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Abstract: Pneumonia is an acute respiratory infection of the
lung that must be identified at its early stages to keep mortality
rates to a minimum, especially in Wireless Body Area Networks
(WBAN). Traditional diagnosing methods, i.e., manual
interpretation of X-rays, are time-consuming and prone to human
errors. The existing models are plagued by generalizability issues,
dataset imbalance, and a high false-detection rate, which
complicate pneumonia classification. To address these
challenges, we propose a CNN-based model that leverages
transfer learning to improve detection accuracy. The model
consists of three convolutional layers, dropout regularisation, the
Adam optimiser, and robust data augmentation methods to learn
improved features and prevent overfitting. We trained the model
on the Chest X-ray dataset (NORMAL vs. PNEUMONIA)
containing 5,863 images. We achieved enhanced accuracy across
five state-of-the-art models in our experiments, with higher
precision, recall, and F1 Scores. Additionally, the model
generalises well by leveraging diverse preprocessing techniques,
including image resizing, normalisation, and various forms of
augmentation. Compared with existing architectures such as
VGG-16, ResNet50, and InceptionV3, the model demonstrated
improved robustness and classification accuracy. This research
facilitates the development of a solid deep learning framework for
detecting pneumonia to be incorporated into real-time medical
software.
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AP-Anterior-Posterior
PA-Posterior-Anterior

MLP: Multilayer Perceptron
k-NN: k-Nearest Neighbours
SMOTE: Synthetic Minority Over-Sampling Technique
CXR: Chest X-ray

RNNSs: Recurrent Neural Networks
PA: Posterior-Anterior

MDR: Multidrug-resistant

RBPs: Receptor-Binding Proteins
ANN: Artificial Neural Network

I. INTRODUCTION

Deep Learning (DL) is a branch of Artificial Intelligence

(AI) that uses many-layered neural networks to learn from
large datasets and identify patterns. DL has advanced many
fields, including medical imaging, where it has improved
diagnoses. DL models of medical imaging evaluate complex
patterns seen on medical scans, free of human error, and
contribute to disease diagnosis. An example of deep learning
in medicine is the detection of pneumonia from chest X-ray
images. Pneumonia (fig. 2) is a lung infection that occurs in
the air sacs and can lead to more serious complications if left
undiagnosed for a long time. Diagnosing pneumonia using
traditional methods is confrontational and relies heavily on
the viewer's expertise. In this model, humans may simply
become tired or make a mistake, and that mistake can even
be life-or-death for a patient.

My

[Fig.1: Normal]

DL models simplify this step and should significantly
increase hospital efficiency.
Using pre-trained models and
convolutional neural
networks (CNNs),
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researchers have developed a systematic approach to obtain

highly efficient algorithms for pneumonia detection,

achieving high recall and very accurate results while

minimising errors. In addition to pneumonia detection, other

applications of DL in medical imaging include tumour

classification, organ segmentation, and disease classification.
E '

[Fig.2: Pneumonia]

Progression. Architectures such as VGG-16, ResNet, and
EfficientNet have been well-suited for detecting and
identifying abnormalities in medical images, making deep
learning an indispensable tool in contemporary medical
research.

A. Deep Learning Models and Architectural Overview

i. Deep Learning Models in Pneumonia Detection:
Pneumonia diagnosis through deep learning models
usually involves Convolutional Neural Networks
(CNNs) that are geared to work with imaging data.
CNNss learn spatial hierarchies of features from X-ray
images, allowing the models to learn features
conducive to pneumonia classification. Some widely
used architectures that are often used for pneumonia
detection:

= Numerous convolutional and pooling layers
within the spoke CNN architectures.

= Pre-trained models such as VGG-16, ResNet-50,
and InceptionV3 transfer learned features from
big data to medical image tasks.

= Hybrid models that combine CNNs with
Recurrent Neural Networks (RNNs) to learn
spatial and sequential patterns from image data.

