
International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378 (Online), Volume-13 Issue-8, July 2025

 25

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number:100.1/ijese.B828014020725
DOI:10.35940/ijese.B8280.13080725

Journal Website: www.ijese.org

A Comparative Analysis of Techniques, Datasets,

Feature Selection Methods, and Evaluation Metrics

in Software Fault Prediction

Rajinder Kumar, Kamaljit Kaur

Abstract: This study presents a systematic literature review

(SLR) that investigates recent advancements in Software Fault

Prediction (SFP) methodologies. The review focuses on key

dimensions including techniques, datasets, feature selection

methods, software metrics, and evaluation criteria. By analyzing

significant studies from renowned digital libraries such as ACM,

IEEE, Springer Link, and Science Direct, five research questions

were defined to guide the assessment of current trends in SFP

research. Findings reveal that machine learning approaches—

particularly neural networks, deep learning, and ensemble

methods—are increasingly employed due to their capability to

manage the complexity of software fault data. Public datasets,

notably those from the PROMISE and NASA MDP repositories,

are widely utilized, underlining the importance of dataset diversity

for enhancing model performance. Feature selection methods,

particularly wrapper techniques, are often employed to improve

predictive accuracy. Evaluation of models predominantly relies on

confusion matrix-based metrics such as Accuracy, Precision,

Recall, and F1-Score. Despite these advances, challenges remain

in addressing class imbalance, adapting to rapidly evolving

software environments, and achieving real-time fault prediction.

The study highlights the need for greater classifier diversity and

ongoing methodological improvements to enhance the robustness

and generalizability of SFP models.

 Keywords: Software Fault Prediction; Feature Selection

Techniques; Software Metrics; Public Datasets; Confusion

Matrix-Based; Class Imbalance.

Abbreviations:

SDP: Software Defect Prediction

SBP: Software Bug Prediction

SFP: Software Fault Prediction

SQA: Software Quality Assurance

PS: Primary Studies

SLR: Systematic Literature Review

I. INTRODUCTION

In the field of software engineering, software defect

prediction (SDP) in early stages is vital for software

Manuscript received on 12 June 2025 | First Revised Manuscript

received on 05 July 2025 | Second Revised Manuscript received

on 10 July 2025 | Manuscript Accepted on 15 July 2025 |

Manuscript published on 30 July 2025.
*Correspondence Author(s)

Rajinder Kumar*, Research Scholar, Department of Computer Science

and Engineering, Sri Guru Granth Sahib World University, Fatehgarh Sahib.

(Punjab), India and Assistant Professor, Department of Computer

Applications, Chandigarh Business School of Administration, Landran,
Mohali (Punjab), India. Email: Rajinderkumar.cse@gmail.com, ORCID ID:

0009-0007-3095-3872

Dr. Kamaljit Kaur, Assistant Professor, Department of Computer
Science, Sri Guru Granth Sahib World University, Fatehgarh Sahib (Punjab),

India. Email ID: drkamaljit2024@gmail.com

© The Authors. Published by Blue Eyes Intelligence Engineering and

Sciences Publication (BEIESP). This is an open access article under the

CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

reliability and quality. A software defect is a bug, fault, or

error in a program that causes improper outcomes. Software

defects are programming errors that can occur due to errors

in the source code, requirements, or design. Defects

negatively affect software quality and reliability. Various

terms, including hybrid, combined, integrated, and

aggregated classification, are employed in ensemble learning.

The ensemble learning model is built by combining multiple

machine learning classifiers to improve prediction

performance [1]. The main objective of a software project is

to deliver the expected functionality while meeting the

required level of quality on time and within a defined budget.

From the perspective of software projects developed in recent

years, the complexity in software development has increased

due to the increased number of customer requirements [2].

The primary objective of software bug prediction (SBP)

techniques is to classify fault-prone and fault-free modules,

allowing developers to assign reasonable testing sources and

allocate testing preferences for various software modules,

thereby enhancing the software's quality [3]. Software fault

prediction (SFP) is the area of interest for many researchers

and software developers. Predicting such faults at an early

stage of development can reduce the maintenance cost and

effort. Fault prediction models aid in various software-related

activities, such as quality assurance, to enhance the

understanding of software quality. This prediction is done

using different software metrics. The commonly used

software metrics are McCabe metrics, Halstead metrics and

CK metrics. Fault prediction performed during early

development will reduce maintenance costs and improve

software quality. Current software systems are becoming

increasingly complex and large; therefore, ensuring their

reliability and quality is paramount, which depends on

identifying and mitigating software faults. Software fault

prediction (SFP) actively assists in detecting faults by

highlighting potential faulty areas of code within the software

system [4]. Reducing defects and failures in a software

product is a crucial goal for software engineers. This is done

to achieve maximum performance, build user trust, and

enhance the overall quality of the product. During the life

cycle of a product, a software goes through several feature

changes, quality iterations and reassembling. Software

quality assurance (SQA) consists of monitoring and

controlling the software development process to ensure the

desired software quality at a lower cost. It may include the

application of formal code inspections, code walkthroughs,

software testing, and software fault prediction Software fault

prediction aims to facilitate the allocation of limited SQA

resources optimally and economically by prior prediction of

the fault-proneness of software

modules The potential of

software fault prediction to

identify faulty software

modules early in the

http://doi.org/10.35940/ijese.B8280.13080725
http://doi.org/10.35940/ijese.B8280.13080725
http://www.ijese.org/
mailto:Rajinderkumar.cse@gmail.com
https://orcid.org/0009-0007-3095-3872
drkamaljit2024@gmail.com
https://www.openaccess.nl/en/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijese.B8280.13080725&domain=www.ijese.org

A Comparative Analysis of Techniques, Datasets, Feature Selection Methods, and Evaluation Metrics in

Software Fault Prediction

 26

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number:100.1/ijese.B828014020725
DOI:10.35940/ijese.B8280.13080725

Journal Website: www.ijese.org

development life cycle has gained considerable attention over

the last two decades. From a software development

perspective, dealing with software faults is a vital and

foremost important task. The presence of faults not only

deteriorates the quality of the software but also increases its

development and maintenance costs. Therefore, identifying

which software module is likely to be fault-prone during the

early phases of software development may help improve the

quality of the software system. By predicting the number of

faults in software modules, we can guide software testers to

focus on faulty modules first. The objective of software fault

prediction is to detect faulty software modules before the

testing phase by using some structural characteristics of the

software system. A software fault prediction model is

generally constructed using fault datasets from previous

releases of similar software projects, and it is later applied to

predict faults in the currently under-development software

system. In conclusion, this review aims to provide a

comprehensive overview of SFP techniques, tracing their

evolution from simple code complexity metrics to

sophisticated AI-driven models. This paper provides a review

of the recent research conducted on the use of software defect

prediction. The latest papers published since 2025 are

considered for this study. Four renowned and widely used

online search libraries are selected for extracting relevant

literature, including IEEE Xplore, ACM Digital Library,

ScienceDirect, and SpringerLink. Initially, 1180 papers are

extracted, and then the 23 most relevant papers are selected

as Primary Studies (PS) after following a thorough systematic

research process. The remainder of the paper is organized as

follows: Section 2 presents the research protocol. Section 3

presents the findings of this review. Finally, section 4

concludes the paper with suggestions for future work for

many researchers and software developers. Predicting such

faults at an early stage of development can reduce the

maintenance cost and effort. Fault prediction models aid in

various software-related activities, such as quality assurance,

to enhance the understanding of software quality. This

prediction is done using different software metrics. The

commonly used software metrics are McCabe metrics,

Halstead metrics and CK metrics. Fault prediction performed

during early development will reduce maintenance costs and

improve software quality. Current software systems are

becoming increasingly complex and large; therefore,

ensuring their reliability and quality is of paramount

importance, which depends on identifying and mitigating

software faults. Software fault prediction (SFP) actively

assists in detecting faults by highlighting potential faulty

areas of code within the software system. Reducing defects

and failures in a software product is a crucial goal for

software engineers. This is done to achieve maximum

performance, build user trust, and enhance the overall quality

of the product. During the life cycle of a product, a software

goes through several feature changes, quality iterations and

reassembling. Ideally, all these changes are perfectly merged,

should cause no defect and are free of error [6]. Software

quality assurance (SQA) consists of monitoring and

controlling the software development process to ensure the

desired software quality at a lower cost. It may include the

application of formal code inspections, code walkthroughs,

software testing, and software fault prediction Software fault

prediction aims to facilitate the allocation of limited SQA

resources optimally and economically by prior prediction of

the fault-proneness of software modules The potential of

software fault prediction to identify faulty software modules

early in the development life cycle has gained considerable

attention over the last two decades [5]. From a software

development perspective, dealing with software faults is a

vital and foremost important task. The presence of faults not

only deteriorates the quality of the software but also increases

its development and maintenance costs. Therefore,

identifying which software module is likely to be fault-prone

during the early phases of software development may help

improve the quality of the software system. By predicting the

number of faults in software modules, we can guide software

testers to focus on faulty modules first. The objective of

software fault prediction is to detect faulty software modules

before the testing phase by using some structural

characteristics of the software system.

A software fault prediction model is generally constructed

using fault datasets from previous releases of similar software

projects, and it is later applied to predict faults in the currently

under-development software system. In conclusion, this

review aims to provide a comprehensive overview of SFP

techniques, tracing their evolution from simple code

complexity metrics to sophisticated AI-driven models. This

paper provides a review of the recent research conducted on

the use of software defect prediction. The latest papers

published since 2025 are considered for this study. Four

renowned and widely used online search libraries are selected

for extracting relevant literature, including IEEE Xplore,

ACM Digital Library, ScienceDirect, and SpringerLink.

Initially, 1180 papers are extracted, and then the 23 most

relevant papers are selected as Primary Studies (PS) after

following a thorough systematic research process. The

remainder of the paper is organized as follows: Section 2

presents the research protocol. Section 3 presents the findings

of this review. Finally, section 4 concludes the paper with

suggestions for future work.

II. REVIEW GUIDELINES

Our review methodology, grounded in A systematic

literature review (SLR) framework as delineated by

Kitchenham [7], is meticulously adapted to explore the realm

of software fault prediction techniques. This structured

approach begins by formulating research questions to define

the scope, objectives, and depth of our review, with a

particular focus on the evolution, effectiveness, and

comparative analysis of various fault prediction methods.

Inclusion and exclusion criteria are then rigorously

established to delineate the boundaries of our systematic

literature review. The SLR process is divided into three

phases: planning the review, conducting the review, and

reporting the review. Each phase consists of sub-phases, as

illustrated in Figure 1. The systematic literature review (SLR)

process is described in detail for software fault prediction

research.

http://doi.org/10.35940/ijese.B8280.13080725
http://doi.org/10.35940/ijese.B8280.13080725
http://www.ijese.org/

International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378 (Online), Volume-13 Issue-8, July 2025

 27

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number:100.1/ijese.B828014020725
DOI:10.35940/ijese.B8280.13080725

Journal Website: www.ijese.org

[Fig.1: SLR Process]

A. Phase 1:

i. Planning the Review

This section outlines the methodology employed for

conducting our comprehensive bibliographic review, which

is grounded in the systematic review guidelines outlined by

Kitchenham [7]. We articulate our literature search strategy,

including the databases and keywords used, detail our

selection criteria for sourcing relevant studies, and elucidate

the specific research questions guiding our inquiry. This

structured approach ensures a thorough and unbiased

survey of the existing literature in the field of software

fault prediction.

ii. Research Questions

In the pursuit of a comprehensive understanding of

software fault prediction (SFP), this review is guided by a

series of targeted research questions. These questions are

designed to explore various aspects of SFP, including

techniques, datasets, programming languages, and

evaluation criteria. The primary objective of this review is

to address the following issues systematically.

▪ Research questions:

RQ1: What are the most used Methodologies/Techniques

for software fault prediction?

RQ2: What types & typical sizes of datasets are

predominantly used in software fault prediction

studies?

RQ3: Which feature selection techniques are commonly

applied in SFP?

RQ4: Which types of software metrics are utilized in SFP

research?

RQ5: What evaluation criteria are commonly used to

measure the performance of SFP models?

By addressing these questions, this review aims to

provide a detailed and comprehensive analysis of the

current state of software fault prediction techniques,

offering valuable insights and identifying potential areas

for future research.

iii. Literature Search Strategy

To systematically identify articles relevant to software

fault prediction (SFP), we first considered key data sources

in the field of software engineering and computer science.

These included IEEE Xplore, ACM Digital Library,

ScienceDirect, and SpringerLink. IEEE Xplore was

selected as the primary source due to its extensive

coverage of software engineering topics and publication

types. To formulate the search string, particular keywords

and their synonyms are selected from the identified

research questions, as shown in Table 1.

