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Abstract: This study presents a systematic literature review 

(SLR) that investigates recent advancements in Software Fault 

Prediction (SFP) methodologies. The review focuses on key 

dimensions including techniques, datasets, feature selection 

methods, software metrics, and evaluation criteria. By analyzing 

significant studies from renowned digital libraries such as ACM, 

IEEE, Springer Link, and Science Direct, five research questions 

were defined to guide the assessment of current trends in SFP 

research. Findings reveal that machine learning approaches—

particularly neural networks, deep learning, and ensemble 

methods—are increasingly employed due to their capability to 

manage the complexity of software fault data. Public datasets, 

notably those from the PROMISE and NASA MDP repositories, 

are widely utilized, underlining the importance of dataset diversity 

for enhancing model performance. Feature selection methods, 

particularly wrapper techniques, are often employed to improve 

predictive accuracy. Evaluation of models predominantly relies on 

confusion matrix-based metrics such as Accuracy, Precision, 

Recall, and F1-Score. Despite these advances, challenges remain 

in addressing class imbalance, adapting to rapidly evolving 

software environments, and achieving real-time fault prediction. 

The study highlights the need for greater classifier diversity and 

ongoing methodological improvements to enhance the robustness 

and generalizability of SFP models. 

 Keywords: Software Fault Prediction; Feature Selection 

Techniques; Software Metrics; Public Datasets; Confusion 

Matrix-Based; Class Imbalance. 

Abbreviations: 

SDP: Software Defect Prediction  

SBP: Software Bug Prediction  

SFP: Software Fault Prediction  

SQA: Software Quality Assurance  

PS: Primary Studies  

SLR: Systematic Literature Review 

I. INTRODUCTION

In the field of software engineering, software defect

prediction (SDP) in early stages is vital for software 
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reliability and quality. A software defect is a bug, fault, or 

error in a program that causes improper outcomes. Software 

defects are programming errors that can occur due to errors 

in the source code, requirements, or design. Defects 

negatively affect software quality and reliability. Various 

terms, including hybrid, combined, integrated, and 

aggregated classification, are employed in ensemble learning. 

The ensemble learning model is built by combining multiple 

machine learning classifiers to improve prediction 

performance [1]. The main objective of a software project is 

to deliver the expected functionality while meeting the 

required level of quality on time and within a defined budget. 

From the perspective of software projects developed in recent 

years, the complexity in software development has increased 

due to the increased number of customer requirements [2]. 

The primary objective of software bug prediction (SBP) 

techniques is to classify fault-prone and fault-free modules, 

allowing developers to assign reasonable testing sources and 

allocate testing preferences for various software modules, 

thereby enhancing the software's quality [3]. Software fault 

prediction (SFP) is the area of interest for many researchers 

and software developers. Predicting such faults at an early 

stage of development can reduce the maintenance cost and 

effort. Fault prediction models aid in various software-related 

activities, such as quality assurance, to enhance the 

understanding of software quality. This prediction is done 

using different software metrics. The commonly used 

software metrics are McCabe metrics, Halstead metrics and 

CK metrics. Fault prediction performed during early 

development will reduce maintenance costs and improve 

software quality. Current software systems are becoming 

increasingly complex and large; therefore, ensuring their 

reliability and quality is paramount, which depends on 

identifying and mitigating software faults. Software fault 

prediction (SFP) actively assists in detecting faults by 

highlighting potential faulty areas of code within the software 

system [4]. Reducing defects and failures in a software 

product is a crucial goal for software engineers. This is done 

to achieve maximum performance, build user trust, and 

enhance the overall quality of the product. During the life 

cycle of a product, a software goes through several feature 

changes, quality iterations and reassembling. Software 

quality assurance (SQA) consists of monitoring and 

controlling the software development process to ensure the 

desired software quality at a lower cost. It may include the 

application of formal code inspections, code walkthroughs, 

software testing, and software fault prediction Software fault 

prediction aims to facilitate the allocation of limited SQA 

resources optimally and economically by prior prediction of 

the fault-proneness of software 

modules The potential of 

software fault prediction to 

identify faulty software 

modules early in the 
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development life cycle has gained considerable attention over 