[Fig.3: Model Architecture]

B. Model Architecture Diagram

i. Dataset Description: The dataset employed for the
detection of pneumonia is made up of chest X-ray
images, mainly collected from publicly available
datasets. The datasets include X-rays from anterior-
posterior (AP) and posterior-anterior (PA) views, and
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the X-ray images are labelled as NORMAL (figure 1)
or PNEUMONIA (figure 2). The dataset is usually
split into training (80%) and validation (20%) to train
and evaluate model performance.

Start
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[Figure 4:]

Preprocessing Techniques: To improve the model
performance,

preprocessing was
necessary. The
following methods
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were used:
= Image Rescaling: All images were resized to a
standard 150x150 pixel output.
* Normalization: Pixel values were normalized
using a range of [0,1], to stabilize training.
= Data Augmentation: To prevent overfitting, the
following augmentations were used.

iii. Optimization Techniques: Optimization techniques
can improve model accuracy and training speed. The
following methods were taken:

* Loss Function: Since this is a binary classification,
the Binary Cross-Entropy loss has been employed.

* Dropout Regularization (0.5): To prevent
overfitting, dropout will deactivate 50% of the
neurons randomly.

= Early Stopping: Train until the validation loss is
no longer decreasing for 5 epochs in a row.

C. Problem Statement Problems from Literature

Even though deep learning technology has improved
pneumonia diagnostic systems, there are still issues,
including:

i. High False Positive Rates: Some models are unable to
differentiate normal lungs from pneumonia, which is a
problem because of feature overlap.

ii. Data Imbalance: In public datasets, there are more
instances of pneumonia than typical instances,
resulting in biased models.

iii. Domain Shift: When X-rays are taken in different
situations (e.g., from other hospitals or different X-ray
machines), this can limit the generalizability of
models.

iv. Limited Interpretability: CNNs are "black boxes,"
which makes their decision-making processes difficult
to interpret.

II. LITERATURE SURVEY

This research focuses on diagnosing pneumonia from chest
X-ray images using deep learning methods to improve
accuracy and speed. We use publicly available datasets and
explore pre-trained models, custom architectures, and
ensemble models to improve pneumonia detection. Some
limitations of the research included a lack of detail in the
bespoke architectures, skewed data due to an imbalanced
dataset, and a limited focus on deep learning in context.
Additionally, the findings are questioned for reliability due
to small-scale datasets. This highlights the importance of
using balanced datasets, describing models in greater detail,
and including a broader educational context to improve the
reliability and reproducibility of deep learning for
pneumonia detection [1].

The issue addressed is the inability to precisely detect
pneumonia on chest X-ray (CXR) images, due to image
quality and anatomical variations. Traditional methods rely
on radiologists' subjective interpretations, leading to
variability in diagnoses. This paper investigates the use of a
deep learning model designed explicitly for pneumonia
detection, applying advanced techniques to improve
accuracy and efficiency [2].

The research addresses the detection of pneumonia from
chest X-rays in the context of treating pneumonia,

Retrieval Number:100.1/ijese.L262213121125
DOI:10.35940/ijese.1.2622.13111025
Journal Website: www.ijese.org

International Journal of Emerging Science and Engineering (IJESE)
ISSN: 2319-6378 (Online), Volume-13 Issue-11, October 2025

particularly in settings with limited resources. It uses a deep
learning model rooted in the VGG-16 architecture for
classification and prediction. Despite being very accurate, it
depends on the quality and breadth of the dataset, which may
affect its generalizability. Additionally, the model's
complexity may impose heavy computational requirements,
limiting its applicability in low-resource contexts. Terrific
datasets and models optimized for real-world applications
are needed [3].

Solves the problem of effective pneumonia detection in
chest X-rays using a deep convolutional neural network that
integrates EfficientNetBO and DenseNetl21, backed by
attention mechanisms. The network takes 224 x 224 x 3
preprocessed input images. It has the caveat of overexposure
to attention mechanisms, at the risk of ‘attention
redundancy,' when attention becomes too narrowly focused
on localised features at the expense of including larger
contextual information, which is essential for effective
detection [4].