Table-I. Search String

Keyboards Alternatives/Synonyms

Software (Program OR System)

Defect

(Software fault OR software error OR bug prediction

OR fault detection OR error detection OR fault

prediction)

Prediction (Estimation OR Classification)

Ensemble (Integrated OR hybrid)

Learner

(Machine learning” OR “artificial intelligence” OR

“algorithm” OR “classifier” OR “technique” OR

“method” OR “feature selection” OR “model)

The keywords are then arranged with the conditions of

`AND' and `OR' in a particular sequence to form the

following query:

((“software'' OR “program'' OR “system”) AND (“software

fault” [Title] OR “software error” [Title] OR “bug

prediction” [Title] OR “fault detection” [Title] OR “error

detection” [Title] OR “fault prediction” [Title]) AND

(prediction'' OR ``estimation'' OR ``classification'‘) AND

(ensemble OR integrated OR hybrid) AND (“learning “OR

“machine learning” OR “artificial intelligence” OR

“algorithm” OR “classifier” OR “technique” OR “method”

OR “feature selection” OR “model”)).

iv. Literature Search Criteria

To refine the focus of this systematic review on software

fault prediction, we established a detailed set of inclusion

and exclusion criteria. These criteria were crucial in

selecting the most pertinent articles from the pool that

matched our search query. The requirements are detailed

in Tables 1 and 2. Following this rigorous screening

process, a total of 57 articles met the criteria and were

retained for in-depth analysis in our review.

v. Criteria for Data Extraction from Literature

To systematically gather information pertinent to our

research questions, data

extraction forms were

meticulously crafted. These

forms were instrumental in

http://doi.org/10.35940/ijese.B8280.13080725
http://doi.org/10.35940/ijese.B8280.13080725
http://www.ijese.org/

A Comparative Analysis of Techniques, Datasets, Feature Selection Methods, and Evaluation Metrics in

Software Fault Prediction

 28

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number:100.1/ijese.B828014020725
DOI:10.35940/ijese.B8280.13080725

Journal Website: www.ijese.org

capturing key information from the selected studies and

consisted of the components outlined in Table 4.

Table-II: Inclusion Criteria

No. Criteria Description

1
Focus on SFP

Techniques

Papers specifically focusing on software

fault prediction techniques.

2 Use of ML/AI
Studies that utilize machine learning or
artificial intelligence in fault prediction.

3
Empirical Data

and Case Studies

Research including empirical data,

experiments, or case studies.

4
Published in
Peer-Reviewed

Sources

Articles published in peer-reviewed

journals or conferences.

5 Language
Papers published in the English

language.

Table-III: Exclusion Criteria

No. Criteria Description

1 Non-Specific to SFP
Papers not specifically addressing

software fault prediction

2
Lack of Empirical
Data

Studies that lack empirical data or
case studies

3
Non-Peer-Reviewed

Sources

Articles published in non-peer-

reviewed sources

4 Publication Date
Papers published before the year
2020

5 Language Non-English language publications.

Table-IV: Quality Assessment Criteria Used for

Selection of Papers

Sr. No QA Checklist

 Does the selected study provide enough detail regarding

the use of research objectives for SFP
Methodologies/Techniques clearly defined, to answer

RQ1?
QA1

 Does the selected study Provide enough detail

regarding the types of datasets used in the studies,
correctly stated, and justified, to answer RQ2?

QA2

 Does the selected study Provide enough detail regarding

the types of feature selection techniques described and

their effectiveness evaluated, to answer the RQ3?
QA3

 Does the selected study Provide enough detail
regarding the types of software metrics utilized in SFP

research to answer the RQ4?
QA4

 Does the selected study Provide enough detail

regarding the evaluation criteria are commonly used
to measure the performance of SFP models, to answer

the RQ5?
QA5

B. Phase 2:

i. Conducting the Review

▪ Selection of Primary Studies

The selection of primary studies is a critical step in

any systematic literature review, as it lays the foundation

for understanding the current state of research, identifying

gaps, and determining the direction of future research.

Primary studies are chosen based on their relevance,

rigour, and contribution to the research questions posed.

In this paper, Primary Studies are known as the most

appropriate articles selected by following the tollgate

approach to answer the identified questions. The tollgate

approach, comprising five phases (P-1 to P-5), facilitates

the selection of 23 Primary Studies, as shown in Table 6.

The mentioned quality criteria (Table 3) are followed

during the selection of each primary study. The filters of

the tollgate phases are given as follows:

Table-V. Tollgate Approach

Selected

Sources
Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

IEEE

Xplore
300 70 50 24 5

ACM 250 50 40 20 6

Science

direct
350 60 35 15 5

Springer

Link
280 90 55 25 7

Total 1180 270 180 84 23

Phase 1 (P-1): Initially extracted data by using various

combinations of keywords from a search query.

Phase 2 (P-2): Removed duplicates and applied

inclusion/exclusion criteria by reading the title.

Phase 3 (P-3): Applied inclusion/exclusion criteria by

reading the abstract.

Phase 4 (P-4): Applied inclusion/exclusion criteria by

reading the introduction and conclusion.

Phase 5 (P-5): Applied inclusion/exclusion criteria by

reading the full text of selected studies. These articles are

considered primary studies

ii. Data Extraction

The extracted data from each primary study include the

following details: proposed/SFP technique, criteria for

performance evaluation, the tool used for SFP

implementation, datasets utilised for the experiments, and the

techniques with which proposed/used SFP methods are

compared. studies were chosen because they collectively

address the comprehensive set of research questions that span

a wide range of topics, from methodologies and datasets to

tools and evaluation criteria. Each study contributes unique

insights into the challenges and advancements within the

SFP, offering a rich, diverse, and up-to-date perspective on

the field.

iii. Data Synthesis

This stage involves the fusion of relevant extracted data,

determining the amount of data

needed to address each question, and compile and present the

data as shown in Fig. 2.

[Fig.2. Distribution of Primary Studies Over the Years]

3
2

0

11

5

2

2020 2021 2022 2023 2024 2025

http://doi.org/10.35940/ijese.B8280.13080725
http://doi.org/10.35940/ijese.B8280.13080725
http://www.ijese.org/

International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378 (Online), Volume-13 Issue-8, July 2025

 29

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number:100.1/ijese.B828014020725
DOI:10.35940/ijese.B8280.13080725

Journal Website: www.ijese.org

Table-VI: Selection of Primary Studied

Reference RQ1 RQ2 RQ3 RQ4 RQ5

Daza,2025 [6] ✓ × ✓ ✓ ✓

Goyal and Bhatia, 2021 [8] × ✓ × ✓ ×

Rathore and Kumar, 2021

[9]
✓ ✓ × × ✓

Qiao et al., 2020 [10] × ✓ × × ×

Boloori and Farhadi
,2024[11]

✓ ✓ ✓ × ✓

Elmishali and Kalech, 2023
[12]

× ✓ ✓ ✓ ×

Kaur et al., 2023 [13] ✓ × ✓ × ✓

Rajput et al., 2023 [14] ✓ ✓ × × ×

Arora et al., 2023 [15] [28] ✓ × ✓ × ✓

Mehmood et al., 2023 [16] ✓ ✓ × ✓ ×

Wang et al., 2023 [17] ✓ ✓ ✓ ✓ ×

Khan and Nadeem, 2023

[18]
× ✓ × × ×

Khalid and Ayub,2023[22] × ✓ ✓ ✓ ✓

Das and Alameen, 2023 [24] × ✓ ✓ ✓ ×

Yucalar et al., 2020 [25] × ✓ × ✓ ×

Pandey and Gupta,2024 [27] × ✓ × ✓ ×

Ali and Saeed,2020 [29] × ✓ ✓ ✓ ✓

Mafarja, Thaher and
Too,2023[35]

✓ ✓ ✓ × ✓

Alsangari and Biricik, 2023,

[55]
✓ ✓ × ✓ ✓

Haque, Ali and Noppen,
2024[50]

× × ✓ ✓ ✓

Albattah and Alzahrani,
2024[52]

× ✓ × ✓ ✓

Kaliraj and Sivakumar,
2024[55]

✓ ✓ ✓ × ×

Kumar and Das, 2025 [57] ✓ ✓ ✓ × ×

C. Phase 3:

i. Reporting the Review

▪ Quality Assessment

Each selected primary study is assessed against QA

criteria (Table 4) and assigned a score between 0 and 1, as

shown in Table 7. Many researchers adopt this process of

quality assessment in SLRs [23]. If the article explicitly

answers the QA question, the study is given a score of 1; if

it partially does, the score is 0.5.

If the study answers the question, it is given a score of 0.5.

A score of 0 is assigned to studies that fail to answer QA

questions. The final score is calculated by summing the

scores for all QA questions. After assessing the quality of

the selected primary studies, it was found that the score of

each primary study was greater than four against the QA

criteria. This finding indicates that the selected primary

studies provide sufficient information about ensemble

learners.

Table-VII: Quality Assessment for Primary Studies

Selection

Criteria RQ1: RQ2: RQ3 RQ4 RQ5:

Total

Score (out

of 5)

Include

(Yes/No)

QA1 ✔ (1) ✔ (1)
✔

(1)

✔

(1)
✔ (1) 5 Yes

QA2 ✔ (1)
➖

(0.5)

✔

(1)

➖

(0.5)
✖ (0) 3 Yes

QA3 ✖ (0)
✖

(0)

➖

(0.5)

✖

(0)
✖ (0) 0.5 No

QA4 ✔ (1) ✔ (1)
✔

(1)

✔

(1)

➖

(0.5)
4.5 Yes

QA5 ✔ (1) ✔ (1)
✔

(1)

➖

(0.5)
✔ (1) 4.5 Yes

 ✔ = Yes (1

point)

➖ = Partial (0.5

points)
✖ = No (0 points)

ii. Results

The final stage of the systematic research process involves

evaluating the answers to identified research questions

following a critical review. The detailed extracted answers

from each primary study are discussed in the given section.

iii. Software Fault Prediction Methodologies/ Techniques

and Associated Challenges.

Software quality assurance (SQA), which includes formal

code inspections, code walkthroughs, software testing,

validation, verification, and software fault prediction,

ensures the desired software quality at a lower cost by

monitoring and controlling the Software Development Life

Cycle (SDLC) [10]. However, complete testing of a software

system is practically not possible as it consumes an

enormous amount of time and resources. SFP techniques

can be broadly categorized into traditional statistical,

machine learning, deep learning, and metaheuristic-based

hybrid approaches: The taxonomy of soft computing

techniques is given in Fig. 3.

iv. RQ1: What are the Most Commonly Used

Methodologies/ Techniques for Software Fault

Prediction?

This section presents a synthesis of the findings pertinent to

Research Question 1 (RQ1) - "Which kind of Techniques are

most used for software fault prediction?". For RQ1, we

observed a diverse range of techniques employed across the

selected studies. The techniques were often tied to specific

periods where methodologies were at the forefront of

research due to advancements in machine learning and

computational capabilities. In this section, a comparative

analysis of the work of numerous researchers in the field of

Software fault prediction methodologies and techniques is

discussed. The comparative analysis encompasses the work

of various researchers in the field of methods and techniques

used in software fault prediction from 2020 to 2025. The

work of researchers is compared in terms of techniques,

Objective, Result, and challenge of their research work and is

shown in Table 8 The figure 3. illustrates a taxonomy of

Software Fault Prediction (SFP) techniques, categorizing

them into five major groups: Traditional Statistical Methods,

Machine Learning Techniques, Deep Learning Approaches,

Ensemble Techniques and Hybrid

and Graph-Based Techniques.

The figure provides a

comprehensive overview of

how software fault prediction

http://doi.org/10.35940/ijese.B8280.13080725
http://doi.org/10.35940/ijese.B8280.13080725
http://www.ijese.org/

A Comparative Analysis of Techniques, Datasets, Feature Selection Methods, and Evaluation Metrics in

Software Fault Prediction

 30

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number:100.1/ijese.B828014020725
DOI:10.35940/ijese.B8280.13080725

Journal Website: www.ijese.org

techniques have evolved—from simple statistical models to

complex hybrid models involving deep learning and

optimization algorithms [40]. Each category has distinct

advantages and trade-offs, depending on the data complexity

and prediction goals. This figure captures the evolution and

diversification of techniques in software fault prediction:

Early approaches relied on simple, interpretable models (e.g.,

Logistic Regression). Then, machine learning brought

automation and better generalization. Deep learning pushed

the frontier with highly complex, data-hungry models.

