
International Journal of Emerging Science and Engineering (IJESE) 

ISSN: 2319–6378 (Online), Volume-13 Issue-3, February 2025 

 32 

Published By: 

Blue Eyes Intelligence Engineering 
and Sciences Publication (BEIESP) 

© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijese.E74300111523 

DOI: 10.35940/ijese.E7430.13030225 

Journal Website: www.ijese.org 

An End-to-End Pipeline for Medical Image 

Enhancement Using GANs Architecture

Jaskaran Singh, Tirth Patel, Apoorv Dankar 

Abstract: Medical Imaging is used by radiologists for diagnostic 

purposes and to check for abnormalities, and these imaging 

techniques involve radiation. Overexposure to radiation can harm 

the human body, and using less radiation gives us a noisy output. 

Hence, radiologists find it difficult as there is a trade-off between 

the amount of radiation that can be used and the quality of the 

image. Moreover, noise in medical images can occur due to 

fluctuation of photons, a reflection of radiations from the subject, 

or due to instrumental vibration or faults. The proposed approach 

is a pipeline that starts with denoising using GANs architecture, in 

which two models have been trained, one for handling all kinds of 

noise and the second one specifically for Poisson noise. Further, 

post-processing methods like single-shot HDR using Retinex 

Filtering and Edge Enhancement using unsharp masking have 

been done to get a structurally more similar and enhanced 

denoised image. 

Keywords: Computational Imaging, Medical Imaging, 

Denoising, Generative Adversarial Networks, HDR, Edge 

Enhancement  

I. INTRODUCTION

With the advancement in deep neural networks, the use

and applications of computer vision have risen quite rapidly 

in multiple domains ranging from robotics, military, and 

autonomous vehicles to medical image processing. The 

medical computer vision field is developing quickly as this 

domain uses the theoretical aspects of computational 

imaging methods and applies them to real-world problems 

that directly help the populace. This motivated us to use the 

techniques to solve such problems.  

Most medical imaging techniques, such as X-rays, CT 

scans, etc., rely on radiation. We need better-quality images 

so doctors and physicians can accurately and efficiently 

extract useful information about the underlying concern from 

these images. To get a better image with less noise, we need 

to expose the patients to high doses of radiation that can 

adversely affect the human body [1]. It is a constant struggle 

for radiographers to find a balanced exposure so that the 

Manuscript received on 30 December 2022 | First Revised 

Manuscript received on 29 December 2024 | Second Revised 

Manuscript received on 23 January 2025 | Manuscript Accepted 

on 15 February 2025 | Manuscript published on 28 February 

2025. 
Correspondence Author(s) 

Jaskaran Singh*, Department of Computer Science Engineering, 

University of Toronto. Email ID: jaskaransingh@mail.utoronto.ca, ORCID 
ID: 0009-0005-5523-1062 

Tirth Patel, Department of Computer Science Engineering, University of 

Toronto. Email ID: tirths.patel@mail.utoronto.ca.  ORCID ID: 0009-0001-
3988-2878 

Apoorv Dankar, Department of Computer Science Engineering, 

University of Toronto. Email ID: apoorv.dankar@mail.utoronto.ca 

© The Authors. Published by Blue Eyes Intelligence Engineering and 

Sciences Publication (BEIESP). This is an open access article under the 
CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/ 

image produced is not noisy. -rays are also very susceptible 

to noise because of uneven scattering of photons which 

causes the receptors to receive different amounts of photons 

which causes Poisson noise in the images [2]. Apart from 

this, how the film is processed and handled is another way of 

introducing noise into the final image. On the other hand, 

speckle noise manifests as a granular look in an image. It is 

caused by random variations in the return signal from an 

object that isn’t discovered to be larger than a single image 

processing component [3]. We saw this as an opportunity to 

develop a pipeline that, given a noisy X-ray image, 

constructs a denoised and visually similar image. The 

proposed pipeline consists of multi-tier GANs-based [4] 

denoising architecture, which focuses on denoising different 

types of noises with different importance. We then post-

process the images with multiple computational imaging 

techniques to make them visually similar to the ground truth 

image, thus retaining the maximum possible information 

even after denoising. The main reason for this is that after 

denoising, the images tend to blur out, which can lead to the 

loss of essential features of the image, like edges and contrast 

among different parts under observation. 

