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Abstract: Electronic health records (EHRs) provide a substantial
repository of structured and unstructured data, enabling predictive
modelling for medical research and clinical decision-making. The
gathered EHR data is more useful for machine learning; all the
information about a diagnosed patient — such as their lab results,
demographics, treatments, etc. — needs to be compiled, cleaned,
and converted to a standard format for use. To start supervised
learning, split the dataset into two sets: a training set and a test set.
Then a model that works well is chosen, such as decision trees,
logistic regression, random forests, or neural networks. People use
these models to learn about diseases, the risks they pose, and the
best treatments. To assess how well something works, model
evaluation uses metrics such as precision and accuracy. We can
learn more about patient care, achieve better results, and make
medical associations more evidence-based by systematically
applying supervised learning techniques to EHR data.

Keywords: EHR, X-Rays, CT-Scan, MRI, Health, NLP

Nomenclature:

HER: Electronic Health Records
NLP: Natural Language Processing
EMRs: Electronic Medical Records
PCA: Principal Component Analysis
SVMs: Support Vector Machines
GBM: Gradient Boosting Machines

I. INTRODUCTION

Machine learning is transforming how diseases are

detected, treated, and avoided in the medical field. Deep
learning models are helping doctors and other medical
professionals detect diseases such as neurological disorders,
cancer, and heart-related conditions by analysing X-rays,
MRIs, or CT scans [1], if available. Machine learning
algorithms enable early detection of such occurrences by
analysing patterns in the EHR data of the unhealthy patient.
This helps detect conditions such as diabetes and heart
failure. Machine learning [2].
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In personalised medicine, genetic data is used to develop
treatments tailored to each person's genetic makeup.
Healthcare practitioners can utilise machine learning-based
predictive analytics to determine the likelihood that a patient
will become ill or need to return to the hospital. These
prediction models are used to monitor worsening patient
conditions, especially in intensive care units, enabling timely
interventions. In the domain of causal inference, automated
learning methodologies are employed to replicate results,
while randomised controlled trials utilise real-world data.
These estimates are more precise and reduce bias. The
healthcare sector has experienced significant upheaval due to
EHRs, which enable healthcare workers to access patient
information and enhance decision-making using clinical
notes. This study examines the comparative efficiency of
supervised and unsupervised learning algorithms in
predicting patient outcomes utilising electronic health record
data. The objective is to evaluate the survey [3] on supervised
and unsupervised machine learning algorithms within the
healthcare domain. This clarifies how effectively they can be
operated and how healthcare providers might employ them.

II. LITERATURE REVIEW

Electronic Health Records (EHR) [4] are computerised
systems that collect and store patient health information,
including demographics, diagnoses, treatment plans, lab test
results, imaging reports, and clinician notes. There are many
reasons why EHRs are now an essential aspect of healthcare
research. One of those EHRs provides long-term data on how
patients' health changes over time, which helps researchers
examine how diseases emerge, how treatments work, and
how care practices vary. EHR data accurately represent real-
world scenarios, incorporating diverse patient demographics
and clinical practices [5], thereby increasing the
generalisability of healthcare research, unlike controlled
clinical trials. The abundance of comprehensive EHR data
enables the development of personalised therapeutics by
identifying patient-specific trends and customising
interventions [6]. There are already many health records, so
there is less need to obtain new ones. This makes it faster to
gather results. Electronic Health Records (EHRs) are very
helpful for identifying disease patterns, monitoring
epidemics, and assessing how well public health policies are
working. Using EHR data,
machine learning can identify

problems in care delivery,
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refine treatment plans, and develop rules that help patients get
better.

A. Comparative Study and Analysis

The aim of applying machine learning to electronic health
records is to enhance the precision of healthcare choices,
including their forecasts. Machine learning [7] programs can
easily identify what can go wrong, estimate what can happen
next, develop strategies as the best treatment, and monitor
how effectively healthcare interventions are functioning.
Machine learning can help doctors and nurses receive
answers faster and more precisely.

Electronic health records are used by machine learning
algorithms to analyse heart disease [8] and predict the next
stage of a patient's condition, such as whether they will need
to return to the hospital or suffer long-term illness. By
analysing trends in patient histories, demographics, and
clinical data, these models help healthcare providers identify
high-risk individuals and take steps to improve outcomes.

i.  Helps with diagnosis and treatment: An EHR system,
along with machine learning, analyses both structured
and unstructured data, such as imaging reports,
Clinical notes, Case history, diagnostic codes, and
more. This helps doctors make more accurate
diagnoses, yielding more detailed patient information
and enabling them to suggest personalised therapy
options [9].

ii.  Personalised Medicine: Machine learning uses EHR
data, such as clinical information, personal history,
etc., to help determine the best treatments for each
patient's condition and to plan better care [10].

iii.  Clinical Decision Support: By providing real-time
inputs to doctors and medical professionals, data-
driven, machine-learning-based advice on patient care
can be generated. This process creates a clear
environment, as before deciding on issues such as
drug management, patient diagnosis, and treatment

[11].