Ensemble methods focused on combining models for

robustness [50]. Most recently, hybrid approaches like graph-

based learning with metaheuristics aim to maximize feature

interaction understanding and optimize prediction accuracy.

Each category has its trade-offs in terms of interpretability,

accuracy, data requirements, and computational cost. The

best choice often depends on the dataset characteristics and

project constraints.

[Fig.3: The Taxonomy of Software Fault Prediction

Methodologies /Techniques]

v. Software Fault Prediction Feature Selection

Methodology /Techniques and Associated Challenges

 Software Fault Prediction (SFP), feature selection plays a vital

role in improving model performance, interpretability, and

generalization by identifying the most relevant software metrics.

Feature selection is the process of identifying and selecting a

subset of pertinent and significant features (attributes/metrics)

from a larger set of data. In Software Engineering, this is

particularly important in areas such as software fault prediction,

Effort Estimation, Code Smell Detection, Software Maintenance

and Evolution, and Defect Localisation. Feature selection in

software engineering helps focus on the most important

factors influencing quality, productivity, or maintenance. It

enhances model performance, supports better decisions, and

can guide improvements in software design, testing, and

development. Choosing the proper feature selection method

depends on the Dataset size and nature, as well as the

Prediction goals (e.g., fault vs. effort). Desired balance

between accuracy, interpretability, and scalability. [57]

Below is a summary of the most applied feature selection

techniques categorized by methodology

Table-VIII: Representation of the Feature Selection

Techniques in SFP

Category Technique Name

Filter Methods - Information Gain (IG)

- Chi-Square
- ReliefF

Wrapper

Methods

- Forward Selection

- Backwards Elimination

- Recursive Feature Elimination (RFE)

Embedded

Methods

- LASSO (L1 Regularization)

- Ridge (L2)

- Tree-Based (e.g., Random Forest)

Metaheuristic /
Hybrid

Methods

- Genetic Algorithm (GA)
- Particle Swarm Optimization (PSO)

- Whale Optimization Algorithm (WOA)
- Grey Wolf Optimizer (GWO)

- Graph-based Hybrid Approaches

Table 9 Representation of the Feature Selection Techniques in

SFP. The Filter methods are fast, but may ignore feature

interactions. Wrapper methods give better performance, but are

slow. Embedded methods balance speed and accuracy.

Metaheuristics are particularly effective for large and complex

datasets and have gained

popularity in recent SFP

research.

http://doi.org/10.35940/ijese.B8280.13080725
http://doi.org/10.35940/ijese.B8280.13080725
http://www.ijese.org/

International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378 (Online), Volume-13 Issue-8, July 2025

 31

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number:100.1/ijese.B828014020725
DOI:10.35940/ijese.B8280.13080725

Journal Website: www.ijese.org

Table-IX: Comprehensive Overview of Software Fault Prediction Methodologies/Techniques

Ref. No Aim of the Study Methodologies/Techniques Objectives Result Challenges

[2]

Software Fault

Prediction Using an

RNN-Based Deep

Learning Approach

and Ensemble Machine

Learning Techniques

RNN-based deep learning

approach (RNNBDL)

Adoption of advanced

machine learning and deep

learning techniques in the

software development

lifecycle

The RNNBDL model

demonstrated the highest

accuracy (ACC) on large

datasets, such as Apache

ActiveMQ and SFP XP-

TDD.

Indicates a direction

towards creating a novel

hybrid technology that

combines various

methodologies for

software fault prediction

[3]

BPDET: An Effective

Software Bug

Prediction Model using

Deep Representation

and

Ensemble Learning

Techniques

Bug Prediction Model using

Deep Representation and

Ensemble Learning

Techniques

proposes a classification

framework called Bug

Prediction using Deep

Representation and

Ensemble Learning

(BPDET) for SBP. The

research focuses on

improving the performance

of SBP models using deep

learning techniques

The proposed BPDET

model outperformed

baseline methods in

eight out of twelve

datasets

The class imbalance

problem, which affects

the accuracy of

predicting faulty and

non-faulty modules

[5]

A new Ensemble

approach for Software

Fault

Prediction

Model averaging ensemble

method (combinations of

classifiers and resampling

techniques)

The study aims to

investigate the impact of

different classifiers and

resampling techniques on

software fault prediction

(SFP) performance.

Significant results were

found for all classifiers

except Naive Bayes in

the Friedman test.

The research also

highlights the scarcity of

studies that report the

impact of resampling

techniques on classifier

performance.

[4]

An empirical study of

ensemble techniques

for software fault

Prediction

Ensemble techniques such as

Dagging, Decorate, Grading,

Multi BoostAB, Real

AdaBoost, Rotation Forest,

Ensemble Selection and

classification algorithms are

naive Bayes, logistic

regression, and J48 (decision

tree)

It aims to evaluate the cost-

effectiveness of SFP

models based on the

ensemble techniques used.

Cost-benefit analysis

indicates that SFP

models can save testing

costs for 20 out of 28

datasets.

It notes that many new

ensemble techniques

have not been explored

for software fault

prediction.

[7]

A Deep Ensemble

Learning Method for

Effort-Aware

Just-In-Time Defect

Prediction

Fusion-based method that

combines deep learning

techniques with Random

Forest and XGBoost

classifiers.

The research also

introduces a reinforcement

learning technique to

minimize false alarms in

real-time predictions.

The study highlighted

the importance of

handling unbalanced

data for effective model

performance.

The paper discusses the

challenges associated

with the unbalanced

properties of datasets,

which can impact the

performance of defect

prediction models.

[9]

Software fault

prediction based on the

dynamic selection of

learning technique:

findings from the

Eclipse project study

It evaluates learning

techniques: Naive Bayes

(NB), Logistic Regression

(LR), K-Nearest Neighbour

(KNN), Support Vector

Machine (SVM), Multilayer

Perceptron (MLP), and

Decision Tree (J48)

It focuses on selecting the

most appropriate learning

techniques for fault

prediction modelling.

The approach effectively

predicted software

faults, enhancing

reliability and quality.

These challenges

underline the need for

comprehensive

experimental analysis

and cost-benefit

evaluation in SFP

approaches.

[23]

Nature-Inspired

Approaches in

Software Fault

Prediction

Nature-inspired algorithms,

Ant Colony, Particle, Swarm

Optimization, Firefly, Bat,

Harris Hawks, and Genetic

Algorithm,

The research aims to

investigate the performance

of various nature-inspired

optimization algorithms for

software fault prediction

The Firefly algorithm

performed best on the

CM1 dataset, achieving

an accuracy of 79.38%

with only 13 features.

The paper does not

specify the evaluation

metrics used to assess the

performance of the

algorithms

[27]

Software fault

prediction using the

Whale algorithm with

genetics algorithm

Whale algorithms with

Genetic algorithms and SVM

classifiers

The paper aims to develop a

software fault prediction

model integrating a genetic

algorithm, Whale

optimization algorithm, and

an SVM classifier

The integration of SVM

with optimization

algorithms improved

prediction performance

in terms of accuracy,

precision, recall, and F-

measure

The paper discusses the

challenge of identifying

definitive domain

requirements during the

test case generation

process, which can lead

to inefficiencies

[38]

Software defect

prediction based on

kernel PCA and

weighted extreme

learning machine

KPWE, combining Kernel

Principal Component

Analysis (KPCA) and

Weighted Extreme Learning

Machine (WELM)

The research evaluates the

performance of KPWE

against 41 baseline

methods across multiple

software projects.

The KPWE method

outperforms 41 baseline

methods in defect

prediction across 44

software projects.

The complex structures

of software defect data

make it challenging to

extract suitable features

and learn effective

models.

http://doi.org/10.35940/ijese.B8280.13080725
http://doi.org/10.35940/ijese.B8280.13080725
http://www.ijese.org/

A Comparative Analysis of Techniques, Datasets, Feature Selection Methods, and Evaluation Metrics in

Software Fault Prediction

 32

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number:100.1/ijese.B828014020725
DOI:10.35940/ijese.B8280.13080725

Journal Website: www.ijese.org

Table-X: Comprehensive Overview of Software Fault Prediction Methodologies/Techniques

Ref. No Aim of the Study Methodologies/Techniques Objectives Result Challenges

[10]

Deep Learning Based

Software Defect

Prediction

support vector regression

(SVR), Fuzzy support vector

regression (FSVR) is also

utilized in the proposed

approach.

It aims to evaluate the

proposed model's

performance using the mean

squared error (MSE) and the

coefficient of determination.

The paper evaluates the

proposed approach using

performance metrics,

such as MSE and R²,

through 10-fold cross-

validation on two

datasets.

The challenge lies in

selecting the dataset,

which affects defect

prediction performance

across different datasets.

[11]

Enhancing software

defect prediction

models using

metaheuristics with a

learning to rank

approach.

TR (Learning To Rank) and

metaheuristics optimize.

The study focuses on

improving defect density

prediction through a hybrid

machine learning model.

Hyperparameter tuning

with metaheuristics

enhanced the overall

model.

The complex nature of

datasets makes building

accurate machine learning

models a challenging task.

[15]

Nature-Inspired

Approaches in

Software Fault

Prediction.

Nature-inspired algorithms,

Ant Colony, Particle Swarm

Optimization, Firefly, Bat,

Harris Hawks, and Genetic

Algorithm.

The research aims to

investigate the performance

of various nature-inspired

optimization algorithms for

software fault prediction.

The Firefly algorithm

performed best on the

CM1 dataset, achieving

an accuracy of 79.38%

with only 13 features.

The paper does not specify

the evaluation metrics used

to assess the performance

of the algorithms.

[26]

Software fault

prediction using the

Whale algorithm with

the genetics algorithm.

Whale algorithms with

Genetic algorithms and SVM

classifiers.

The paper aims to develop a

software fault prediction

model that integrates a

genetic algorithm, a Whale

optimisation algorithm, and

an SVM classifier.

The integration of SVM

with optimization

algorithms improved

prediction performance in

terms of accuracy,

precision, recall, and F-

measure

The paper discusses the

challenge of identifying

definitive domain

requirements during the

test case generation

process, which can lead to

inefficiencies

[27]

Software defect

prediction based on

kernel PCA and

weighted extreme

learning machine

KPWE, combining Kernel

Principal Component Analysis

(KPCA) and Weighted

Extreme Learning Machine

(WELM)

The research evaluates the

performance of KPWE

against 41 baseline methods

across multiple software

projects.

The KPWE method

outperforms 41 baseline

methods in defect

prediction across 44

software projects.

The complex structures of

software defect data make

it challenging to extract

suitable features and learn

effective models.

[44]

A hybrid model of

wavelet neural network

and metaheuristic

An algorithm for

software development

effort estimation

hybrid model: - neural

network (WNN) and

metaheuristic algorithms:

firefly algorithm and the bat

algorithm

The research evaluates the

proposed techniques on

PROMISE SDEE

repositories to assess their

effectiveness

The study indicates that

the WBG technique

performs best on the

COCOMO and NASA93

datasets

The paper highlights the

challenge of estimating

software development

effort (SDEE) due to the

unknown characteristics of

the software at the time of

estimation,

[47]

Transfer Learning

Code Vectorizer-based

Machine Learning

Models for Software

Defect Prediction.

Use of transfer learning with

the Universal Language

Model Fine Tuning

(ULMFiT) for defect

prediction

The paper aims to utilize

transfer learning for defect

prediction by deriving

features from software source

code text.

It discusses the correlation

between data quality and

the performance of

machine learning

algorithms.

The high computational

cost associated with

machine learning methods

is also mentioned as a

challenge.

[54]

A Software Defect

Prediction Method

Based on Program

Semantic Feature

Mining

Semantic feature mining

(PSFM method)

It focuses on extracting

semantic information from

source code to enhance defect

prediction accuracy.

The paper demonstrates

improved performance in

software defect prediction

compared to other deep

learning methods.

The paper highlights that

current methods lack

features to mine defect

manifestations at the

semantic level of code.

RQ3: Which Feature Selection Techniques are

Commonly Applied in SFP?