This will help the patients being x-rayed to face reduced 

amounts of radiation which will be better for their bodies 

without compromising the quality of the X-rays. This makes 

it easier for doctors to deduce information from these images. 

II. RELATED WORK

Many conventional and new methods have been used to 

denoise and enhance medical images to produce images with 

less noise and more details. The conventional methods [5] 

used for image denoising include linear and non-linear 

filters, which come under spatial domain filtering. These 

filters have Gaussian Filters, Wiener Filtering, Median 

Filters, Bilateral Filters, and a few others. These filters can 

eliminate a decent amount of noise, but that comes at the 

trade-off of image blurring and losing edge details. Bilateral 

and Non-local means have provided decent results for 

denoising medical images [6] when preprocessing is done 

before applying denoising techniques. Thresholding 

techniques had to be used before applying Bilateral and 

NLM filters to preserve edges and details. Comparing all the 

conventional methods for medical images [7], it is evident 

that a particular way performs better on a specific type of 

noise only. 

Nowadays, deep-learning-based denoising methods are 

prevalent, primarily based on CNNs. DnCNN is a modern 

method that introduced batch standardization and residual 

learning for denoising images [8]. The main demerit of the 

neural network methods for 

denoising is that the learning is 

done on particular noise levels  

only, and they don’t perform 
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well on different noise levels [8].  

CNN architecture may move away from traditional 

methodologies and toward deep learning methods, yet, the 

significant difficulty remains computational time and space.   

TV (Total Variation) based regularization methods have also 

been proposed for denoising, and these are useful in solving 

the issue of smoothness, but they have drawbacks. Flat areas 

are approximated by a fixed sometimes loss of contrast [9]. 

The latest methods to denoise include denoising using 

constant resulting in a staircase effect and generative 

adversarial networks. Denoising using GANs has been found 

to denoise real-world images, and the architecture of the 

model consists of the use of residual blocks, skip 

connections, and batch normalization. The images look real 

while preserving the edge details and avoiding blurriness 

[10]. The learning-based methods for denoising the images 

that use neural networks are trained on noisy images that are 

artificially created from clean images with a known type of 

noise. Real-world noisy images are very different from 

synthetic ones and conventional methods outperform 

learning-based methods when we denoise real-world images. 

Denoising using GANs follows a better approach in model 

building; in this approach, the model is trained on noise 

instead of noisy images and denoises real images as well 

[11]. 

As mentioned before, denoising images generates 

blurriness and can remove essential details from the images, 

which is very harmful in the case of medical imaging. Hence, 

it’s necessary to perform some preprocessing or post-

processing on images before or after performing the 

denoising [12]. HDR (High Dynamic Range) is a technique 

that can be used on X-ray medical images to enhance and 

improve edge details. The quality of the image formed 

depends upon the amount of radiation (mAs) and peak 

photon energy (kVp). Hence, images generated using 

different peak photon energies exhibit variable visibility of 

bones and tissues. Therefore, combining X-ray images with 

varying photons of peak energies and getting a single image 

can provide a more enhanced and detailed result. HDR 

images are generated using a set of low dynamic range 

images of different exposures and then combining them, but 

due to the unavailability of x-ray images with different peak 

photon energy, presents us with an algorithm to obtain HDR 

image from a single image by generating virtual images of 

different exposures and then fusing these multi-level 

illuminations. In this algorithm, the image is broken down 

into its reflectance and illumination components. The 

brighter areas are improved by scaling the reflectance 

component, and the illumination component can be turned 

up or down to generate images with different illuminations 

[13]. 

Another post-processing technique is to increase image 

sharpness by using the method of unsharp masking [14]. A 

blurred image is generated, which is then subtracted from the 

original image to obtain an edge-enhanced image. It detects 

the borders of the various tones and boosts contrast to make 

the image look sharper [15]. 