Detecting and classifying pneumonia and COVID-19 on
chest X-rays is challenging because the signs of congestion
are similar. The paradigm uses soft computing and deep
learning, specifically an LSTM-based RNN, for
classification. Disadvantages include high computational
complexity, leading to longer training times and reduced
robustness on larger datasets. Detection accuracy may be
affected when image quality varies and noise is present [5].

This research is a response to the occurrence of child abuse
among children under 5 years of age in Samarinda,
Indonesia. An analytic survey was used, employing a case-
control design with 21 pneumonia cases and 21 controls.
Limitations include a small sample size, limited
generalizability, and self-reported data on a history of
disease and exposure to smoke, which could introduce
confounding Dbiases. Confounding factors, such as
socioeconomic status and access to healthcare, were also
omitted from the analysis, thereby reducing the
comprehensiveness of the research on risk factors [6].

The issue this research addresses is the difficulty of
detecting pneumonia on chest X-rays, which has
traditionally relied on specialised pulmonologists and is
time-consuming and specialist-driven. The process uses an
automated pneumonia detection system based on deep
learning, specifically a fine-tuned MobileNetV2 model. The
model uses a hybrid loss function that combines focal and
cross-entropy losses to address class imbalance in the dataset
effectively. The work 1is not perfect. A potential
disadvantage is that although the approach achieves high
accuracy and AUC values, it may still be sensitive to the
quality and diversity of the training dataset, which comprises
5,863 images and a high-class imbalance (4,280 pneumonia
images and 1,583 normal images). Furthermore, random
oversampling of the minority class can lead to overfitting, as
the model learns to recognise unique instances rather than
typical patterns. Further, the study does not account for
variability in X-ray imaging technology or patient
populations, which can affect the model's generalizability in
real-world settings [7].

The concern discussed in
this study is the classification
of bilingual imaging reports
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of pneumonia, which is problematic because clinical reports
were written in both Korean and English. The approach
adopted a new classification algorithm that incorporated
substring and Kor2Eng embeddings into an attention-based
Bi-LSTM neural network (LSTM-Attention) to process and
classify bilingual reports effectively. Nevertheless, the study
has limitations, such as reliance on reports from a single
tertiary centre, which in all likelihood could have biased the
model's accuracy for practical application in other reporting
contexts. This suggests re-validation across different
datasets, in an exploratory manner beyond the limitations of
this study, to test their robustness and generalizability.
Secondly, not being able to compare it with other high-
performing models directly limits the modelling examination
of its impact. These highlight the need for more intensive
validation and research to support systematic comparisons
and improve the models' generalizability [8].

The problem addressed in this study is multidrug-resistant
(MDR) Klebsiella pneumoniae, which is challenging to treat
due to its polymicrobial nature and a capsule that impairs the
efficacy of phage therapy. The method is phage isolation and
characterisation of serotypes with reference strains, and
focuses on receptor-binding proteins (RBPs) to assess
specificity and therapeutic effectiveness. The limitations
include limited availability of clinical isolates of K.
pneumoniae, which may not capture its strain diversity, and
reliance on quantitative spot tests to assess phage activity,
which can introduce variability in test outcomes. Clinical
isolates also exhibit stronger to moderate phage resistance
mechanisms than reference strains, ultimately limiting the
results of broad-range phage cocktails. These challenges
illustrate the need for more representative studies and
improved testing mechanisms [9].

This research addresses the challenge of accurately
diagnosing pneumonia from chest x-ray images while
operating in the context of limited medical training datasets.
The method uses an attention-aware CNN with channel and
spatial attention modules to improve feature extraction and
classification accuracy. Limitations include reliance on
publicly available datasets that may not reflect real cases,
and the potential for overfitting despite data augmentation.
Additionally, increased complexity can result in slower
training and higher computational costs, limiting deployment
for wider clinical use. All these considerations underscore
the need for robust datasets and optimised models for actual
implementation [10].