Research Question 3 (RQ3) - "What types of feature

selection techniques are described and their effectiveness

evaluated, to answer the RQ3? " For RQ3, the feature

selection techniques used in the studies were analyzed. The

feature selection techniques described, along with their

effectiveness in determining the generalizability and

applicability of the SFP techniques, are presented in Table

10. It explores types of feature selection techniques, specific

algorithms that are most frequently applied, and certain

techniques that are preferred over others. RQ3, we can guide

future researchers to choose the

most effective feature

selection techniques,

understand the trade-offs

http://doi.org/10.35940/ijese.B8280.13080725
http://doi.org/10.35940/ijese.B8280.13080725
http://www.ijese.org/

International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378 (Online), Volume-13 Issue-8, July 2025

 33

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number:100.1/ijese.B828014020725
DOI:10.35940/ijese.B8228.13080725

Journal Website: www.ijese.org

among various methods and design more accurate and

efficient fault prediction models.

vi. Software Fault Prediction Datasets, Sizes, Software

Metrics and Evaluation Criteria

Software Fault Prediction (SFP), datasets play a crucial role

in training and evaluating models. These datasets typically

consist of software metrics (features) and fault labels (target

values) for each module (e.g., class, file, function). The goal

is to predict whether a software module is faulty or non-

faulty. [19]. Commonly Used Datasets in Software Fault

Prediction are: -

Datasets: - (1) NASA MDP Datasets Provided by the

NASA Metrics Data Program (MDP), these are the most

widely used datasets in SFP research. Dataset CM1

(Spacecraft instrument software), PC1 (Flight software), KC1

(Storage management for ground support), KC2 (Storage

management system), KC3 (Scientific instrument controller),

MC1 (Space shuttle software), MC2 (Flight software), JM1

(Real-time predictive ground system), and MW1(Missile

warning system) Each dataset typically includes: Software

metrics: e.g., LOC, cyclomatic complexity, Halstead metrics,

coupling, cohesion. Defect labels: Binary labels indicating

fault-prone (1) or fault-free (0) modules [21].

 (2) PROMISE Repository includes NASA datasets and

others like JEdit, Ant, and Eclipse. Contains both static code

metrics and process metrics (e.g., number of revisions, bug

reports) [30]

 (3) Eclipse Datasets (Bug Prediction) Collected from the

Eclipse open-source IDE. Data from multiple releases (e.g.,

2.0, 2.1, 3.0). Contains metrics from Eclipse's CVS, Bugzilla,

and static analysis tools. Often used for temporal and just-in-

time defect prediction.

Features (Software Metrics) in SFP Datasets. These

datasets generally include the following types of features:

Size Metrics - LOC (Lines of Code), Number of

Functions/Classes. Complexity Metrics: - Cyclomatic

Complexity and Halstead Metrics (volume, effort, bugs).

Coupling & Cohesion Metrics and Coupling Between Objects

(CBO), Lack of Cohesion in Methods (LCOM). Change

Metrics: - (AEEEM, Eclipse) Number of revisions, Number

of bug-fixes, Recent changes.

Data Characteristics and Challenges: Imbalanced data: -

Most modules are non-faulty; faulty ones are fewer (class

imbalance). Noisy data: -Fault labels may be inaccurate or

missing. High dimensionality: -Some datasets contain many

features, requiring feature selection. Cross-project

generalization: - A model trained on one project may not

perform well on another [34].

Software Metrics: Common software metrics used in fault

prediction or maintenance include Size Metrics, such as lines of

code (LOC) and the Number of Functions. Complexity Metrics:

- Cyclomatic Complexity and Halstead Metrics. Coupling &

Cohesion Metrics: -Coupling Between Objects (CBO) and

LCOM (Lack of Cohesion in Methods). Testing Metrics: - Code

coverage and Number of test cases. Change/Process Metrics: -

Number of revisions, Bug-fix count and Code churn. Object-

Oriented Metrics: - DIT (Depth of Inheritance Tree), NOC

(Number of Children) [33]

Evaluation Criteria: - Software Fault Prediction (SFP),

evaluation criteria refer to the quantitative metrics used to assess

the performance of a classifier or prediction model. These

metrics indicate how effectively the model can distinguish

between faulty and non-faulty software modules [39]. Since SFP

is typically applied to imbalanced datasets (containing a small

number of faulty instances), selecting the right evaluation

metrics is crucial for an accurate and meaningful performance

assessment. The most common Key Evaluation Metrics in

SFP are Accuracy, which is the overall proportion of correct

predictions. Precision: - Proportion of predicted faulty modules

that are genuinely faulty. Recall (Sensitivity or True Positive

Rate): Proportion of actual faulty modules correctly predicted.

F1-Score Meaning: Harmonic mean of Precision and Recall.

Specificity (True Negative Rate): Proportion of actual non-faulty

modules correctly predicted. [20]

RQ2: What types & typical sizes of datasets are

predominantly used in software fault prediction

And

RQ4: Which types of software metrics are utilized in

SFP research

And

RQ5: What evaluation criteria are commonly used to

measure the performance of SFP models?

Research Question 2 (RQ2) - "What kind of dataset is most

used for software fault prediction?" For RQ2, the datasets used

in the studies were analyzed. The size of these datasets and the

types of programming languages they encompass are critical

factors in determining the generalizability and applicability of

the SFP techniques. Research Question 4 (RQ4): “What types of

software metrics are utilized in SFP research?” For RQ4, the

types of software metrics used in SFP research are diverse and

designed to capture different facets of code quality and

evolution. Selecting the right combination of metrics has a

significant impact on the performance of fault prediction models.

Modern research often employs hybrid feature sets that combine

static, object-oriented, and process metrics to achieve the best

results [45]. Research Question 5 (RQ5) “What evaluation

criteria are commonly used to measure the performance of SFP

models?” Describe through a set of evaluation criteria —

especially Accuracy, Precision, Recall, F1-score, AUC-ROC,

and AUC-PR, with selection

depending on data balance,

domain needs, and risk level

[46] and described in Table 11.

http://doi.org/10.35940/ijese.B8228.13080725
http://doi.org/10.35940/ijese.B8228.13080725
http://www.ijese.org/

A Comparative Analysis of Techniques, Datasets, Feature Selection Methods, and Evaluation Metrics in

Software Fault Prediction

 34

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number:100.1/ijese.B828014020725
DOI:10.35940/ijese.B8280.13080725

Journal Website: www.ijese.org

Table-XI: Comprehensive Overview of Feature Selection Techniques in Software Fault Prediction

Ref. No Aim of the study
Feature Selection

Techniques / Methodologies
Objectives Result Challenges

[8]

Software fault

prediction using lion

optimization algorithm

Lion Optimisation-based

Feature Selection (LiOpFS)

The research focuses on

selecting optimal feature

subsets from high-

dimensional defect

datasets

LiOpFS

outperforms

baseline

techniques,

achieving an AUC

of 90.1% and an

accuracy of 94.2%

The paper discusses the

challenge of the Curse of

Dimensionality, which

threatens the

performance of

classifiers in predicting

fault-prone software

modules

[12]

Issue-Driven Features

for Software Fault

Prediction

Issue-Driven features

The research aims to

evaluate the performance

of fault prediction models

using issue-driven

features compared to

traditional feature sets.

Issue-driven

features showed a

6% to 13%

improvement in

AUC across 86

open-source

projects.

The paper discusses the

challenge of accurately

predicting software

faults, which is

exacerbated by the

complexity of modern

software systems.

[16]

A Novel Approach to

Improve Software

Defect Prediction

Accuracy Using

Machine Learning

Random Forest, Logistic

Regression, Multilayer

Perceptron, Bayesian Net,

Rule ZeroR, J48, Lazy IBK,

Support Vector Machine,

Neural Networks, and

Decision Stump

The objective is to enhance

defect prediction accuracy

by applying feature

selection techniques to five

NASA datasets: CM1,

JM1, KC2, KC1, and PC1.

On average, feature

selection enhances

defect prediction

accuracy by 5%

The proposed method

heavily relies on feature

selection techniques to

enhance prediction

accuracy

[24]

Feature Selection

Using Golden Jackal

Optimization for

Software Fault

Prediction

Golden Jackal Optimization

(GJO) algorithm, (which is

inspired by the hunting tactics

of golden jackals.)

The paper aims to apply

effective feature selection

methods to identify a

precise and interpretable

model.

FSGJO

outperformed other

feature selection

techniques,

achieving higher

accuracy in most

datasets tested.

The performance of the

GJO algorithm varies

significantly depending

on the characteristics of

the dataset used.

[26]

Boosted Whale

Optimization

Algorithm With

Natural Selection

Operators for Software

Fault Prediction

Whale Optimization

Algorithm (WOA)

The paper aims to propose

new variants of the Whale

Optimization Algorithm

(WOA) for feature

selection in software fault

prediction (SFP)

applications

new variants of the

Whale

Optimization

Algorithm (WOA)

as wrapper

algorithms

specifically

designed to address

feature selection

challenges in SFP

applications

Class imbalance in

software fault prediction

datasets poses a

significant challenge

[29]

Software Defect

Prediction Using

Variant-based

Ensemble Learning

and Feature Selection

Techniques

Variant-based ensemble

learning and feature selection

techniques

The research aims to

propose a classification

framework for predicting

defect-prone software

modules, thereby

reducing testing costs in

software development.

The proposed

framework

achieved F-

Measure,

Accuracy, and

MCC scores of

0.507, 84.974, and

0.488 on the JM1

dataset.

The paper discusses the

challenge of high costs

associated with the

testing process in

software development,

particularly when fixing

defects during testing,

which can lead to

increased project

completion time.

[30]

Performance Analysis

of Feature Selection

Methods

in Software Defect

Prediction: A Search

Method Approach

selection (FSS) methods:

Correlation-based Feature

Subset Selection (CFS) and

Consistency Feature Subset

Selection (CNS)

The paper aims to analyze

the performance of

various feature selection

(FS) methods in software

defect prediction (SDP)

models

It highlights that

the performance of

FS methods varies

across datasets and

classifiers

The selection of

performance metrics,

such as accuracy and

stability measures, poses

challenges in evaluating

prediction models

http://doi.org/10.35940/ijese.B8280.13080725
http://doi.org/10.35940/ijese.B8280.13080725
http://www.ijese.org/

International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378 (Online), Volume-13 Issue-8, July 2025

 35

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number:100.1/ijese.B828014020725
DOI:10.35940/ijese.B8228.13080725

Journal Website: www.ijese.org

Table-XII: Comprehensive Overview of Feature Selection Techniques in Software Fault Prediction

Ref. No Aim of the Study
Feature Selection

Techniques / Methodologies
Objectives Result Challenges

[31]

Feature selection using the

firefly algorithm in
software defect

prediction

firefly algorithm (FA)

The study proposes a
new technique inspired

by the behaviour of

fireflies for effective
feature selection.

Support Vector

Machine (SVM)

with feature
selection (FS)

achieved a

classification
accuracy that was

4.53% higher than

SVM without FS.

The need for

effective feature
selection to manage

software quality and

predict defects is
emphasized as a

challenge

[32]

A Classification

Framework for Software

Defect Prediction Using
Multi-Filter Feature

Selection

Technique and MLP

Multi-Filter Feature Selection

Technique and Multi-Layer

Perceptron (MLP)

The framework is
designed to enhance

software quality by

identifying modules that
require thorough testing

MLP-FS-ROS

outperformed in F-

Measure and MCC,
while MLP-FS

excelled in

Accuracy

The paper discusses
the challenge of class

imbalance in

datasets, which can
significantly affect

the performance of

classification
techniques.

[34]

A Framework for Software

Defect Prediction Using

Feature Selection and
Ensemble Learning

Techniques

Wrapper approach with

Artificial Neural Network

(MLP) AND search methods:
Best First, Greedy Stepwise,

Genetic Algorithm, Particle

Swarm Optimization, Rank
Search, and Linear Forward

Selection

The research aims to

develop a framework for
software defect

prediction using feature

selection and ensemble
learning techniques.

The results indicate
that no single

search method

consistently
outperformed base

classifiers across all

datasets.

No classification
technique achieved

100% accuracy,

indicating inherent
challenges in

software defect

prediction.

[35]

Classification framework

for faulty software using an

enhanced exploratory
whale optimiser-based

feature selection scheme
and random forest

ensemble learning

Binary Whale Optimization

Algorithm (BWOA)

The objective is to
enhance classification

performance by selecting

the most informative
features and eliminating

those that are irrelevant.

The study

highlights the high
accuracy achieved

despite the

complexity and
computation cost of

the proposed
methodology.

The paper highlights

the need for efficient

methods to improve
algorithm

performance, given
the No Free Lunch

argument.