III.   PROPOSED METHOD 

The main contribution of this paper is a novel end-to-end 

pipeline for denoising and enhancement of medical images, 

x-rays in particular. The first and second parts of the pipeline 

are dedicated to removing the various types of noises present 

in radiographed images. 

A. The Pipeline 

As mentioned earlier, we devise a multi-tier denoising 

architecture that follows a ‘T’ shaped denoising technique to 

provide breadth and depth of denoising across different types 

of noises prevalent in these images. The first denoiser offers 

the range of denoising by denoising the image for different 

types of noises, viz Poisson noise, Gaussian noise, and 

speckle noise, which are frequently observed in X-rays. 

Since this component has tried to learn all kinds of noise, it 

gives average performance across all noise inputs (equal 

importance to each noise type). The second level of 

denoising provides depth by focusing on removing the 

Poisson noise, which is the primary source of noise in radio-

graphed images. The denoiser used in this component 

specializes in removing Poisson noise, thus giving higher 

importance to it in the overall structure. 
 

 

[Fig.1. Proposed Pipeline for Medical Image Enhancement] 

One of the main issues with all the conventional denoising 

techniques was that they blur out the images quite a lot. The 

reason behind this is that they try to average out the 

neighboring pixels to get rid of the randomness of the noise. 

But in this process, they lose high-frequency details like 

edges in the images, thus reducing the visual similarity with 

the ground truth images. In natural images, this might work 

to some extent. However, for medical images, this is highly 

problematic because edges contain many essential details 

that are useful in disease detection and general inference. In 

our denoising case, the blurring out of the edge, although 

much less than traditional methods, still exists. To enhance 

our images to contain such important information to the 

maximum possible extent, we perform some post-processing 

methods to increase the visual similarity with the ground 

truth images. The methods we have considered for image 

enhancement are high dynamic range and edge preservation 

techniques. The output image produced by the denoiser is fed 

to a post-processor component, where the image is converted 

to an HDR image using a single-shot HDR conversion 

mechanism. Then this image is passed through an edge 

enhancer which reverses the effect of the blur, which crept in 

the denoising process to make the edge more prominent. 
 

 

[Fig.2. GAN Architecture for Denoising Image] 

In a generative adversarial network (GAN), two neural 

networks compete against one another in the form of a zero-

sum game, where one agent’s gain  

is another agent’s loss (Fig. 2). 

Let x be the data 

representing an image. The 

https://doi.org/10.35940/ijese.E7430.13030225
http://www.ijese.org/


International Journal of Emerging Science and Engineering (IJESE) 

ISSN: 2319–6378 (Online), Volume-13 Issue-3, February 2025 

                                               34 

Published By: 

Blue Eyes Intelligence Engineering 
and Sciences Publication (BEIESP) 

© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijese.E74300111523 

DOI: 10.35940/ijese.E7430.13030225 

Journal Website: www.ijese.org 

discriminator network, or D(x), generates a scalar probability 

that x came from training data instead of a fake image 

generated by the generator. Reasonably, D(x) ought to be 

high when x came from training data and low when x came 

from the generator. Since we are working with X-ray images, 

in this case, D(x) requires an image with a resolution of 

128×128. With z acting as a latent space vector, the generator 

is now defined by G(z). The generator’s objective is to 

determine the distribution ptrain from which training data 

came to produce fake samples from it. 

As a result, D(G(z)) represents the likelihood (scalar) that 

the generator G′s output is the actual image. The fundamental 

concept behind a GAN model is to have a Generator G that 

is trained to generate the desired image from noisy or down-

sampled input.  