The issue addressed in this paper is finding an effective
way to classify pneumonia from chest X-ray (CXR) images,
particularly when using a small dataset. Standard
convolutional neural networks (CNNs) often do not perform
well on small datasets, making it difficult for them to
classify pneumonia accurately. This study devised a new
methodology that used transfer learning utilizing pre-trained
models to improve classification performance [11].

The challenge addressed by this research is the need for
accurate multi-class classification of chest X-ray (CXR)
images for the detection of COVID-19 and other types of
pneumonia, as most current approaches rely solely on binary
classification. We have proposed a transfer learning
approach that leverages a pre-trained AlexNet model for
doing two-way, three-way, and four-way CXR image
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classifications. A significant drawback of this work is its
reliance on a small dataset of patients with COVID-19
pneumonia, which diminishes generalizability and increases
the risk of overfitting. Even if the model is found to be
accurate for this, a limited dataset can never reliably
represent an entire population. Future work is planned to
address this by obtaining larger datasets and examining
deeper neural networks to improve performance and
reliability [12].

This work addresses the inadequate multi-class
classification of chest X-ray (CXR) images for COVID-19
and various types of pneumonia, as most prior work focuses
on binary classification and does not explicitly address the
multi-class case. The method uses a transfer learning
technique with a pretrained AlexNet model trained to
perform multi-class classification of CXR images into no
pneumonia and pneumonia of two, three, or four types. The
primary limitation is the small COVID-19 pneumonia
dataset, which limits generalizability and could lead to
overfitting. The model would then struggle to be deployed
across various populations, and high precision would not
accurately reflect the complexities of real-world scenarios.
Future work should explore larger datasets and potentially
deeper models to make it more robust and functional [13].

The issue being investigated is the prompt diagnosis of
pneumonia, a severe respiratory infection that can be life-
threatening, especially in children aged under five years.
Access to standard diagnostic techniques is limited in many
regions, particularly in underdeveloped and developing
countries, making computer-aided systems essential for
diagnostic improvement. The method employs a
Convolutional Neural Network (CNN) ensemble model of
varied kernel sizes (3 x 3,5 x 5, or 7 X 7) and combines the
outputs via weighted averages to yield maximized diagnostic
functionality. The model ultimately produces a high recall
but comparatively lower accuracy and precision. These
reasons have been attributed to a small dataset and to
possible overfitting. To improve applicability and
performance, larger, more diverse datasets, as well as
alternate X-ray viewpoints, are considered reasonable [14].

This paper addresses the concern of high child mortality
rates due to pneumonia, coupled with difficulty in diagnosis
and expensive diagnostic tests, especially in developing
countries. In this study, we propose a computer-assisted
detection system for an accurate and efficient diagnosis of
pediatric pneumonia using chest X-ray images. The
proposed method is a stacked ensemble learning approach
using the Xception model for feature extraction, Kernel PCA
for dimension reduction, and a stacking classifier comprising
Nu-SVC, an XGB classifier, and Logistic Regression for
prediction. Limitations include reliance on a single
architecture (Xception), which may be less generalizable to
the data, and overfitting due to a training dataset with limited
diversity. Furthermore, computationally intensive models
that require significant training time may limit their real-time
clinical use [15].

This research paper deals with the problem of accurately
detecting pneumonia in chest X-

images—an essential
in timely diagnosis

step
and
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treatment within radiology evaluations—can be particularly
challenging. The procedure employs the QCSA network
(Quaternion Channel-Spatial Attention Network), which
integrates a quaternion residual network with spatial and
channel attention mechanisms applied to feature maps to
achieve the best classification performance. The attention
mechanism could improve accuracy; however, it will likely
impose a higher computational load, limiting its use in real-
time clinical applications. Secondly, training on a fixed
Kaggle dataset limits the model's robustness in real-world or
other datasets. These limitations also acknowledge the need
for further optimization and testing with larger datasets [16].