the last two decades. From a software development 

perspective, dealing with software faults is a vital and 

foremost important task. The presence of faults not only 

deteriorates the quality of the software but also increases its 

development and maintenance costs. Therefore, identifying 

which software module is likely to be fault-prone during the 

early phases of software development may help improve the 

quality of the software system. By predicting the number of 

faults in software modules, we can guide software testers to 

focus on faulty modules first. The objective of software fault 

prediction is to detect faulty software modules before the 

testing phase by using some structural characteristics of the 

software system. A software fault prediction model is 

generally constructed using fault datasets from previous 

releases of similar software projects, and it is later applied to 

predict faults in the currently under-development software 

system. In conclusion, this review aims to provide a 

comprehensive overview of SFP techniques, tracing their 

evolution from simple code complexity metrics to 

sophisticated AI-driven models. This paper provides a review 

of the recent research conducted on the use of software defect 

prediction. The latest papers published since 2025 are 

considered for this study. Four renowned and widely used 

online search libraries are selected for extracting relevant 

literature, including IEEE Xplore, ACM Digital Library, 

ScienceDirect, and SpringerLink. Initially, 1180 papers are 

extracted, and then the 23 most relevant papers are selected 

as Primary Studies (PS) after following a thorough systematic 

research process. The remainder of the paper is organized as 

follows: Section 2 presents the research protocol. Section 3 

presents the findings of this review. Finally, section 4 

concludes the paper with suggestions for future work for 

many researchers and software developers. Predicting such 

faults at an early stage of development can reduce the 

maintenance cost and effort. Fault prediction models aid in 

various software-related activities, such as quality assurance, 

to enhance the understanding of software quality. This 

prediction is done using different software metrics. The 

commonly used software metrics are McCabe metrics, 

Halstead metrics and CK metrics. Fault prediction performed 

during early development will reduce maintenance costs and 

improve software quality. Current software systems are 

becoming increasingly complex and large; therefore, 

ensuring their reliability and quality is of paramount 

importance, which depends on identifying and mitigating 

software faults. Software fault prediction (SFP) actively 

assists in detecting faults by highlighting potential faulty 

areas of code within the software system. Reducing defects 

and failures in a software product is a crucial goal for 

software engineers. This is done to achieve maximum 

performance, build user trust, and enhance the overall quality 

of the product. During the life cycle of a product, a software 

goes through several feature changes, quality iterations and 

reassembling. Ideally, all these changes are perfectly merged, 

should cause no defect and are free of error [6]. Software 

quality assurance (SQA) consists of monitoring and 

controlling the software development process to ensure the 

desired software quality at a lower cost. It may include the 

application of formal code inspections, code walkthroughs, 

software testing, and software fault prediction Software fault 

prediction aims to facilitate the allocation of limited SQA 

resources optimally and economically by prior prediction of 

the fault-proneness of software modules The potential of 

software fault prediction to identify faulty software modules 

early in the development life cycle has gained considerable 

attention over the last two decades [5]. From a software 

development perspective, dealing with software faults is a 

vital and foremost important task. The presence of faults not 

only deteriorates the quality of the software but also increases 

its development and maintenance costs. Therefore, 

identifying which software module is likely to be fault-prone 

during the early phases of software development may help 

improve the quality of the software system. By predicting the 

number of faults in software modules, we can guide software 

testers to focus on faulty modules first. The objective of 

software fault prediction is to detect faulty software modules 

before the testing phase by using some structural 

characteristics of the software system.  

A software fault prediction model is generally constructed 

using fault datasets from previous releases of similar software 

projects, and it is later applied to predict faults in the currently 

under-development software system. In conclusion, this 

review aims to provide a comprehensive overview of SFP 

techniques, tracing their evolution from simple code 

complexity metrics to sophisticated AI-driven models. This 

paper provides a review of the recent research conducted on 

the use of software defect prediction. The latest papers 

published since 2025 are considered for this study. Four 

renowned and widely used online search libraries are selected 

for extracting relevant literature, including IEEE Xplore, 

ACM Digital Library, ScienceDirect, and SpringerLink. 