[36]

An effective feature

selection-based
cross‑project defect

prediction model for

software quality
improvement

cross-project defect prediction
(CPDP): MIC_SM_FS and

BPSO_FS. (Binary particle

swarm optimization algorithm)

The paper aims to

propose a novel CPDP
approach with two

distinct feature selection

strategies, one non-
iterative and one iterative

BPSO_FS achieved

comparable
performance to

baseline ALL with

a 65% reduction in
features

The paper discusses

the challenge of

distribution
dissimilarity

between source and

target project data,
which limits the

capability of cross-

project defect
prediction (CPDP)

models

[38]

3PcGE: 3-parent child-

based genetic evolution for
software defect prediction

3PcGE (three-parent child-

based genetic evolution)

The research aims to

demonstrate that 3PcGE
enhances the

performance of SDP

classifiers as a feature
selector

The proposed
3PcGE technique

outperforms filter-

based FS
techniques by

18.98% in the AUC

measure

The challenge of this

work will involve
expanding datasets

and exploring

additional multi-
objective algorithms

[41]

Optimal Feature Selection

through Search-Based
Optimizer in Cross-Project

Search-based optimizer

The research aims to

select optimal features

from multi-class data for
cross-project defect

prediction (CPDP) using
a search-based optimizer.

The research
demonstrated that

feature selection

enhances prediction
accuracy in cross-

project defect
prediction

scenarios.

The paper discusses

the challenge of
heterogeneous data

in cross-project
defect prediction

(CPDP), affecting

model performance.

[42]

A two‐stage transformer

fault diagnosis [43] method
based on multi‐filter

interactive feature

selection, integrated
adaptive Sparrow, and an

algorithm-optimised

support vector machine

multi‐filter interactive feature
selection method (MIFS) and

adaptive sparrow algorithm

(ASSA) optimized support
vector machine (SVM). (

ASSA‐SVM)

It proposes a two-stage
integration model,

MIFS-ASSA-SVM, for

improved feature
selection and parameter

optimization

The optimal feature

subset selected

under ReliefF-
mRMR showed the

highest mean

accuracy and the
least dimension

Redundant high-
dimensional feature

sets can waste

computing power
and complicate fault

identification

http://doi.org/10.35940/ijese.B8228.13080725
http://doi.org/10.35940/ijese.B8228.13080725
http://www.ijese.org/

A Comparative Analysis of Techniques, Datasets, Feature Selection Methods, and Evaluation Metrics in

Software Fault Prediction

 36

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number:100.1/ijese.B828014020725
DOI:10.35940/ijese.B8280.13080725

Journal Website: www.ijese.org

Table-XIII: Comprehensive Overview of Feature Selection Techniques in Software Fault Prediction

Ref. No Aim of the Study
Feature Selection Techniques /

Methodologies
Objectives Result Challenges

[51]

A Study on Software

Defect Prediction

using Feature
Extraction

Techniques

feature extraction techniques: Principal

Component Analysis (PCA), Linear
Discriminant Analysis (LDA), Kernel-

based Principal Component Analysis (K-

PCA), and Autoencoders. And Support
Vector Machine (SVM) classifier

It explores the impact of
different feature extraction

methods on software defect

prediction

The study found that

Autoencoders
achieved the highest

performance based

on ROC-AUC with a
p-value of 0.009

The findings are based on
experimental results

without real-world

validation.

[48]

A software defect

prediction method
with metric

compensation based

on feature
selection and transfer

learning

peUpMeCom, which integrates metric

compensation based on transfer learning

and Pearson feature selection

The research introduces a

metric compensation

technique to handle
significant distribution

differences between source

and target projects

The proposed method

improves defect
prediction accuracy

using metric

compensation based
on feature selection

and transfer learning

The main external threat

to validity identified in the
paper is dataset bias,

which raises concerns

about the generalizability
of the proposed defect

prediction model

[57]

Cost-Effective
Prediction Model for

Optimal Selection of

Software
Faults Using Coati

Optimization

Algorithm

A novel feature selection (FS) method

called FS using Coati Optimization

Algorithm (FSCOA) and classifiers: K-

Nearest Neighbors (KNN), Quadratic

Discriminant Analysis (QDA), Decision
Trees (DT), and Naive Bayes (NB)

The algorithm aims to

select relevant and optimal

subsets of features from

large datasets to enhance

the performance of the
machine learning model.

The FSCOA model

outperformed other

feature selection
algorithms in over

90% of test cases.

Data Quality Issues, Curse

of Dimensionality and

Optimization Algorithm

Challenges of this Paper

Table-XIV: Comprehensive Overview of Software Fault Prediction Datasets, Sizes, Software Metrics and

Evaluation Criteria

Ref. No Aim of the Study
Datasets Types /

Sizes

Software

Metrics
Evaluation Criteria Result Challenges

[2]

Software Fault

Prediction Using an

RNN-Based Deep
Learning Approach

and Ensemble

Machine Learning
Techniques

Eclipse (Java-
based open-

source), Apache

Active MQ (JIRA
bug repository) and

large sample sizes.

Chidamber and
Kemer (CK)

metrics, Object-

Oriented (OO)
metrics, and

entropy metrics

Accuracy (ACC), Area
Under Curve (AUC), F-

measure (FM), Cohen’s

Kappa (KE), Precision,
Recall, True Negative

Rate

ensemble ML

Accuracy: 94.38%
(Random Tree with

RF) on Apache

Active MQ and
79.93% (SVM with

RF) on the Eclipse

dataset

Development of a new

dataset using JavaDoc
documents and integrating

transfer learning into the

newly developed dataset

[3]

BPDET: An Effective

Software Bug

Prediction Model
using Deep

Representation and

Ensemble Learning
Techniques

12 data sets from

NASA's PROMISE

Basic Halsted,
Derived Halsted,

and McCabe

ROC (receiver

operating characteristic

curve), F-measure,
Matthew’s correlation

coefficient (MCC) and

precision-recall area
(PRC)

The MCC values
of BPDET is highest

for CM1 (0.420),

It highlights issues such as
missing values, data

redundancy, and irrelevant

features that hinder the
effective detection of

faulty modules.

[4]

An empirical study of
ensemble techniques

for software fault

prediction

28 benchmarked

software fault

datasets from the
PROMISE data

repository

object-oriented

software metrics

precision, recall, AUC
(area under the ROC

curve), specificity, and

G-means

Ensemble techniques

produced mean
values greater than

0.7 for most

performance
measures.

The study indicates that

previous analyses were

restricted to a few fault
datasets and ensemble

techniques

[7]

An ANN-Based

Approach for

Software Fault
Prediction Using

Object-Oriented

Metrics

18 public datasets

from the PROMISE

repository

object-oriented
metrics

ROC-AUC (receiver
operating characteristics

area under the curve),

accuracy, and mean
squared error (MSE

The accuracy of the

proposed model

ranges from 92% to
93%, demonstrating

high prediction

reliability.

The selection of
appropriate metrics for

fault prediction is

identified as a critical
challenge.

[9]

Software fault

prediction based on
the dynamic selection

of learning technique:

findings from the
Eclipse project study

5 Eclipse project

datasets: JDT core,

PDF UI, Equinox
framework, Lucene,

and Mylyn

Object-oriented

accuracy, AUC,

sensitivity, and
specificity

Accuracy for Eclipse
datasets was at least

0.70, peaking at

0.877

The paper discusses the

challenge of selecting

suitable learning
techniques for SFP due to

variations in prediction

performance across
different software

systems.

[18]

Evaluating the
effectiveness of

decomposed

Halstead Metrics in
software fault

prediction

5 public datasets

Halstead base

metrics, McCabe

metrics, and Lines
of Code (LoC).

Accuracy, F-measure,
and Area Under Curve

(AUC)

Accuracy improved

from 0.82 to 0.97, F-
measure from 0.81 to

0.99, and AUC from

0.79 to 0.99

The research indicates

that different datasets may
exhibit distinct

characteristics affecting

performance.

http://doi.org/10.35940/ijese.B8280.13080725
http://doi.org/10.35940/ijese.B8280.13080725
http://www.ijese.org/

International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378 (Online), Volume-13 Issue-8, July 2025

 37

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number:100.1/ijese.B828014020725
DOI:10.35940/ijese.B8228.13080725

Journal Website: www.ijese.org

Table-XV: Comprehensive Overview of Software Fault Prediction Datasets, Sizes, Software Metrics and Evaluation Criteria

Ref. No Aim of the Study
Datasets Types /

Sizes

Software

Metrics

Evaluation

Criteria
Result Challenges

[27]

Software Metrics

Selection for Fault
Prediction: A Review

limited number of

datasets

Lines of

Code
(LOC).

Not specified

variation in metric

performance across
different programming

languages, suggesting

further investigation is
needed.

Achieving high software

quality while meeting
predetermined goals is a

significant challenge due

to traditional testing
limitations

[42]

Performance

Evaluation of various
ML techniques

for Software Fault

Prediction using the
NASA dataset

JM1 provided by

NASA
21 features

Accuracy (ACC),

recall, precision,
and F1-score

RF classifier showed
improved accuracy of

92.28140% with

random sampling

Software developers face

significant challenges in
creating high-quality

software, requiring

adherence to a series of
actions and restrictions

[47]

Software Fault

Prediction Using
LSSVM with Different

Kernel Functions

PROMISE

repository and 15
fault prediction

datasets are used

object-
oriented

Accuracy,

F−Measure, True
Positive (TP), True

Negative (TN),

False Positive

(FP), and False

Negative (FN)

The study analysed the
results using box plots,

which showed high

median values for the

LSSVM models.

The paper does not

address the number of

faults present in a
module, which is a

significant challenge in

fault prediction.

[53]

Software Quality

Prediction: An

Investigation
Based on Artificial

Intelligence

Techniques
for Object-Oriented

Applications

PROMISE data

repository and (8)
eight open-source

real-world

software projects
such as Tomcat,

Velocity, Ivy,

Jedit, Workflow,
Poi, Forrest, Ant

object-
oriented

software

metrics.

Accuracy,

Precision and
Recall

Bagging and Random

Forest techniques
achieved the highest

AUC values, indicating

strong predictive
performance.

Software reliability is

challenged by the

complexity of software
and its associated defect

rates.

III. DISCUSSION AND ANALYSIS

In this section, an analysis and discussion of the

considered research papers are presented in the form of

answering the proposed research questions (RQ). The

answers to the research questions are entirely based on the

comparative analysis. This comprehensive review aimed

to unravel the intricacies and current trends in Software

Fault Prediction (SFP), addressing several pertinent

research questions as detailed in the earlier sections of this

paper. A total of 71 relevant studies were carefully

selected and analysed to support the summarised findings.

A. RQ1: What are the Most Commonly used

Methodologies/Techniques for Software Fault Prediction?

During the analysis of Table 8, it has been observed that

among all Methodologies/techniques used in software

fault prediction, Machine Learning Techniques are the

most commonly used. The analysis of the most widely

used methodologies and techniques for software fault

prediction is shown in Fig. 4.

[Fig.4: Analyses of Software Fault Prediction

Methodologies/Techniques]

B. RQ2: What types & typical sizes of datasets are

predominantly used in software fault prediction studies?

Software Fault Prediction studies predominantly rely on

small to medium-sized benchmark datasets, such as those

from NASA and PROMISE, due to their accessibility and

standardization. However, there is a growing trend toward

using open-source project data and industrial datasets for

enhanced realism and scalability [56]. The typical sizes of

datasets & Types used in software fault prediction studies

by different researchers are shown in Table 11. and analysis,

as shown in Fig. 5

C. RQ3: Which Feature Selection Techniques are

Commonly Applied in SFP?

The selection techniques used by most researchers for

software fault prediction are Filter Methods, Wrapper

Methods, and Embedded Methods. Studies of feature

selection techniques are commonly applied in SFP, shown

in Table 10, and the analysis is shown in Fig. 6

D. RQ4: Which types of software metrics are utilized in SFP

research?

In Software Fault Prediction (SFP) research, code

metrics are the most widely used due to their availability

and ease of extraction from source code. However, process

metrics and object-oriented design metrics are

increasingly being adopted to capture development history

and structural design features [37]. Studies of software

metrics are utilized in SFP research, shown in Table 11,

and the analysis is shown in Fig. 7

http://doi.org/10.35940/ijese.B8228.13080725
http://doi.org/10.35940/ijese.B8228.13080725
http://www.ijese.org/

A Comparative Analysis of Techniques, Datasets, Feature Selection Methods, and Evaluation Metrics in

Software Fault Prediction

 38

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number:100.1/ijese.B828014020725
DOI:10.35940/ijese.B8280.13080725

Journal Website: www.ijese.org

[Fig.5: Analyses of Types Datasets are Used in

Software Fault Prediction Studies]

[Fig.6: Analyses of Feature Selection Techniques

Software Fault Prediction Studies]

E. RQ4: Which Types of Software Metrics are Utilised in

SFP Research?

In Software Fault Prediction (SFP) research, code

metrics are the most widely used due to their availability

and ease of extraction from source code. However, process

metrics and object-oriented design metrics are

increasingly being adopted to capture development history

and structural design features. Studies of software metrics

are utilised in SFP research, as shown in Table 11, and the

analysis is presented in Fig. 7.