While a Discriminator D is trained to distinguish between 

the original image and the generated image. The adversarial 

generator and discriminator model are trained 

simultaneously so that after training, the generator would be 

proficient at producing realistic-looking images. As a result, 

D seeks to increase the likelihood that it correctly 

distinguishes between reals and fakes (logD(x)), and G seeks 

to reduce the likelihood that D will anticipate that its outputs 

are fake (log(1 −D(G(z))). Thus, the loss function is defined 

as [4]. 

 
min
𝐺
 max
𝐷

 𝑉(𝐷, 𝐺) =𝔼𝑥∼𝑝data (𝑥)
[log⁡ 𝐷(𝑥)] +

𝔼𝑧∼𝑝𝑧(𝑧)[log⁡(1 − 𝐷(𝐺(𝑧)))]
 

Equation 1. GANs loss function 

B. Random Noise Denoiser 

Fig. 3 depicts the Generator model’s architecture. We 

employed deep residual and convolutional neural networks 

so that the generator could learn to reduce noise and produce 

the fake image with little loss. Both the parameter selection 

and the layering order are empirical. For this model, we try 

to denoise the noisy images, which are a combination of 

Poisson, Gaussian, and Speckle noise. 

In the generator network, we created a deep residual 

convolutional neural network with eleven convolutional 

layers, three residual blocks, and two skip connections. 

Overall, we perform Convolution (decrease channels), apply 

a ResNet/Residual block, and finally achieve Deconvolution 

(increase channels). For deconvolution, we resize the image 

and perform convolution to decrease the channel length. Our 

model has an architecture of Conv-Residual- Deconv. For 

the initial task of Convolution, we created a Convolutional 

block that consists of three different layers. At first, the input 

is passed through the Convolutional Layer. In the next step, 

Batch Normalization (BN) is applied. Batch Normalization 

is a technique for training deep neural networks that 

normalizes the contributions to a layer for every mini-batch. 

This layer’s job is to take the output from the Convolutional 

Layer and normalize it before passing it on as the input of the 

next layer. BN helps improve the model performance, 

mitigate the internal covariate shift, and apply a small 

regularization effect. 

Finally, an activation function of the Parametric Rectified 

Linear Unit (PReLU) is used. The non-saturating activation 

functions, such as PReLU, enable us to train a deep neural 

network by solving the vanishing gradient problem. The 

slope of ReLU is zero in the negative range, so once the 

neuron gets negative, it is unlikely to recover. It is known as 

the dying ReLU problem, which can be resolved using ReLU 

with a non-zero gradient for negative inputs [15]. Hence, the 

coefficient is introduced as the learnable parameter in the 

PReLU and is represented as 

 

PReLU(𝑥) = max(0, 𝑥) + 𝑎 ⋅ min(0, 𝑥) 
 

Equation 2. PReLU Function 
 

As shown in Fig. 3, there are a total of 4 Convolutional 

blocks. The following layers are the residual layers, where a 

skip connection between the residual network and the 

Convolutional block is added. This residual network consists 

of a Convolutional block which is then added up with the 

previous output, and finally, a PReLU activation is applied. 

This combination is stacked up to 3 layers. In this network, 

the output channels remain changed, i.e., 128 with a filter 

size of (3×3) with stride=1 and padding=” same.” 

Finally, we need to upscale or increase the channels of the 

image. Hence, we resize the image and perform the 

deconvolution with the help of the convolution block itself. 

The deconvolution block consists of a resize function and all 

the layers of the Convolution block. The skip connection 

passes the input images to the end of the network so the 

model in between learns only the noise. There are four 

deconvolution blocks; further, a tanh activation is applied. 

The tanh activation function is described below: 
 

tanh⁡(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

Equation 3. Tanh Loss Function 
This function has a -1 to +1 interval as its range. The 

benefit of this function is that the zero inputs will be mapped 

close to zero in the tanh graph and the negative inputs will 

be highly negative. To match the output image range, we 

employ this activation at the end of the network. Tanh 

activation makes it possible to attain the noise range [-1,1].  

In this manner, the noise pattern can be learned by the 

generator model, which can then attempt to reduce the noise 

and produce denoised images that are close to the actual data. 
 

 

[Fig.3. Generator Architecture] 

The discriminator network, which outputs the likelihood 

that the given input (the generator’s output) is real or 

fraudulent, is a straightforward convolutional network. This 

network is made to produce a score for both the fake and 

actual images.  