Initially, 1180 papers are extracted, and then the 23 most 

relevant papers are selected as Primary Studies (PS) after 

following a thorough systematic research process. The 

remainder of the paper is organized as follows: Section 2 

presents the research protocol. Section 3 presents the findings 

of this review. Finally, section 4 concludes the paper with 

suggestions for future work. 

II. REVIEW GUIDELINES 

Our review methodology, grounded in A systematic 

literature review (SLR) framework as delineated by 

Kitchenham [7], is meticulously adapted to explore the realm 

of software fault prediction techniques. This structured 

approach begins by formulating research questions to define 

the scope, objectives, and depth of our review, with a 

particular focus on the evolution, effectiveness, and 

comparative analysis of various fault prediction methods. 

Inclusion and exclusion criteria are then rigorously 

established to delineate the boundaries of our systematic 

literature review. The SLR process is divided into three 

phases: planning the review, conducting the review, and 

reporting the review. Each phase consists of sub-phases, as 

illustrated in Figure 1. The systematic literature review (SLR) 

process is described in detail for software fault prediction 

research. 
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[Fig.1: SLR Process] 

A. Phase 1: 

i. Planning the Review 

This section outlines the methodology employed for 

conducting our comprehensive bibliographic review, which 

is grounded in the systematic review guidelines outlined by 

Kitchenham [7]. We articulate our literature search strategy, 

including the databases and keywords used, detail our 

selection criteria for sourcing relevant studies, and elucidate 

the specific research questions guiding our inquiry. This 

structured approach ensures a thorough and unbiased 

survey of the existing literature in the field of software 

fault prediction. 

ii. Research Questions 

In the pursuit of a comprehensive understanding of 

software fault prediction (SFP), this review is guided by a 

series of targeted research questions. These questions are 

designed to explore various aspects of SFP, including 

techniques, datasets, programming languages, and 

evaluation criteria. The primary objective of this review is 

to address the following issues systematically.  

▪ Research questions: 

RQ1: What are the most used Methodologies/Techniques 

for software fault prediction? 

RQ2: What types & typical sizes of datasets are 

predominantly used in software fault prediction 

studies? 

RQ3: Which feature selection techniques are commonly 

applied in SFP? 

RQ4: Which types of software metrics are utilized in SFP 

research? 

RQ5: What evaluation criteria are commonly used to 

measure the performance of SFP models? 

By addressing these questions, this review aims to 

provide a detailed and comprehensive analysis of the 

current state of software fault prediction techniques, 

offering valuable insights and identifying potential areas 

for future research. 

iii. Literature Search Strategy 

To systematically identify articles relevant to software 

fault prediction (SFP), we first considered key data sources 

in the field of software engineering and computer science. 

These included IEEE Xplore, ACM Digital Library, 

ScienceDirect, and SpringerLink. IEEE Xplore was 

selected as the primary source due to its extensive 

coverage of software engineering topics and publication 

types. To formulate the search string, particular keywords 

and their synonyms are selected from the identified 

research questions, as shown in Table 1. 

Table-I. Search String 

Keyboards Alternatives/Synonyms 

Software (Program OR System) 

Defect 

(Software fault OR software error OR bug prediction 

OR fault detection OR error detection OR fault 

prediction) 

Prediction (Estimation OR Classification) 

Ensemble (Integrated OR hybrid) 

Learner 

(Machine learning” OR “artificial intelligence” OR 

“algorithm” OR “classifier” OR “technique” OR 

“method” OR “feature selection” OR “model) 

 

The keywords are then arranged with the conditions of 

`AND' and `OR' in a particular sequence to form the 

following query: 

((“software'' OR “program'' OR “system”) AND (“software 

fault” [Title] OR “software error” [Title] OR “bug 

prediction” [Title] OR “fault detection” [Title] OR “error 

detection” [Title] OR “fault prediction” [Title]) AND 

(prediction'' OR ``estimation'' OR ``classification'‘) AND 

(ensemble OR integrated OR hybrid) AND (“learning “OR 

“machine learning” OR “artificial intelligence” OR 

“algorithm” OR “classifier” OR “technique” OR “method” 