F. RQ5: What Evaluation Criteria are Commonly used to

Measure the Performance of SFP Models?

In SFP research, a range of evaluation criteria is used to

assess prediction models comprehensively. While accuracy is

simple and commonly reported, it can be misleading in

imbalanced datasets. Therefore, precision, recall, F1-score,

and AUC-ROC/AUC-PR are more reliable for measuring

performance, especially for detecting faulty modules.

Moreover, cost-sensitive and effort-aware metrics are

increasingly emphasized to ensure the practical utility of SFP

models in real-world settings [49]. Studies of evaluation

criteria are commonly used to measure the performance of

SFP models, as shown in Table 11 and the analysis shown in

Fig. 8

[Fig.7: Analyses of Types of Software Metrics are

Utilized in SFP]

[Fig.8: Analyses of Evaluation Criteria are Used to

Measure the Performance of SFP]

IV. CONCLUSION

This review has systematically explored methodologies,

datasets, feature selection techniques, and evaluation

criteria in Software Fault Prediction (SFP). The study

highlights the significant role machine learning models,

particularly neural networks, deep learning, and ensemble

methods, play in advancing SFP by effectively handling

the complexities of software fault datasets. The

widespread use of repositories like PROMISE and NASA

emphasises the importance of diverse datasets in

enhancing model accuracy. However, persistent

challenges such as data imbalance, the fast-evolving

nature of software development, and the demand for real-

time prediction remain key hurdles.

In this paper, an SLR is conducted to track the most recent

research advances in techniques for software defect

prediction. This review is conducted after critically analysing

the most relevant research papers published in three well-

known online libraries: ACM, IEEE, SpringerLink, and

ScienceDirect. Five research questions regarding the different

aspects of research progress on the use of SFP techniques,

Dataset, feature selection, software metrics & evaluation

criteria for software defect prediction are defined and

addressed in this study. From the comparative analysis, it has

been observed that techniques such as Machine Learning

Techniques and Traditional Statistical Techniques are

primarily used by Researchers,

with the most common use of

Feature Selection Techniques,

including Wrapper Methods,

and Public Benchmark

http://doi.org/10.35940/ijese.B8280.13080725
http://doi.org/10.35940/ijese.B8280.13080725
http://www.ijese.org/

International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378 (Online), Volume-13 Issue-8, July 2025

 39

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number:100.1/ijese.B828014020725
DOI:10.35940/ijese.B8228.13080725

Journal Website: www.ijese.org

Datasets (e.g., NASA MDP & PROMISE Repository).

Confusion Matrix-Based Metrics (Accuracy, Precision,

Recall (Sensitivity) & F1-Score). Moreover, the diversity of

classifiers used in building the SFP model should also be

investigated to improve the effectiveness and quality of the

software.

ACKNOWLEDGMENTS

The first author would like to thank the Computing Lab

of Sri Guru Granth Sahib World University, Fatehgarh

Sahib, Punjab, India, for successfully carrying out the

research work.

DECLARATION STATEMENT

After aggregating input from all authors, I must verify the

accuracy of the following information as the article's author.

▪ Conflicts of Interest/ Competing Interests: Based on

my understanding, this article has no conflicts of

interest.

▪ Funding Support: This article has not been funded by

any organizations or agencies. This independence

ensures that the research is conducted with objectivity

and without any external influence.

▪ Ethical Approval and Consent to Participate: The

content of this article does not necessitate ethical

approval or consent to participate with supporting

documentation.

▪ Data Access Statement and Material

Availability: The adequate resources of this article are

publicly accessible.

▪ Author’s Contributions: Rajinder Kumar: Data

curation, Methodology, Investigation, writing –

original draft, Writing – review and editing,

Visualisation. Kamaljit Kaur: Conceptualisation,

Investigation, Writing – review and editing,

Supervision

REFERENCES

1. Matloob, F., Ghazal, T. M., Taleb, N., Aftab, S., Ahmad, M., Khan, M.

A., Soomro, T. R. (2021). Software defect prediction using ensemble
learning: A systematic literature review. IEEE

Access.https://www.researchgate.net/publication/353107026Software_

Defect_Prediction_Using_Ensemble_Learning_A_Systematic_Literatu
re_Review

2. Borandag, E. (2023). Software Fault Prediction Using an RNN-Based
Deep Learning Approach and Ensemble Machine Learning Techniques.

Applied Sciences, 13(3), 1639. https://www.mdpi.com/2076-

3417/13/3/1639
3. Pandey, S. K., Mishra, R. B., & Tripathi, A. K. (2020). BPDET: An

effective software bug prediction model using deep representation and

ensemble learning techniques. Expert Systems with Applications, 144,
113085. https://www.Science

direct.com/science/article/abs/pii/S0957417419308024?utm_ source.

4. Rathore, S. S., & Kumar, S. (2021). An empirical study of ensemble
techniques for software fault prediction. Applied Intelligence, 51, 3615-

3644. https://link.springer.com/article/10.1007/s10489-020-01935-

6?utm_source.
5. Phung, K., Ogunshile, E., & Aydin, M. (2021, October). A novel

software fault prediction approach to predict error-type proneness in

Java programs using stream X-machine and machine learning. In 2021,
the 9th International Conference on Software Engineering Research and

Innovation (CONISOFT) (pp. 168-179). IEEE.https://uwe-

repository.worktribe.com/output/ 7605934/a-novel-software-fault-
prediction-approach-to-predict-error-type-proneness-in-the-java-

programs-using-stream-x-machine-and-machine-learning?utm_ source.

6. Alfredo Daza, (2025) Software defect prediction based on a multi-

classifier with hyperparameters: Future work.
www.sciencedirect.com/journal/results-in-engineering.

https://doi.org/10.1016/j.rineng.2025.104123

7. Barbara Wi˛eckowska, Katarzyna B. Kubiak, Paulina Jozwiak, Wacław
Moryson and Barbara Stawinska-Witoszynska (2022). Cohen’s Kappa

Coefficient as a Measure to Assess Classification Improvement

following the Addition of a New Marker to a Regression Model.
International Journal of Environmental Research and Public Health.

https://www.mdpi.com/1660-4601/19/16/10213?utm_source.

8. Goyal, S., & Bhatia, P. K. (2021). Software fault prediction using lion
optimization algorithm. International Journal of Information

Technology, 13, 2185-2190.

https://ouci.dntb.gov.ua/en/works/7ABmB1a4/?utm_source.
9. Rathore, S. S., & Kumar, S. (2021). Software fault prediction based on

the dynamic selection of learning technique: findings from the eclipse

project study. Applied Intelligence, 1-16.
https://link.springer.com/content/pdf/10.1007/s10489-021-02346-

x.pdf?utm_source.

10. Qiao, L., Li, X., Umer, Q., & Guo, P. (2020). Deep learning based
software defect prediction. Neurocomputing, 385, 100-110.

https://colab.ws/articles/10.1016%2Fj.neucom.2019.11.067?utm_sourc

e.
11. Aryan Boloori, Azadeh Zamanifar, Amirfarhad Farhadi (2024).

Enhancing software defect prediction models using metaheuristics with

a learning to rank approach. https://doi.org/10.1007/s44248-024-00016-
0

12. Amir Elmishali and Meir Kalech (2022). Issue-Driven Features for
Software Fault Prediction, Software and Information Systems

Engineering. https://dblp.org/rec/journals/infsof/ ElmishaliK

23?utm_source.
13. Kaur, G., Pruthi, J., & Gandhi, P. (2023). Machine Learning-Based

Software Fault Prediction Models. Karbala International Journal of

Modern Science, 9(2).
https://kijoms.uokerbala.edu.iq/home/vol9/iss2/9/?utm_source.

14. Rajput, P. K., Aarti, & Pal, R. (2023, February). Genetic Algorithm-

Based Clustering with Neural Network Classification for Software Fault
Prediction. In Proceedings of International Conference on Data Science

and Applications: ICDSA 2022, Volume 1 (pp. 399-414).

https://ebin.pub/proceedings-of-international-conference-on-data-

science-and-applications-icdsa-2022-volume-1-9811966303-

9789811966309.html?utm_source.

15. ARORA, T., SAINI, H., & GARG, S. (2023). Nature-Inspired
Approaches in Software Fault Prediction. JUN 2023 | IRE Journals |

Volume 6 Issue 12 | ISSN: 2456-8880.

https://cse.mait.ac.in/index.php/campus-life/r-dlab/research-
publications/9-computer-center/1254-details-of-paper-published-in-

journal-international-national-during-2023-24?utm_source.

16. Mehmood, I., Shahid, S., Hussain, H., Khan, I., Ahmad, S., Rahman, S.,
& Huda, S. (2023). A Novel Approach to Improve Software Defect

Prediction Accuracy Using Machine Learning. IEEE Access.

https://dblp.org/pid/351/0094?utm_source.
17. Wang, Z., Tong, W., Li, P., Ye, G., Chen, H., Gong, X., & Tang, Z.

(2023). BugPre: an intelligent software version-to-version bug

prediction system using graph convolutional neural networks. Complex
& Intelligent Systems, 9(4), 3835-3855.

https://ouci.dntb.gov.ua/en/works/98oBGYjl/?utm_source.

18. Khan, B., & Nadeem, A. (2023). Evaluating the effectiveness of
decomposed Halstead Metrics in software fault prediction. PeerJ

Computer Science, 9, e1647. https://ouci.dntb.gov.ua/en/ works/

ldkAogk4/?utm_source.
19. Al Qasem, O., Akour, M., & Alenezi, M. (2020). The influence of deep

learning algorithms on software fault prediction. IEEE Access, 8, 63945-

63960. https://malenezi.github.
io/malenezi/pdfs/09055422.pdf?utm_source.

20. Mohsen Hesamolhokama, Amirahmad Shafiee, Mohammadreza

Ahmaditeshnizi, Mohammadamin Fazli, Jafar Habibi(2024), SDPERL:
A Framework for Software Defect Prediction Using Ensemble Feature

Extraction and Reinforcement Learning, arXiv:2412.07927v2.

https://arxiv.org/abs/ 2412.07927 ?utm_source.
21. Khleel, N. A. A., & Nehéz, K. (2023). Software defect prediction using

a bidirectional LSTM network combined with oversampling techniques.

Cluster Computing, 1-24.
https://link.springer.com/article/10.1007/s10586-023-04170-

z?utm_source.

22. Khalid, A., Badshah, G., Ayub, N.,
Shiraz, M., & Ghouse, M. (2023).

Software Defect Prediction
Analysis Using Machine

Learning Techniques.

Sustainability, 15(6), 5517.