By analysing EHR data across the desired populations,
machine learning can identify the most predictive patterns
and highlight differences, thereby identifying risk factors.
This information helps formulate targeted public health
initiatives and policies to address health issues affecting the
entire population effectively.

III. MACHINE LEARNING AND ITS METHODS TO
VERIFY THE EHR DATASET

A. Health Research Dependency

Healthcare research depends on EHR databases because
they contain vast amounts of unique and essential information
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that machine learning algorithms need. One of the most
widely used datasets is the MIMIC-III database [12], which
contains anonymised health information from patients in
intensive care. Some others, or standard datasets, come from
private sources, e.g., hospitals and healthcare networks.
Researchers use public datasets like MIMIC-III a lot because
they are easy to obtain, have complex structures, and provide
good documentation. On the other hand, private databases
can only offer healthcare organisations information that is
helpful to them, making it easier to focus on and enhance
localised analysis. It’s mandatory to clean up the raw data
before it can be used for EHR datasets. EHR data often
contains problems such as missing or inconsistent values,
dimension issues, and, worst of all, formatting issues. When
discussing missing data, it needs to be handled with care, as
it is an essential first step because it can cause bias and make
machine learning models less helpful [13]. Some ways to deal
with missing data are mean imputation, direct filling, and
predictive modelling. Outlier removal and detection
techniques are used to maintain data quality. On the other
hand, feature extraction is an essential first step that converts
the raw EHR data into valuable, organised inputs for machine
learning algorithms to process. This process uses natural
language processing (NLP) techniques to convert
unstructured data, such as clinical notes, into structured
properties [14]. A significant time series, with temporal data,
including lab results with timestamps or prescriptions for
medicine, is assembled or displayed in a time-series format
[15]. For machine learning to use categorical data such as
diagnosis codes or patient information, one-hot encoding or
embeddings are used [16]. Principal component analysis
(PCA) and other dimensionality reduction methods can help
you retain the most critical data and make it easier to
understand [17]. EHR datasets need to be cleaned and
organised before they can be used with supervised or
unsupervised machine learning algorithms. This is what
successful pre-processing does. This helps people studying
health data find meaningful patterns and trends.

B. State of the Art: Supervised Learning Methods Using
EHR

Self-supervised learning is when you use labelled data to
teach a machine learning model how to make predictions
[18]. In electronic medical records (EMRs) [16], patient data
(input characteristics) and related clinical outcomes (labels)
are used to make models that predict unknown events or help
people make decisions. Supervised learning techniques
elucidate the relationship between patient data
(demographics, vital signs, lifestyle factors, etc.) and disease
progression. These models make predictions based on past
patterns and correlations.

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Exploring Innovation’


http://doi.org/10.35940/ijese.L2620.13111025
http://doi.org/10.35940/ijese.L2620.13111025
http://www.ijese.org/

OPENaACCESS

International Journal of Emerging Science and Engineering (IJESE)
ISSN: 2319-6378 (Online), Volume-13 Issue-11, October 2025

Table 1: Summarises the Method Used in Supervised Learning Using EHR

Method Applications

Advantages Limitations

Logistic Regression [19] Binary classification (e.g., disease risk)

Simple, interpretable, efficient Assumes linear relationships

Decision Trees [20] Risk stratification, treatment suggestions

Interpretable, handles non-linear

Prone to overfittin
data one to ove g

Random Forests [21] Risk prediction, survival analysis

Less interpretable,

Reduces overfitting, robust to noise .
computationally heavy

GBM (e.g., XGBoost) [22] Outcome prediction, feature importance

Requires tuning, prone to

High accuracy, handles complexity overfitting

SVM [23] Disease subtype classification

Sensitive to noise, slow on

Effective in high dimensions .
extensive data

Neural Networks [24] Readmission prediction, complex tasks

Needs extensive data, less
interpretable

Captures non-linear patterns,
scalable

k-NN Similarity-based predictions

Slow inference, struggles with

Simple, no training needed high dimensions

Naive Bayes [25] Rare disease diagnosis, text classification

Fast, effective for small datasets Assumes feature independence

Linear Regression Continuous outcomes (e.g., length of stay)

Limited to linear problems,

imple, i 1 . L.
Simple, interpretable outlier-sensitive

For instance, predicting diabetes based on a patient's risk
factors exemplifies the theoretical concept of a correlation
between input variables and disease manifestation. On the
other hand, to predict death, you need to know how to read
patterns of decline in the electronic health record, such as
worsening vital signs or lab test results. Another way that
machine learning works is through logistic regression, which
uses probabilistic modelling to guess binary outcomes. It
assumes a linear relationship between the predictors and the
logarithm of the probability of the dependent variable. This
strategy uses a linear combination of risk factors to estimate
the likelihood that a person will become ill. Decision trees
and random forests use recursive partitioning to split a dataset
into smaller, more similar groups. Ensemble learning with
random forests uses many trees, which makes it easier to
predict outcomes by how patient data is linked together in a
hierarchy.