OR “feature selection” OR “model”)). 

iv. Literature Search Criteria 

To refine the focus of this systematic review on software 

fault prediction, we established a detailed set of inclusion 

and exclusion criteria. These criteria were crucial in 

selecting the most pertinent articles from the pool that 

matched our search query. The requirements are detailed 

in Tables 1 and 2. Following this rigorous screening 

process, a total of 57 articles met the criteria and were 

retained for in-depth analysis in our review. 

v. Criteria for Data Extraction from Literature 

To systematically gather information pertinent to our 

research questions, data 

extraction forms were 

meticulously crafted. These 

forms were instrumental in 
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capturing key information from the selected studies and 

consisted of the components outlined in Table 4. 

Table-II: Inclusion Criteria 

No. Criteria Description 

1 
Focus on SFP 

Techniques 

Papers specifically focusing on software 

fault prediction techniques. 

2 Use of ML/AI 
Studies that utilize machine learning or 
artificial intelligence in fault prediction. 

3 
Empirical Data 

and Case Studies 

Research including empirical data, 

experiments, or case studies. 

4 
Published in 
Peer-Reviewed 

Sources 

Articles published in peer-reviewed 

journals or conferences. 

5 Language 
Papers published in the English 

language. 

Table-III: Exclusion Criteria 

No. Criteria Description 

1 Non-Specific to SFP 
Papers not specifically addressing 

software fault prediction 

2 
Lack of Empirical 
Data 

Studies that lack empirical data or 
case studies 

3 
Non-Peer-Reviewed 

Sources 

Articles published in non-peer-

reviewed sources 

4 Publication Date 
Papers published before the year 
2020 

5 Language Non-English language publications. 

Table-IV: Quality Assessment Criteria Used for 

Selection of Papers 

Sr. No QA Checklist 

  Does the selected study provide enough detail regarding 

the use of research objectives for SFP 
Methodologies/Techniques clearly defined, to answer 

RQ1? 
QA1 

  Does the selected study Provide enough detail 

regarding the types of datasets used in the studies, 
correctly stated, and justified, to answer RQ2? 

QA2 

  Does the selected study Provide enough detail regarding 

the types of feature selection techniques described and 

their effectiveness evaluated, to answer the RQ3? 
QA3 

  Does the selected study Provide enough detail 
regarding the types of software metrics utilized in SFP 

research to answer the RQ4? 
QA4 

  Does the selected study Provide enough detail 

regarding the evaluation criteria are commonly used 
to measure the performance of SFP models, to answer 

the RQ5? 
QA5 

B. Phase 2:  

i. Conducting the Review 

▪ Selection of Primary Studies 

The selection of primary studies is a critical step in 

any systematic literature review, as it lays the foundation 

for understanding the current state of research, identifying 

gaps, and determining the direction of future research. 

Primary studies are chosen based on their relevance, 

rigour, and contribution to the research questions posed.  

In this paper, Primary Studies are known as the most 

appropriate articles selected by following the tollgate 

approach to answer the identified questions. The tollgate 

approach, comprising five phases (P-1 to P-5), facilitates 

the selection of 23 Primary Studies, as shown in Table 6. 

The mentioned quality criteria (Table 3) are followed 

during the selection of each primary study. The filters of 

the tollgate phases are given as follows: 

 

 

Table-V. Tollgate Approach 

Selected 

Sources 
Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 

IEEE 

Xplore 
300 70 50 24 5 

ACM 250 50 40 20 6 

Science 

direct 
350 60 35 15 5 

Springer 

Link 
280 90 55 25 7 

Total 1180 270 180 84 23 

 

Phase 1 (P-1): Initially extracted data by using various 

combinations of keywords from a search query. 

Phase 2 (P-2): Removed duplicates and applied 

inclusion/exclusion criteria by reading the title. 

Phase 3 (P-3): Applied inclusion/exclusion criteria by 

reading the abstract. 

Phase 4 (P-4): Applied inclusion/exclusion criteria by 

reading the introduction and conclusion. 