http://doi.org/10.35940/ijese.B8228.13080725
http://doi.org/10.35940/ijese.B8228.13080725
http://www.ijese.org/
https://www.researchgate.net/publication/353107026Software_Defect_Prediction_Using_Ensemble_Learning_A_Systematic_Literature_Review
https://www.researchgate.net/publication/353107026Software_Defect_Prediction_Using_Ensemble_Learning_A_Systematic_Literature_Review
https://www.researchgate.net/publication/353107026Software_Defect_Prediction_Using_Ensemble_Learning_A_Systematic_Literature_Review
https://www.mdpi.com/2076-3417/13/3/1639
https://www.mdpi.com/2076-3417/13/3/1639
https://link.springer.com/article/10.1007/s10489-020-01935-6?utm_source
https://link.springer.com/article/10.1007/s10489-020-01935-6?utm_source
https://uwe-repository.worktribe.com/output/%207605934/a-novel-software-fault-prediction-approach-to-predict-error-type-proneness-in-the-java-programs-using-stream-x-machine-and-machine-learning?utm_%20source
https://uwe-repository.worktribe.com/output/%207605934/a-novel-software-fault-prediction-approach-to-predict-error-type-proneness-in-the-java-programs-using-stream-x-machine-and-machine-learning?utm_%20source
https://uwe-repository.worktribe.com/output/%207605934/a-novel-software-fault-prediction-approach-to-predict-error-type-proneness-in-the-java-programs-using-stream-x-machine-and-machine-learning?utm_%20source
https://uwe-repository.worktribe.com/output/%207605934/a-novel-software-fault-prediction-approach-to-predict-error-type-proneness-in-the-java-programs-using-stream-x-machine-and-machine-learning?utm_%20source
http://www.sciencedirect.com/journal/results-in-engineering
https://doi.org/10.1016/j.rineng.2025.104123
https://www.mdpi.com/1660-4601/19/16/10213?utm_source
https://ouci.dntb.gov.ua/en/works/7ABmB1a4/?utm_source
https://link.springer.com/content/pdf/10.1007/s10489-021-02346-x.pdf?utm_source
https://link.springer.com/content/pdf/10.1007/s10489-021-02346-x.pdf?utm_source
https://colab.ws/articles/10.1016%2Fj.neucom.2019.11.067?utm_source
https://colab.ws/articles/10.1016%2Fj.neucom.2019.11.067?utm_source
https://doi.org/10.1007/s44248-024-00016-0
https://doi.org/10.1007/s44248-024-00016-0
https://dblp.org/rec/journals/infsof/%20ElmishaliK%2023?utm_source
https://dblp.org/rec/journals/infsof/%20ElmishaliK%2023?utm_source
https://kijoms.uokerbala.edu.iq/home/vol9/iss2/9/?utm_source
https://ebin.pub/proceedings-of-international-conference-on-data-science-and-applications-icdsa-2022-volume-1-9811966303-9789811966309.html?utm_source
https://ebin.pub/proceedings-of-international-conference-on-data-science-and-applications-icdsa-2022-volume-1-9811966303-9789811966309.html?utm_source
https://ebin.pub/proceedings-of-international-conference-on-data-science-and-applications-icdsa-2022-volume-1-9811966303-9789811966309.html?utm_source
https://cse.mait.ac.in/index.php/campus-life/r-dlab/research-publications/9-computer-center/1254-details-of-paper-published-in-journal-international-national-during-2023-24?utm_source
https://cse.mait.ac.in/index.php/campus-life/r-dlab/research-publications/9-computer-center/1254-details-of-paper-published-in-journal-international-national-during-2023-24?utm_source
https://cse.mait.ac.in/index.php/campus-life/r-dlab/research-publications/9-computer-center/1254-details-of-paper-published-in-journal-international-national-during-2023-24?utm_source
https://dblp.org/pid/351/0094?utm_source
https://ouci.dntb.gov.ua/en/works/98oBGYjl/?utm_source
https://ouci.dntb.gov.ua/en/%20works/%20ldkAogk4/?utm_source
https://ouci.dntb.gov.ua/en/%20works/%20ldkAogk4/?utm_source
https://arxiv.org/abs/%202412.07927%20?utm_source
https://link.springer.com/article/10.1007/s10586-023-04170-z?utm_source
https://link.springer.com/article/10.1007/s10586-023-04170-z?utm_source

A Comparative Analysis of Techniques, Datasets, Feature Selection Methods, and Evaluation Metrics in

Software Fault Prediction

 40

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number:100.1/ijese.B828014020725
DOI:10.35940/ijese.B8280.13080725

Journal Website: www.ijese.org

https://doi.org/10.3390/su15065517

23. Sofian Kassaymeh, Salwani Abdullah, Ph.D, Mohammed Azmi Al-

Betar (2021). Salp swarm optimiser for modelling the software fault
prediction problem, Journal of King Saud University – Computer and

Information Sciences 34 (2022) 3365–3378.

https://www.sciencedirect.com/science/article/pii/S1319157821000173
?utm_source.

24. Das, H., Prajapati, S., Gourisaria, M. K., Pattanayak, R. M., Alameen,
A., & Kolhar, M. (2023). Feature Selection Using Golden Jackal

Optimization for Software Fault Prediction. Mathematics,

11(11),2438.https://www.mdpi.com/2227-
7390/11/11/2438?utm_source,

25. Feng, S., Keung, J., Yu, X., Xiao, Y., Bennin, K. E., Kabir, M. A., &

Zhang, M. (2021). COSTE: Complexity-based OverSampling
Technique to alleviate the class imbalance prob- lem in software defect

prediction. Information and Software Technology, 129, 106432.

https://bibbase.org/network/publication/feng-keung-yu-xiao-bennin-
kabir-zhang-coste-complexity-based-over-sampling-technique-to-

alleviate-the-class-imbalance-problem-in-software-defect-prediction-

2021?utm_source.

26. Hassouneh, Y., Turabieh, H., Thaher, T., Tumar, I., Chantar, H., & Too,

J. (2021). Boosted whale optimization algorithm with natural selection

operators for software fault prediction. IEEE Access, 9, 14239-14258.
https://jeeemi.org/index.php/jeeemi/

article/view/334?utm_source=chatgpt.com

27. Anil Kumar Pandey and Manjari Gupta (2024), Software Metrics
Selection for Fault Prediction: A Review, International Journal of

Management, Technology and Engineering, ISSN NO: 2249-7455.

https://www.researchgate.net/publication/382888111
_Software_Metrics_Selection_for_Fault_Prediction_A_Review?utm_s

ource.

28. Zhao, K., Xu, Z., Yan, M., Zhang, T., Xue, L., Fan, M., & Keung, J.
(2023). The Impact of Class Imbalance Techniques on Crash Fault

Residence Prediction Models. Empirical Software Engineering, 28(2),

49. https://yanmeng.github.io/papers/EMSE231.pdf?utm_source.
29. Ali, U., Aftab, S., Iqbal, A., Nawaz, Z., Bashir, M. S., & Saeed, M. A.

(2020). Software defect prediction using variant-based ensemble

learning and feature selection techniques. Int. J. Mod. Educ. Comput.

Sci, 12(5), 29-40. https://www.mecs-press.org/ijmecs/ijmecs-v12-

n5/v12n5-3.html?utm_source.

30. Balogun, A. O., Basri, S., Abdulkadir, S. J., & Hashim, A. S. (2019).
Performance analysis of feature selection methods in software defect

prediction: a search method approach. Applied Sciences, 9(13), 2764.

https://www.mdpi.com/2076-3417/9/13/2764?utm_source.
31. Anbu, M., & Anandha Mala, G. S. (2019). Feature Selection Using the

Firefly Algorithm in Software Defect Prediction. Cluster Computing,

22, 10925-10934. https://jisem-
journal.com/index.php/journal/article/download/6277/2891/10449?utm

_source.

32. Iqbal, A., & Aftab, S. (2020). A Classification Framework for Software
Defect Prediction Using Multi-Filter Feature Selection Technique and

MLP. International Journal of Modern Education Computer Science,

12(1). https://www.mecs-press.org/ijmecs/ijmecs-v12-n1/v12n1-
3.html?utm_source.

33. Balogun, A. O., Basri, S., Mahamad, S., Abdulkadir, S. J., Almomani,

M. A., Adeyemo, V. E., .& Bajeh, A. O. (2020). Impact of feature
selection methods on the predictive performance of software defect

prediction models: An extensive empirical study. Symmetry, 12(7),
1147. https://www.mdpi.com/2073-8994/12/7/1147?utm_source.

34. Rathi, S. C., Misra, S., Colomo-Palacios, R., Adarsh, R., Neti, L. B. M.,

& Kumar, L. (2023). Empirical evaluation of the performance of data
sampling and feature selection techniques for software fault prediction.

Expert Systems with Applications, 223, 119806.

https://www.researchgate.net/publication/369306462_Empirical_evalu
ation_of_the_performance_of_data_sampling_and_feature_selection_t

echniques_for_software_fault_prediction?utm_source.

35. Mafarja, M., Thaher, T., Al-Betar, M. A., Too, J., Awadallah, M. A.,
Abu Doush, I., & Turabieh, H. (2023). Classification framework for

faulty software using an enhanced exploratory whale optimiser-based

feature selection scheme and random forest ensemble learning. Applied
Intelligence, 1-43. https://link.springer.com/article/10.1007/s10489-

022-04427-x?utm_source.

36. Yogita Khatri Sandeep Kumar Singh (2022), An effective feature
selection-based cross‑project defect prediction model for software

quality improvement, Int J Syst Assur Eng Manag (March 2023)

14(Suppl. 1): S154–S172. https://ideas.repec.org/a/spr/ijsaem/
v14y2023i1d10.1007_s13198-022-01831-x.html?utm_source.

37. Shiqi Tang, Song Huang, Changyou Zheng, Erhu Liu, Cheng Zong, and

Yixian Ding (2022), A Novel Cross-Project Software Defect Prediction

Algorithm Based on Transfer Learning, TINGHUA SCIENCE AND

TECHNOLOGY, ISSN 1007- 0214, 04/18 pp. 41–57 DOI:

10.26599/TST.2020.9010040.
https://www.sciopen.com/article/10.26599/TST.2020.9010040?utm_so

urce.

38. Goyal, S. (2023). 3PcGE: 3-parent child-based genetic evolution for
software defect prediction. Innovations in Systems and Software

Engineering, 19(2), 197-216.
https://link.springer.com/article/10.1007/s11334-021-00427-

1?utm_source.

39. Aarti, A., Rajput, P. K., & Khare, A. (2023, April). Hybrid semi-
supervised SOM-based clustered approach with genetic algorithm for

software fault classification. In AIP Conference Proceedings (Vol. 2724,

No. 1). AIP Publishing.
https://www.researchgate.net/publication/370379196_Hybrid_semisup

ervised_SOM_based_clustered_approach_with_genetic_algorithm_for

_software_fault_classification?utm_source.
40. Khatri, Y., & Singh, S. K. (2023). An effective software cross-project

fault prediction model for quality improvement. Science of Computer

Programming, 226, 102918.

https://ideas.repec.org/a/spr/ijsaem/v14y2023i1d10.1007_s13198-022-

01831-x.html?utm_source.

41. Faiz, R. B., Shaheen, S., Sharaf, M., & Rauf, H. T. (2023). Optimal
Feature Selection through Search-Based Optimizer in Cross-Project.

Electronics, 12(3), 514. https://doi.org/10.3390/electronics12030514.

42. Baraah Alsangari & Göksel Biricik (2023) Performance Evaluation of
various ML techniques for Software Fault Prediction using NASA

dataset. 5th International Congress on Human-Computer Interaction,

Optimization and Robotic Applications.
https://www.proceedings.com/content/069/069589webtoc.pdf?utm_sou

rce.

43. Hanyu Shi & Mingxia Chen (2022) A two‐stage transformer fault
diagnosis method based on multi‐filter interactive feature selection,

integrated adaptive sparrow algorithm, optimised support vector

machine, IET Electric Power Applications. DOI:
10.1049/elp2.12270.https://ietresearch.onlinelibrary.wiley.com/doi/abs/

10.1049/elp2.12270?utm_source.

44. Sagheer Abbas, Shabib Aftab, Muhammad Adnan Khan, Taher M.

Ghazal, Hussam Al Hamadi and Chan Yeob Yeun (2023), Data and

Ensemble Machine Learning Fusion-Based Intelligent Software Defect

Prediction System, DOI: 10.32604/cmc. 2023.037933.
https://www.techscience.com/cmc/v75n3/52611?utm_source.

45. abdullah sharaf , Amin y. noaman, and Asaad ahmed (2023), Prediction

and Correction of Software Defects in Message-Passing Interfaces
Using a Static Analysis Tool and Machine Learning, IEEE Access.

https://sciprofiles.com/profile/3095509?utm_source.

46. Al Qasem, O., Akour, M., & Alenezi, M. (2020). The influence of deep
learning algorithms is a factor in software prediction. IEEE Access, 8,

63945-6396. https://malenezi.github.io/malenezi/pdfs/

09055422.pdf?utm_source.
47. Kulamala, V. K., Kumar, L., & Mohapatra, D. P. (2021). Software fault

prediction using LSSVM with different kernel functions. Arabian

Journal for Science and Engineering, 46, 8655-8664.
https://link.springer.com/article/10.1007/s13369-021-05643-

2?utm_source.

48. Jinfu CHEN, Xiaoli WANG, Saihua CAI, Jiaping XU, Jingyi CHEN,
Haibo CHEN (2022), A software defect prediction method with metric

compensation based on feature selection and transfer learning, Chen et
al. / Front Inform Technol Electron Eng.

https://link.springer.com/article/10.1631/FITEE.2100468?utm_source.

49. Anupama Kaushik & Niyati Singal (2022) A hybrid model of wavelet
neural network and metaheuristic algorithm for software development

effort estimation, Int. j. inf. tecnol.. 14(3):1689–

1698,.https://link.springer.com/journal/41870/volumes-and-issues/14-
3?page=2&utm_source.

50. HAQUE, ALI, MCCLEAN & NOPPEN (2024), Heterogeneous Cross-

Project Defect Prediction Using Encoder Networks and Transfer
Learning, IEEE Access, 10.1109/ACCESS.2023.3343329.

https://pure.ulster.ac.uk/files/130014670/Heterogeneous_Cross-

Project_Defect_Prediction_using_Encoder_and_Transfer_Learning.pdf
?utm_source.