The gradient boosting machine learning method works by
ensuring that errors occur in a specific order. The model
makes fewer mistakes when predicting complex patterns by
repeatedly combining weak learners. This is especially
helpful for grouping patients by risk. Artificial neurons that
mimic neurons in the human brain form the basis of neural
networks. They adjust the weights via backpropagation to
learn non-linear relationships between inputs and outputs.
This makes them suitable for modelling time-based electronic
health record data and predicting patient outcomes.

IV. WORKFLOW MODEL OF EHR USING
SUPERVISED LEARNING

When you use Electronic Health Record (EHR) data for
supervised learning in machine learning, you have to follow
a set of steps to change raw healthcare data into useful
information. As shown in Figure 1, the first step is to collect
and combine data. There are many sources of EHR data,
including clinical reports, images, lab results, and more. It
contains information about the patient, their medical history,
diagnosis, treatment plans, medication records, and
outcomes. It's essential to put all these records together in a
way that makes sense and is easy to understand so that
machine learning programs can use them consistently. Data
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preprocessing and feature engineering are essential steps
performed on the raw data. This is when the raw data is
cleaned up for analysis. Data cleaning involves handling
issues such as missing values, out-of-range values, and values
that don't make sense. This could mean adding missing values
or removing rows and columns with too many empty cells.
One-hot encoding and label encoding are two methods for
converting categorical data, such as medications and
diagnoses, into numerical values. After that, the numerical
data is standardised (normalised) so that all features are on
the same scale. This is important for the model to work better.
Feature engineering is the process of adding new features to
a model to improve its predictive accuracy. For instance,
using temporal features, such as the patient's age, or
combining data, such as average test results over time, can
help you learn more. The dataset is split into two parts:
training and testing. This is the model that starts learning.
Usually, before it starts, it is divided into the specified ratio,
80-20 or 70-30. We can see that stratified sampling is also
often used, ensuring that distributions of essential variables,
such as outcomes or early disease diagnoses, are the same
across all subgroups. The training set builds the model, and
the test set evaluates how well it performs on new data.

Choosing the right supervised learning model is a critical
decision that depends on the data and the situation. Logistic
regression for binary classification, decision trees and
random forests for handling complex, non-linear interactions,
and support vector machines (SVMs) for high-dimensional
datasets are among the most common approaches for
interpreting EHR data. Gradient boosting machines (GBM),
such as XGBoost, are well-liked because they can make
accurate predictions. On the other hand, neural networks are
better at analysing large datasets with complex patterns. K-
nearest neighbours (k-NN) work well for simple applications
that are based on similarity. The feedback loop is also vital
for verifying the authenticity of the desired data.
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[Fig.1: Schematic Diagram of the Electronic Health
Record in the Machine Learning Model]

Once you pick a model, you utilise the training data to teach
it. For example, neural networks employ backpropagation to
learn, whereas tree-based models use boosting. These
techniques help improve parameter settings and reduce

mistakes.
. : Expen Preference A
Patient Real Time
10T Health Data Patient Preference ™
Store the Health
@_@ Data in Suitable
ﬁj— ‘! oo Fq Health Repository
Convert the data Preference
into Blocks Recommendation
System

Fig 2 10T and Blockchain-Based HER [26]

[Fig.2: Shows a Three-Step Process for Handling Health
Data]

A. Data Acquisition and Transformation: Patient Real-
Time IoT Health Data is collected safely. After that, the
data is turned into blocks. This enables the use of
blockchain technology for security and integrity.

B. Preference-Based Recommendation: The data blocks
go into a system that makes recommendations based on
preferences. This system combines Expert Preference and
Patient Preference to determine the best next step, such as
choosing the correct repository.

C. Data Storage: The last step is to store the health data in a
secure repository, using cloud or decentralised storage to
keep records safe and easily accessible over time.

The goal of this process is to safely, personally, and
efficiently manage patient health data collected by IoT
devices.

V. CONCLUSION

Hence, in the closing note, it can be stated that the electronic
health records (EHRs) contain a feature of structured as well
as unstructured data, and this data can be used for practical
predictive modelling purposes, making them helpful in the
field of medical research while figuring out how best to
provide for patients. The EHR technology pulls together and
cleans the data, making several changes to patient data, likely
all the gathered information, including clinical tests, reports,
and other required information.
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The data must undergo a preprocessing step before

utilisation begins, which includes filling in missing values,
normalising values, and encoding categorical variables. The
first step in using supervised learning on EHR data is to split
the data into two sets: one for training and the other for
testing. After that, a model working on the problem is chosen.
There are several ways to tackle the issue, including
identifying which diseases exist, estimating risks, and
providing therapies. Some of these are logistic regression,
decision trees, random forests, and neural networks. After
training, the model is tested to evaluate its predictive
performance.
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