Phase 5 (P-5): Applied inclusion/exclusion criteria by 

reading the full text of selected studies. These articles are 

considered primary studies 

ii. Data Extraction 

The extracted data from each primary study include the 

following details: proposed/SFP technique, criteria for 

performance evaluation, the tool used for SFP 

implementation, datasets utilised for the experiments, and the 

techniques with which proposed/used SFP methods are 

compared. studies were chosen because they collectively 

address the comprehensive set of research questions that span 

a wide range of topics, from methodologies and datasets to 

tools and evaluation criteria. Each study contributes unique 

insights into the challenges and advancements within the 

SFP, offering a rich, diverse, and up-to-date perspective on 

the field. 

iii. Data Synthesis 

This stage involves the fusion of relevant extracted data, 

determining the amount of data  

needed to address each question, and compile and present the 

data as shown in Fig. 2. 

 

 
[Fig.2. Distribution of Primary Studies Over the Years] 
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Table-VI: Selection of Primary Studied 

Reference RQ1 RQ2 RQ3 RQ4 RQ5 

Daza,2025 [6] ✓ × ✓ ✓ ✓ 

Goyal and Bhatia, 2021 [8] × ✓ × ✓ × 

Rathore and Kumar, 2021 

[9] 
✓ ✓ × × ✓ 

Qiao et al., 2020 [10] × ✓ × × × 

Boloori and Farhadi 
,2024[11] 

✓ ✓ ✓ × ✓ 

Elmishali and Kalech, 2023 
[12] 

× ✓ ✓ ✓ × 

Kaur et al., 2023 [13] ✓ × ✓ × ✓ 

Rajput et al., 2023 [14] ✓ ✓ × × × 

Arora et al., 2023 [15] [28] ✓ × ✓ × ✓ 

Mehmood et al., 2023 [16] ✓ ✓ × ✓ × 

Wang et al., 2023 [17] ✓ ✓ ✓ ✓ × 

Khan and Nadeem, 2023 

[18] 
× ✓ × × × 

Khalid and Ayub,2023[22] × ✓ ✓ ✓ ✓ 

Das and Alameen, 2023 [24] × ✓ ✓ ✓ × 

Yucalar et al., 2020 [25] × ✓ × ✓ × 

Pandey and Gupta,2024 [27] × ✓ × ✓ × 

Ali and Saeed,2020 [29] × ✓ ✓ ✓ ✓ 

Mafarja, Thaher and 
Too,2023[35] 

✓ ✓ ✓ × ✓ 

Alsangari and Biricik, 2023, 

[55] 
✓ ✓ × ✓ ✓ 

Haque, Ali and Noppen, 
2024[50] 

× × ✓ ✓ ✓ 

Albattah and Alzahrani, 
2024[52] 

× ✓ × ✓ ✓ 

Kaliraj and Sivakumar, 
2024[55] 

✓ ✓ ✓ × × 

Kumar and Das, 2025 [57] ✓ ✓ ✓ × × 

C. Phase 3:  

i. Reporting the Review 

▪ Quality Assessment 

Each selected primary study is assessed against QA 

criteria (Table 4) and assigned a score between 0 and 1, as 

shown in Table 7. Many researchers adopt this process of 

quality assessment in SLRs [23]. If the article explicitly 

answers the QA question, the study is given a score of 1; if 

it partially does, the score is 0.5.  

If the study answers the question, it is given a score of 0.5. 

A score of 0 is assigned to studies that fail to answer QA 

questions. The final score is calculated by summing the 

scores for all QA questions. After assessing the quality of 

the selected primary studies, it was found that the score of 

each primary study was greater than four against the QA 

criteria. This finding indicates that the selected primary 

studies provide sufficient information about ensemble 

learners. 

