. 
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