51. Malhotra, R., & Khan, K. (2020). A study on software defect prediction

using feature extraction techniques. In 2020, the 8th International
Conference on Reliability, Infocom

Technologies and Optimization

(pp. 1139-1144). IEEE.
https://www.researchgate.net/

publication/ 344983707_A

http://doi.org/10.35940/ijese.B8280.13080725
http://doi.org/10.35940/ijese.B8280.13080725
http://www.ijese.org/
https://doi.org/10.3390/su15065517
https://www.sciencedirect.com/science/article/pii/S1319157821000173?utm_source
https://www.sciencedirect.com/science/article/pii/S1319157821000173?utm_source
https://www.mdpi.com/2227-7390/11/11/2438?utm_source
https://www.mdpi.com/2227-7390/11/11/2438?utm_source
https://bibbase.org/network/%20publication/feng-keung-yu-xiao-bennin-kabir-zhang-coste%20complexity%20basedover%20sampling%20techniquet%20oalleviatethe%20class%20imbalance%20probleminsoftware%20defectprediction-2021?utm_source
https://bibbase.org/network/%20publication/feng-keung-yu-xiao-bennin-kabir-zhang-coste%20complexity%20basedover%20sampling%20techniquet%20oalleviatethe%20class%20imbalance%20probleminsoftware%20defectprediction-2021?utm_source
https://bibbase.org/network/%20publication/feng-keung-yu-xiao-bennin-kabir-zhang-coste%20complexity%20basedover%20sampling%20techniquet%20oalleviatethe%20class%20imbalance%20probleminsoftware%20defectprediction-2021?utm_source
https://bibbase.org/network/%20publication/feng-keung-yu-xiao-bennin-kabir-zhang-coste%20complexity%20basedover%20sampling%20techniquet%20oalleviatethe%20class%20imbalance%20probleminsoftware%20defectprediction-2021?utm_source
https://jeeemi.org/index.php/jeeemi/%20article/view/334?utm_source=chatgpt.com
https://jeeemi.org/index.php/jeeemi/%20article/view/334?utm_source=chatgpt.com
https://www.researchgate.net/publication/382888111%20_Software_Metrics_Selection_for_Fault_Prediction_A_Review?utm_source
https://www.researchgate.net/publication/382888111%20_Software_Metrics_Selection_for_Fault_Prediction_A_Review?utm_source
https://www.researchgate.net/publication/382888111%20_Software_Metrics_Selection_for_Fault_Prediction_A_Review?utm_source
https://yanmeng.github.io/papers/EMSE231.pdf?utm_source
https://www.mecs-press.org/ijmecs/ijmecs-v12-n5/v12n5-3.html?utm_source
https://www.mecs-press.org/ijmecs/ijmecs-v12-n5/v12n5-3.html?utm_source
https://www.mdpi.com/2076-3417/9/13/2764?utm_source
https://jisem-journal.com/index.php/journal/article/download/6277/2891/10449?utm_source
https://jisem-journal.com/index.php/journal/article/download/6277/2891/10449?utm_source
https://jisem-journal.com/index.php/journal/article/download/6277/2891/10449?utm_source
https://www.mecs-press.org/ijmecs/ijmecs-v12-n1/v12n1-3.html?utm_source
https://www.mecs-press.org/ijmecs/ijmecs-v12-n1/v12n1-3.html?utm_source
https://www.mdpi.com/2073-8994/12/7/1147?utm_source
https://www.researchgate.net/publication/369306462_Empirical_evaluation_of_the_performance_of_data_sampling_and_feature_selection_techniques_for_software_fault_prediction?utm_source
https://www.researchgate.net/publication/369306462_Empirical_evaluation_of_the_performance_of_data_sampling_and_feature_selection_techniques_for_software_fault_prediction?utm_source
https://www.researchgate.net/publication/369306462_Empirical_evaluation_of_the_performance_of_data_sampling_and_feature_selection_techniques_for_software_fault_prediction?utm_source
https://link.springer.com/article/10.1007/s10489-022-04427-x?utm_source
https://link.springer.com/article/10.1007/s10489-022-04427-x?utm_source
https://ideas.repec.org/a/spr/ijsaem/%20v14y2023i1d10.1007_s13198-022-01831-x.html?utm_source
https://ideas.repec.org/a/spr/ijsaem/%20v14y2023i1d10.1007_s13198-022-01831-x.html?utm_source
https://www.sciopen.com/article/10.26599/TST.2020.9010040?utm_source
https://www.sciopen.com/article/10.26599/TST.2020.9010040?utm_source
https://link.springer.com/article/10.1007/s11334-021-00427-1?utm_source
https://link.springer.com/article/10.1007/s11334-021-00427-1?utm_source
https://www.researchgate.net/publication/370379196_Hybrid_semisupervised_SOM_based_clustered_approach_with_genetic_algorithm_for_software_fault_classification?utm_source
https://www.researchgate.net/publication/370379196_Hybrid_semisupervised_SOM_based_clustered_approach_with_genetic_algorithm_for_software_fault_classification?utm_source
https://www.researchgate.net/publication/370379196_Hybrid_semisupervised_SOM_based_clustered_approach_with_genetic_algorithm_for_software_fault_classification?utm_source
https://ideas.repec.org/a/spr/ijsaem/v14y2023i1d10.1007_s13198-022-01831-x.html?utm_source
https://ideas.repec.org/a/spr/ijsaem/v14y2023i1d10.1007_s13198-022-01831-x.html?utm_source
https://doi.org/10.3390/electronics12030514
https://www.proceedings.com/content/069/069589webtoc.pdf?utm_source
https://www.proceedings.com/content/069/069589webtoc.pdf?utm_source
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/elp2.12270?utm_source
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/elp2.12270?utm_source
https://www.techscience.com/cmc/v75n3/52611?utm_source
https://sciprofiles.com/profile/3095509?utm_source
https://malenezi.github.io/malenezi/pdfs/%2009055422.pdf?utm_source
https://malenezi.github.io/malenezi/pdfs/%2009055422.pdf?utm_source
https://link.springer.com/article/10.1007/s13369-021-05643-2?utm_source
https://link.springer.com/article/10.1007/s13369-021-05643-2?utm_source
https://link.springer.com/article/10.1631/FITEE.2100468?utm_source
https://link.springer.com/journal/41870/volumes-and-issues/14-3?page=2&utm_source
https://link.springer.com/journal/41870/volumes-and-issues/14-3?page=2&utm_source
https://pure.ulster.ac.uk/files/130014670/Heterogeneous_Cross-Project_Defect_Prediction_using_Encoder_and_Transfer_Learning.pdf?utm_source
https://pure.ulster.ac.uk/files/130014670/Heterogeneous_Cross-Project_Defect_Prediction_using_Encoder_and_Transfer_Learning.pdf?utm_source
https://pure.ulster.ac.uk/files/130014670/Heterogeneous_Cross-Project_Defect_Prediction_using_Encoder_and_Transfer_Learning.pdf?utm_source
https://www.researchgate.net/%20publication/%20344983707_A%20_Study_on_Software_Defect_Prediction_using_Feature_Extraction_Techniques?utm_source
https://www.researchgate.net/%20publication/%20344983707_A%20_Study_on_Software_Defect_Prediction_using_Feature_Extraction_Techniques?utm_source

International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378 (Online), Volume-13 Issue-8, July 2025

 41

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number:100.1/ijese.B828014020725
DOI:10.35940/ijese.B8228.13080725

Journal Website: www.ijese.org

_Study_on_Software_Defect_Prediction_using_Feature_Extraction_Te
chniques?utm_source.

52. Waleed Albattah and Musaad Alzahrani (2024), Software Defect

Prediction Based on Machine Learning and Deep Learning Techniques:
An Empirical Approach, https://

doi.org/10.3390/ai5040086.https://www.mdpi.com/2673-2688/5/4/ 86?

utm_source.
53. İlhan, Ö., & Erçelebi Ayyıldız, T. (2021). Software Quality Prediction:

An Investigation Based on Artificial Intelligence Techniques for Object-

Oriented Applications. In Trends in Data Engineering Methods for
Intelligent Systems: Proceedings of the International Conference on

Artificial Intelligence and Applied Mathematics in Engineering.

https://www.researchgate.net/publication/353005268_Sofware_Quality
_Prediction_An_Investigation_Based_on_Artificial_Intelligence_Tech

niques_for_Object-Oriented_Applications?utm_source.

54. Wenjun Yao, Muhammad Shafiq, Xiaoxin Lin and Xiang YuA (2023),
Software Defect Prediction Method Based on Program Semantic Feature

Mining, https://www.mdpi.com/2079-9292/12/7/1546?utm_source.

55. S. Kaliraj, Velisetti Geetha Pavan Sahasranth, V. Sivakumar (2024), A
holistic approach to software fault prediction with dynamic

classification, Automated Software Engineering.

56. Ran YAN, Meichen WANG, Zhaowei XU and Kai ZHANG (2023)
Research on Software Fault Feature Data Extraction Method for

Software Fault Prediction Technology, Advances in Machinery,

Materials Science and Engineering Application IX M. Chen et al. (Eds.).
https://www.researchgate.net/publication/

374791399_Research_on_Software_Fault_ Feature_ Data_ Extraction_
Method_ for_ Software_ Fault_ Prediction_ Technology? utm_source.

57. Hrishikesh Kumar & Himansu Das (2025), Cost-Effective Prediction

Model for Optimal Selection of Software Faults Using Coati
Optimization Algorithm, SN Computer Science.

https://link.springer.com/article/10.1007/s42979-025-03953-

y?utm_source.

AUTHOR’S PROFILE

 Rajinder Kumar, a Research Scholar, is pursuing her

Ph.D. in the Department of Computer Science and

Engineering, Sri Guru Granth Sahib World University,

Fatehgarh Sahib. (Punjab), India and an Assistant

Professor at Chandigarh Business School of

Administration, Landran, Mohali, in the Department of
Computer Applications. He has an MTech and a BTech in Computer Science

from Punjab Technical University, Kapurthala, Punjab. Her areas of interest

include Software Engineering, Databases, Data Mining and Machine
Learning.

Dr. Kamaljit Kaur is an Assistant Professor in the

Department of Computer Science and Engineering, Sri
Guru Granth Sahib World University, Fatehgarh Sahib

(Punjab), India, with an overall experience of 13 years in

academia & research related to Computer Science. He is
an avid researcher, having guided dissertations of many

M.Tech PG students & is also currently guiding 5 PhD

scholars. He is also a member of the reviewer panel for many esteemed,
refereed, and peer-reviewed journals. His current research interests include

Software Engineering, Cloud Computing, Web Engineering, Big Data, the

Internet of Things, database security, and Mobile Computing.

Disclaimer/Publisher’s Note: The statements, opinions and

data contained in all publications are solely those of the

individual author(s) and contributor(s) and not of the Blue

Eyes Intelligence Engineering and Sciences Publication

(BEIESP)/ journal and/or the editor(s). The Blue Eyes

Intelligence Engineering and Sciences Publication (BEIESP)

and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods,

instructions, or products referred to in the content.

http://doi.org/10.35940/ijese.B8228.13080725
http://doi.org/10.35940/ijese.B8228.13080725
http://www.ijese.org/
https://www.researchgate.net/%20publication/%20344983707_A%20_Study_on_Software_Defect_Prediction_using_Feature_Extraction_Techniques?utm_source
https://www.researchgate.net/%20publication/%20344983707_A%20_Study_on_Software_Defect_Prediction_using_Feature_Extraction_Techniques?utm_source
https://www.mdpi.com/2673-2688/5/4/%2086?%20%20utm_source
https://www.mdpi.com/2673-2688/5/4/%2086?%20%20utm_source
https://www.researchgate.net/publication/353005268_Sofware_Quality_Prediction_An_Investigation_Based_on_Artificial_Intelligence_Techniques_for_Object-Oriented_Applications?utm_source
https://www.researchgate.net/publication/353005268_Sofware_Quality_Prediction_An_Investigation_Based_on_Artificial_Intelligence_Techniques_for_Object-Oriented_Applications?utm_source
https://www.researchgate.net/publication/353005268_Sofware_Quality_Prediction_An_Investigation_Based_on_Artificial_Intelligence_Techniques_for_Object-Oriented_Applications?utm_source
https://www.mdpi.com/2079-9292/12/7/1546?utm_source
https://www.researchgate.net/publication/%20374791399_Research_on_Software_Fault_
https://www.researchgate.net/publication/%20374791399_Research_on_Software_Fault_
https://link.springer.com/article/10.1007/s42979-025-03953-y?utm_source
https://link.springer.com/article/10.1007/s42979-025-03953-y?utm_source