The network has a great ability to discriminate between 

genuine and false images, as seen  

by the fact that it will provide 

a score very close to 1 for the 
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real label image and 0 for the created image. In our case, the 

image labels are clear images, and the fake images are 

obtained by the noised images after passing through the 

generator. 

 

 

[Fig.4. Discriminator Architecture] 

The network structure is quite simple, which consists of a 

series of Convolution layers, then connects with a full link 

layer and finally is sent to the sigmoid function. The structure 

of the Discriminator network is shown in Fig. 4. There are 5 

convolutional blocks, which consist of the convolution layer, 

batch normalization, and a LeakyReLU activation function. 

The ”drying ReLU” issue is resolved by the LeakyReLU 

activation function because it does not contain zero-slope 

components. LeakyReLU is advantageous because we are 

not dealing with negative values in this situation, and it also 

expedites the training process because the mean activation is 

close to zero. It is defined as, 

Leaky ReLU (𝑥) = max(0, 𝑥) + (− ve ) slope ⋅ min(0, 𝑥) 

Equation 4. Leaky ReLU Function 

Then, a fully connected Linear layer with a sigmoid 
activation function at last is added to normalize the 
confidence score to a probability between 0 and 1. 

C. Poisson Noise Denoiser 

In this section, we try to eliminate the Poisson noise in 

medical images and try to enhance the quality of the image 

to achieve greater PSNR/SSIM value. For this model, we 

created a similar dataset mentioned in the above section but 

only added the Poisson Noise. This component provides the 

depth part of the ”T” structured denoising. 

Further, the similar structure GAN model was trained and 

the PSNR/SSIM and the Generator/Discriminator losses 

were noted. The graph for the same is attached below in the 

Experimental Results section. 

D. Single Shot HDR 

The algorithm implementation provides us with an 

approach to obtain HDR images from a single image of a 

single exposure by generating and combining multi-level 

illuminations of a single image. The algorithm is based on 

Retinex theory, in which we estimate the illumination 

component of the given image, and then the component other 

than the illuminance component, which is left, acts as the 

reflectance component. In this approach, the image is divided 

into its reflectance and illumination channels, and this 

decomposition is done using the weighted least square filter. 

 

[Fig. 5. Single Shot HDR (Photo Credits: Park et al. [13])] 

We first obtain the luminance component from the image, 

and to obtain the reflectance component, we take the 

difference between luminance and the estimated 

illumination. For the illumination estimation, we could have 

gone with the Gaussian kernel, but it has a drawback: it can 

lead to halo artifacts near the borders with bright 

background. Hence, to solve this drawback, the algorithm 

suggests implementing WLSF (Weighted Least Square 

Filter), which solves the halo artifacts problem and is an 

edge-preserving algorithm, helping us maintain even more 

details. Once the decomposition is done, the reflectance 

channel is scaled up, which helps enhance bright areas of the 

image. For x-ray images, HDR is performed using images 

obtained from x-ray beams with different peak photon 

energies. But, as we have only a single image, we can use the 

illumination channel to generate different illuminations for 

the image by scaling the channel up and down. These 

illuminations will correspond to different peak photon 

energies. Now, as illumination is adjusted, increasing it in 

bright areas can lead to saturation of pixel values and in these 

pixels, sharpness cannot be enhanced easily. To prevent 

distortion, instead of working on the illumination channel for 

these pixels, we work on the reflectance channel. Selective 

reflectance scaling has been used to adjust these kinds of 

pixels. We fix a certain threshold for illumination, and if we 

find it higher than the threshold, we tune the reflectance. 

For the generation of images with different illumination, a 

scale factor which is a sigmoid function is multiplied by the 

luminance to darken or brighten the illuminance channel. We 

find ratios between the standard exposure and under-

exposure areas and between over-exposure and under-

exposure. Based on these ratios, illumination is increased 

more in darker regions than in brighter regions. After 

generating the virtual images with different peak photon 

energies, we use the tone mapping 

technique. Tone Mapping has  

been done using a unique 

technique, where appropriate 
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weight maps are used to combine all the virtual illumination 

images. At last, we combine the new illumination and scaled-

up reflectance to obtain the final image. The output is an 

enhanced image with more details. 