This research focuses on the three-class classification of
chest X-ray images into bacterial pneumonia, viral
pneumonia, and healthy lungs —an imperative step toward
accurate diagnosis and treatment. The combination of an
artificial neural network (ANN) with pre-trained
convolutional neural network (CNN) architectures—ResNet,
Inception, and MobileNet—as the feature extractor is used to
enhance classification performance. However, this research
incurs significant computational costs due to large images,
which may hinder its deployment in a meaningful real-world
framework. In addition, experiments with regularisation
techniques such as dropout and batch normalisation showed
that overfitting could not be entirely avoided, potentially
affecting the models' generalizability and robustness. These
limitations indicate a need for improved optimization and
efficacy [17].

This paper addresses the need for robust methods to
diagnose pneumonia and assess severity from CXR images,
particularly in the context of COVID-19, where effective
computational methods would be helpful to medical
personnel. The technique, Vision Transformer Regressor
Infection Prediction (ViTReg-IP), uses a vision transformer
architecture with a regression head to assess disease severity.
One limitation is that the ability to augment data is
constrained because there is no a priori-annotated data with
separate left- and right-lung scores. Also, reliance on a
single dataset will limit the model's generalizability across
clinical settings, underscoring the need for larger, well-
annotated datasets to improve performance and utility [18].

The problem addressed in this work is the difficulty of
accurately diagnosing pneumonia from Chest X-ray images,
due to the imbalance in the class distribution of typical and
pneumonia cases in the training data. This work utilises
Multilayer Perceptron (MLP) and k-Nearest Neighbours (k-
NN) machine learning algorithms to classify images using
textural features extracted from preprocessed images via
techniques such as Histogram Equalisation and Otsu
thresholding. While this work has merit, a limitation is the
lack of adequate photos in both the regular and pneumonia
classes, which may affect classification performance. The
class imbalance issue is addressed in this work through

The wuse of the Synthetic Minority Over-Sampling
Technique (SMOTE) to create synthetic training samples,
applied only to the imbalanced data set and descriptors,
biases the imbalance in the original class dataset, thereby
limiting optimal classification performance [19].

The issue explored in this paper is the accurate diagnosis
of pneumonia from chest X-ray (CXR) images, especially
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the identification of subtle pathological lung textures such as
ground-glass opacification, which is difficult for traditional
algorithms and some deep learning techniques. To address
these issues, we develop a new method for pneumonia
classification called PneuNet, a Vision Transformer (ViT)-
based model with a ResNet18 feature-learning backbone that
utilises multi-head attention over channel patches to enhance
pneumonia classification. However, while this method is
optimised for pneumonia classification, it performs worse
than alternative CNN-based models (e.g., LDC-NET) for
multi-category classification, due to the more limited view
of lung texture in CXR compared to CT. Additionally,
reliance on ResNetl8 as the backbone limits the model's
ability to capture deeper latent patterns in the
features/residuals, and the model's black-box nature limits its
interpretability, which is problematic for clinical utility [20].

III. METHODOLOGY

Proposed PulmoScan: A Deep Learning Framework for
Pneumonia Detection using X-Ray Images. The algorithm
uses a custom Convolutional Neural Network (CNN) to
extract features from images and automatically classify
them. The model is trained with data augmentation to
improve generalisation and reduce overfitting. The algorithm
contains two main modules: Data Preprocessing and Model
Training and Evaluation. The preprocessing module contains
tasks for image resizing, normalization, and augmentation,
while the training module contains tasks for building,
training, and evaluating the CNN model. The model is
optimised with the Adam optimiser and evaluated using
metrics such as accuracy, precision, recall, and F1-score.
The algorithm is divided into two main modules:

= Data Preprocessing Module
*  Model Training & Evaluation Module

A. Module 1: Data Preprocessing

This module focuses on preparing the dataset for training.
The steps include resizing images, normalising pixel values,
and applying data augmentation techniques to improve the
model's generalisation to unseen data.

i. Image Resizing and Normalization:

= All images are resized to 150x150 pixels to ensure
uniformity.
= Pixel values are normalized to the range [0, 1] by
dividing by 255 for faster convergence during
training.
ii. Data Augmentation:

Various augmentation techniques are applied to increase
dataset diversity and prevent overfitting:

= Rotation: Up to 20 degrees.