E. Edge Enhancement 

We have implemented the unsharp masking method to 

enhance the edges of the image after applying the GAN-

based denoising. In this method, we obtain the sharpened 

image by subtracting the blurred image from the original 

image. Unsharp masking is characterized in frequency 

domain language as receiving a high-pass filtered image by 

removing a low-pass filtered version of itself from the 

provided image. This method has the capability of taking the 

human visual system response and can sharpen images  

even in the presence of noise as well. The high pass filter 

is used to improve the noisy image utilizing the linear 

unsharp filtering strategy. Unsharp masks help sharpen 

images. However, excessive sharpening might cause the 

image to lose its natural appearance. This approach has two 

significant limitations: the contrast in the darker section is 

considerably more profound than in the lighter part. The 

approach also increases the noise, which is an issue. In our 

example, Edge Enhancement was necessary. 

IV.   EVALUATION METRICS 

A. Peak Signal to Noise Ratio 

Any image processing could result in a significant loss of 

quality or information. Objective and subjective methods 

should be used to evaluate image quality [16]. Subjective 

approaches don’t take into account certain criteria and are 

based on human judgment [17]. Comparing things using 

explicit numerical criteria is the foundation of objective 

methods [18], and there are many possible references, 

including the ground truth or prior knowledge expressed in 

terms of statistical parameters and tests [19]. In this project, 

we use PSNR and SSIM to compare and analyze the quality 

of the denoised images. Given a denoised image, f, and the 

original image g, both of size M×N, the PSNR between f and 

g is defined as: 

PSNR(𝑓, 𝑔) = 10log10⁡ (
2552

𝑀𝑆𝐸(𝑓, 𝑔)
) 

where, MSE(𝑓, 𝑔) =
1

𝑀𝑁
∑  𝑁
𝑖=1 ∑  𝑀

𝑗=1 (𝑓𝑖𝑗 − 𝑔𝑖𝑗)
2
 

 

Equation 5. Formula to calculate PSNR 

B. Structural Similarity Index Measure 

The other well-known metric used for measuring the 

similarity between two images is SSIM developed by Wang 

et al. [20] SSIM is considered to be correlated with the 

quality perception of HVS (Human Visual System) [21]. 

SSIM is designed by modeling an image distortion as a 

combination of three factors that are loss of correlation, 

luminance, and contrast distortion [22]. The SSIM is defined 

as 

SSIM(f, g) = l(f, g) · c(f, g) · s(f, g) 

Equation 6. Formula to calculate SSIM 

The figure below provides more explanation of the SSIM 

formula.  

where, 

𝑙(𝑓, 𝑔) =
2𝜇𝑓𝜇𝑔+𝐶1

𝜇𝑓
2+𝜇𝑔

2+𝑐1
 This is luminance comparison, measures 

the closeness of two images. 

𝑐(𝑓, 𝑔) =
2𝜎𝑓𝜎𝑔+𝑐2

𝜎𝑓
2+𝜎𝑔

2+𝑐2
 This is contrast comparison, measures the 

closeness of contrast of two images. 

𝑠(𝑓, 𝑔) =
𝜎𝑓𝑔+𝑐𝑠

𝜎𝑓𝜎𝑔+𝑐3
 This is structure comparison function, 

which measures the correlation coefficient between two 

images. 

V. IMPLEMENTATION DETAILS 

Our implementation of each component was carried out 

individually and then compiled together and tested. For the 

implementation of GANs, we coded the structure from 

scratch and used the layers of convolution, batch 

normalization, and parametric ReLU provided in the 

PyTorch package [23]. 

The preprocessing of the image included them being 

resized down to 128x128 from 1024x1024. The reason for 

this was the limited computing resources for the project [24]. 

The convolutional layers in the generator model have 

varying filter sizes as we down-sample and up-sample the 

image in the network. During the entire training process, the 

shapes of the images remained unchanged. In our case, we 

have a filter size of (9×9) at the first and last forward block. 

The remaining intermediate layers have a fixed (3×3) filter 

size. The padding is “same,” and the stride is set to 1. The 

convolution layers in the discriminator model have varying 

output dimensions with different kernel sizes of (3×3) and 

(5×5) with a stride of 2. For the random noise denoiser, we 

added Gaussian, Poisson, and Speckle noise to the X-ray 

images. The Gaussian noise was added with the zero mean 

Gaussian distribution with a standard deviation of 0.03. The  

Poisson noise was similarly added with a factor of log of 

unique values of the image. Further, the speckle noise was 

created with the help of a Gaussian distribution of standard 

deviation of 0.01. All these noises were injected into the 

original image randomly with the help of the NumPy 

package in Python. 

As Poisson noise is prevalent in medical images, we create 

a similar noisy dataset as above but with only Poisson noise 

for training Poisson Noise Denoiser. With the structure of the 

model ready and the preprocessing of the images done, we 

started the training steps of the pipeline.  

We trained the GANs model individually. We trained each 

model with 200 unique chest X-ray images with different 

types of noise added randomly to each image. These 200 

images were trained for 50 epochs resulting in a total 

iteration of 10000. The batch size hyperparameter was 

chosen to be 10. The learning rate used was 0.0002 and was 

fixed throughout the training process. The optimizer we used 

was Adam with binary cross entropy loss in the 

Discriminator model training. Similarly, we used the Adam 

optimizer with binary cross-entropy loss for the Generator. 

But in this case, we also added another loss function: the  

pixel loss, which quantifies the  

pixel-wise similarity between  

the images generated by the 

Generator and ground truth.  
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This was implemented using mean squared error loss over 

all the pixels. We trained both the models and saved the 

weights to a ckpt file that can be loaded (we have provided 

this in our code on 

https://github.com/apoorvdankar/MedGANs. For the 

usability of the pipeline, we just load the content of the ckpt 

file and call the Generator part of the GANs. The test image 

passes through the Generators of the two denoisers and then 

through the single shot HDR converter and Edge enhancer to 

give the final output image. 

VI. RESULT AND DISCUSSION 

The model was trained for 50 epochs with the given 

learning rate and batch size. Fig. 7 represents the graph for 

Generator and Discriminator Loss for both models. The 

evaluation metrics for both models are reported in Fig. 8. The 

detailed comparison of this method with conventional 

approaches is given in Table 1. Further, in this section, we 

shall analyze the denoised image qualitatively and 

quantitatively. 

A. Qualitative Results 

In the leftmost panel of Fig 6, we have four noisy images 

for qualitative analysis and reporting. We randomly selected 

these images using a random data loader from the test images 

dataset directory. We then added above explained noises at 

random to each of these images. The next image is the output 

of the first component of the pipeline: Random Noise 

Denoiser. We observe that the noise level in the image has 

decreased on average but this has also blurred the images a 

little bit. The third image is the output from the Poisson 

Noise denoiser. Here also we see the noise level has 

decreased but at the cost of blurring out the edges even more. 

The penultimate image batch is the output of the post-

processing component. The results here include the output 

only of the edge-enhancer. We noticed that adding the HDR 

component decreases the PSNR quite a lot. We suspect we 

might have to modify and hyper-tune the parameters of 

single-shot HDR conversion to get the best results. We need 

to try out the combination of HDR and Edge Enhancer to get 

optimal results consistent with our hypothesis. Here, we have 

only included the results after applying Edge Enhancer. We 

notice that this step increases the clarity of edges a bit as 

compared to the previous step. Finally, the last block is the 

ground truth image to which the noise was added and all the 

processing steps were done. 