= Width and Height Shifting: Up to 20% of the
image size.

= Shearing and Zooming: Up to 20%.

» Horizontal Flipping.

= Missing Pixels Handling: Using the ’nearest’
method.

iii. Train-Validation Split:
The dataset is split into

training (80%) and validation
(20%) subsets using Image
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Data Generator. Two generators are defined:

= Train_Generator: For training data, shuffling is
enabled.
Val_Generator: For validation data, shuffling is
disabled.

B. Module 2: Model Training & Evaluation

This module involves designing, training, and evaluating a
custom CNN model using the preprocessed data.

i.  Custom Deep Learning Model:

The CNN model consists of the following layers:

= Convolutional Layers: Three convolutional layers
with 16, 32, and 64 filters, respectively, using 3x3
kernels with ReLU activation for feature extraction.
Max Pooling Layers: Applied after each
convolutional layer to reduce spatial dimensions
while retaining essential features.
Flatten Layer: Converts the 2D feature maps into
a 1D vector.
Dense Layer: A fully connected layer with 128
units using ReLU activation for complex pattern
learning.
Dropout Layer: A dropout rate of 0.5 is used to
prevent overfitting.
Output Layer: A single unit with a sigmoid

activation function for binary classification
(Normal vs. Pneumonia).
ii.  Mathematical Description:
Convolution Operation:
= B
vli 1= xli+m,j+n]-wlm,n] (n
m,n
Max Pooling:
vii. j1 = max x[i +m, j + n] (2
m,nef
Sigmoid Activation:
1
= 3
o(z) lees (3)
iii.  Model Evaluation:
The model is evaluated using the Confusion Matrix and
Classification Report.
=  Metrics: Accuracy, Precision, Recall, and F1-
Score.
=  Performance metrics are visualised through line
plots and bar graphs.
IV. RESULTS
Accuracy Over Epochs
1.00 4 — Traan ACCuracy
Vvalidation Accuracy
095 4
g 0.90 4 / l‘ N
Zoes{ / / /
o7rs
o0 25 S0 7.5 10.0 125 15.0 7.5
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[Fig.5: Accuracy Over Epochs]
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[Fig.6: Loss Over Epochs]

A. Optimization Techniques:

Optimizer: Adam Optimizer combines AdaGrad
and RMSProp benefits with adaptive learning rates.
Loss Function: Binary Cross-Entropy Loss, suitable
for binary classification tasks.

B. Overfitting & Underfitting:

i. Overfitting Mitigation:
= Adding a dropout layer with a rate of 0.5.

Applying data augmentation to enhance dataset

diversity.

Limiting training epochs to 20. Underfitting:

No significant underfitting was observed, as the

model achieved high accuracy on both training and

validation datasets.

Model Performance Metrics

0.912

0.908

0.908 0.909

0z

0.0

accuracy precision recall fl-score

[Fig.7: Model Performance Metrics]

V. RESULT ANALYSIS
A. Custom Model (Simple CNN Model)

Precision, recall, and Fl-score are higher for detecting
pneumonia (0.93, 0.94, 0.93) than typical cases (0.81, 0.81,
0.81). The training accuracy fluctuates more than the
validation accuracy, indicating potential overfitting. The loss
curves are irregular but generally decreasing, suggesting the
model is learning despite instability. Improving training
stability and regularization techniques may enhance
performance and re- duce overfitting.

Table I Custom Model Performance

Class Precision | Recall | F1-Score | Support
Normal 0.81 0.81 0.81 268
Pneumonia 0.93 0.94 0.93 775

Accuracy: 0.90
Macro Avg: 0.87, 0.87, 0.87
Weighted Avg: 0.90, 0.90, 0.90
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B. Vggl16 Model

The model is VGGI16, achieving 94% accuracy in
pneumonia detection. Pneumonia detection metrics are high:
precision (0.97), recall (0.95), and F1-score (0.96). Training
accuracy shows instability, suggesting overfitting, while
validation accuracy is smoother but lower. The training loss
is decreasing, but the validation loss shows fluctuations,
indicating learning issues or data imbalance. Improving
generalisation via data augmentation, dropout, or fine-tuning
the learning rate may help stabilise validation performance.

Table II: VGG16 Model Performance

Class Precision | Recall | F1-Score | Support
Normal 0.87 0.90 0.89 268
Pneumonia 0.97 0.95 0.96 775
Accuracy: 0.94
Macro Avg: 0.92, 0.93, 0.92
Weighted Avg: 0.94, 0.94, 0.94
VGG16 Accuracy
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[Fig.10: VGG16 Accuracy]

Retrieval Number:100.1/ijese.L262213121125
DOI:10.35940/ijese.1.2622.13111025
Journal Website: www.ijese.org

21

International Journal of Emerging Science and Engineering (IJESE)
ISSN: 2319-6378 (Online), Volume-13 Issue-11, October 2025

VGG16 Loss
= Train Loss

0.30 Validation Loss

0.25
& 0.20
§

0.15

0.10 4

0.05 4

0 2 4 6 8
Epochs
[Fig.11: VGG16 Loss]

C. Mobilenet

The model is MobileNet, achieving 96% accuracy in
pneumonia detection. Both classes show high metrics:
precision (0.93-0.97), recall (0.92-0.98), and F1-score (0.96-
0.97). Training accuracy is unstable, but validation accuracy
shows a steady wupward trend, indicating good
generalization. To improve stability, tried fine-tuning
learning rates and applying dropout.

Table II1 MobileNet Model Performance

Class Precision | Recall | F1-Score | Support
Normal 0.93 0.92 0.93 268
Pneumonia 0.97 0.98 0.97 775
Accuracy: 0.96
Macro Avg: 0.95, 0.95, 0.95
Weighted Avg: 0.96, 0.96, 0.96
MobileNet Accuracy
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[Fig.12: MobileNet Accuracy]
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[Fig.14: MobileNet Loss]
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D. Resnet
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E. Inceptionnet

The model is InceptionV3, achieving high recall for
Normal (0.97) but lower precision (0.68), yielding a
moderate F1 score (0.80). Pneumonia detection has excellent
precision (0.99) but lower recall (0.84). Accuracy is decent
(0.87) but not ideal. Training accuracy is unstable, and
validation accuracy is relatively steady. The training loss
decreases initially, then rises, indicating overfitting.
Validation loss remains flat, further confirming this issue.

F. Improvements:

i. Reduce model complexity or use regularisation.

ii. Increase training data through augmentation.

iii. Apply techniques like dropout or early stopping.

The model is ResNet50, struggling with generalization.
Training accuracy fluctuates widely, while validation
accuracy remains flat (0.7), indicating overfitting. Training
loss decreases, but validation loss remains nearly constant,
confirming poor learning. To improve performance, consider
reducing model complexity, using data augmentation, tuning
hyperparameters, or applying techniques such as dropout
and batch normalisation.

Table IV Inceptionv3 Model Performance

Class Precision Recall F1-Score Support
Normal 0.68 0.97 0.8 268
Pneumonia 0.99 0.84 0.91 775

Accuracy: 0.87
Macro Avg: 0.83,0.91, 0.85
Weighted Avg: 0.91, 0.87, 0.88
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VI. CONCLUSION

We propose this method to improve pneumonia detection
accuracy and reduce classification problems. To counter
these problems, we introduce 2 crucial modules: Data
Preprocessing and Model Training and Evaluation. The
Preprocessing module produces uniform images by resizing,
normalising, and augmenting them. The Training and
Evaluation module consists of the model architecture,
including convolutional layers, dropout regularisation, and
the Adam optimiser. In summary, the modules reinforce
model generalization and aim to reduce problems such as
overfitting. The proposed algorithm outperforms existing
architectures in terms of accuracy, precision, recall, and F1-
score, demonstrating strong real-time performance for
pneumonia detection.
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