 

 
[Fig.6. Component-wise Output of the Pipeline. Left to 

Right: Noisy Image, Output of Random Noise Denoiser, 

Output of Poisson Noise Denoiser, Post Processed and 

Ground Truth] 

      

[Fig.7. Generator and Discriminator Loss Over 

Training Epochs for Left: Random Noise Denoiser 

Model Right: Poisson Noise Denoiser Model] 

 

       

[Fig. 8. Metrics: PSNR and SSIM Value Over Training 

Epochs for Left: Random Noise Denoiser Model Right: 

Poisson Noise Denoiser Model] 

B. Quantitative Results 

This section will discuss the quantitative aspect of 

analyzing the denoised Images. All metrics reported in this 

section are averaged over 15 test images. In the experiment, 

we had noisy images of PSNR of 25.88 dB and SSIM of 

68.52. The traditional methods give lower PSNR values 

compared to neural networks. The Gaussian filter denoising 

with sigma=0.5 gave a denoised image of PSNR 29.59 

dB/SSIM 0.86. The Median Filter with a kernel size of 7 

gave us an image with PSNR 26.79/SSIM 0.81. Other 

conventional methods PSNR and SSIM are mentioned in 

Table 1.  

We experimented with modern methods such as 

ADMM+DnCNN and ADMM+TV solver. ADMM with 

DnCNN as solver gave good results with the PSNR 30.14 dB 

and SSIM 0.91. We also experimented with parameter tuning 

for each conventional method (e.g., changing the sigma 

value). The detailed results with PSNR and SSIM for each of 

the parameters for a particular method are mentioned in 

Table 2. Our methodology of using a GAN-based Random 

Noise Denoiser and Poisson Noise Denoiser gave the best 

metric values. The Random Denoiser gave a denoised image 

with PSNR 31.92 and SSIM 0.893. The combination of 

Random Noise and Poisson Noise denoiser gave the PSNR 

32.27 and SSIM 0.926. The Edge Enhancement improved 

the image visual similarity, and hence we achieved the 

highest SSIM with 0.933. The evaluation metrics for each 

method are mentioned in Table 1. 

Table 1 Metric Comparison of Different Methods for Denoising 

Method PSNR SSIM 

Noisy Image 25.9 0.68 

Gaussian (σ = 0.5) 29.6 0.82 

Median Filter (size = 7) 30.8 0.89 

Bilateral (σ = 1, σ−intensity=0.5) 28.2 0.84 

NLM (σ = 1, σ−intensity=0.5) 28.2 0.84 

ADMM + DnCNN Solver 30.1 0.91 

ADMM + TV 28.7 0.89 

GANs (Random Noise) 31.9 0.89 

GANs (Random + Poisson Noise) 32.3 0.93 

GANs + Edge Enhancer 29.4 0.93 
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Table 2 Metric Comparison of Conventional Methods 

with Different Hyperparameters 

Method Parameters PSNR SSIM 

Gaussian Filter 

σ (sigma) = 0.5 29.6 0.82 

σ (sigma) = 1 27.2 0.9 

σ (sigma) = 2 23.6 0.82 

Median Filter 

Filter Size = 6 26.4 0.82 

Filter Size = 7 26.8 0.81 

Filter Size = 7 25.2 0.78 

Bilateral Filter 

σ (sigma) = 1 30.8 0.89 

σ (sigma) = 2 27.9 0.88 

σ (sigma) = 3 25.9 0.82 

NLM 

σ (sigma) = 1 27.9 0.86 

σ (sigma) = 2 28.1 0.84 

σ (sigma) = 3 28.2 0.84 

VII. CONCLUSION 

  In this paper, we propose an end-to-end novel pipeline to 

perform medical image denoising, especially for x-rays, with 

multi-tier GANs-based denoisers and post-processing steps 

using single-shot HDR and edge enhancement using unsharp 

masking. We show that our GANs-based denoisers, with 

their ’T’ shaped denoising technique perform better than 

conventional denoising methods. The post-processing steps 

enhance the images and make them more visually similar to 

the ground truth image by amplifying the edges which are 

quite important in medical images. We note that using such 

post-processing methods decreases the PSNR but increases 

the SSIM metric under specific conditions and hyper-

parameter values as mentioned earlier in the experimental 

results section. An important future step will be to come up 

with settings such that the PSNR is also increased with these 

methods. Also, it will be very useful to get some domain 

experts’ comments on the outputs of the pipeline which will 

help us modify the pipeline to be more suited to the demands 

of the real world. 
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