 

 

Table-VII: Quality Assessment for Primary Studies 

Selection 

Criteria RQ1: RQ2: RQ3 RQ4 RQ5: 

Total 

Score (out 

of 5) 

Include 

(Yes/No) 

QA1 ✔ (1) ✔ (1) 
✔ 

(1) 

✔ 

(1) 
✔ (1) 5 Yes 

QA2 ✔ (1) 
➖ 

(0.5) 

✔ 

(1) 

➖ 

(0.5) 
✖ (0) 3 Yes 

QA3 ✖ (0) 
✖ 

(0) 

➖ 

(0.5) 

✖ 

(0) 
✖ (0) 0.5 No 

QA4 ✔ (1) ✔ (1) 
✔ 

(1) 

✔ 

(1) 

➖ 

(0.5) 
4.5 Yes 

QA5 ✔ (1) ✔ (1) 
✔ 

(1) 

➖ 

(0.5) 
✔ (1) 4.5 Yes 

   ✔ = Yes (1 

point) 

➖ = Partial (0.5 

points) 
✖ = No (0 points) 

ii. Results 

The final stage of the systematic research process involves 

evaluating the answers to identified research questions 

following a critical review. The detailed extracted answers 

from each primary study are discussed in the given section. 

iii. Software Fault Prediction Methodologies/ Techniques 

and Associated Challenges.  

Software quality assurance (SQA), which includes formal 

code inspections, code walkthroughs, software testing, 

validation, verification, and software fault prediction, 

ensures the desired software quality at a lower cost by 

monitoring and controlling the Software Development Life 

Cycle (SDLC) [10]. However, complete testing of a software 

system is practically not possible as it consumes an 

enormous amount of time and resources. SFP techniques 

can be broadly categorized into traditional statistical, 

machine learning, deep learning, and metaheuristic-based 

hybrid approaches: The taxonomy of soft computing 

techniques is given in Fig. 3. 

iv. RQ1: What are the Most Commonly Used 

Methodologies/ Techniques for Software Fault 

Prediction? 

This section presents a synthesis of the findings pertinent to 

Research Question 1 (RQ1) - "Which kind of Techniques are 

most used for software fault prediction?". For RQ1, we 

observed a diverse range of techniques employed across the 

selected studies. The techniques were often tied to specific 

periods where methodologies were at the forefront of 

research due to advancements in machine learning and 

computational capabilities. In this section, a comparative 

analysis of the work of numerous researchers in the field of 

Software fault prediction methodologies and techniques is 

discussed. The comparative analysis encompasses the work 

of various researchers in the field of methods and techniques 

used in software fault prediction from 2020 to 2025. The 

work of researchers is compared in terms of techniques, 

Objective, Result, and challenge of their research work and is 

shown in Table 8 The figure 3.  illustrates a taxonomy of 

Software Fault Prediction (SFP) techniques, categorizing 

them into five major groups: Traditional Statistical Methods, 

Machine Learning Techniques, Deep Learning Approaches, 

Ensemble Techniques and Hybrid  

and Graph-Based Techniques.  

The figure provides a 

comprehensive overview of  

how software fault prediction 
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techniques have evolved—from simple statistical models to 

complex hybrid models involving deep learning and 

optimization algorithms [40]. Each category has distinct 

advantages and trade-offs, depending on the data complexity 

and prediction goals. This figure captures the evolution and 

diversification of techniques in software fault prediction: 

Early approaches relied on simple, interpretable models (e.g., 

Logistic Regression). Then, machine learning brought 

automation and better generalization. Deep learning pushed 

the frontier with highly complex, data-hungry models. 

Ensemble methods focused on combining models for 

robustness [50]. Most recently, hybrid approaches like graph-

based learning with metaheuristics aim to maximize feature 

interaction understanding and optimize prediction accuracy. 

Each category has its trade-offs in terms of interpretability, 

accuracy, data requirements, and computational cost. The 

best choice often depends on the dataset characteristics and 

project constraints. 

 

 

[Fig.3: The Taxonomy of Software Fault Prediction 

Methodologies /Techniques] 

v. Software Fault Prediction Feature Selection 

Methodology /Techniques and Associated Challenges 

 Software Fault Prediction (SFP), feature selection plays a vital 

role in improving model performance, interpretability, and 

generalization by identifying the most relevant software metrics. 

Feature selection is the process of identifying and selecting a 

subset of pertinent and significant features (attributes/metrics) 

from a larger set of data. In Software Engineering, this is 

particularly important in areas such as software fault prediction, 

Effort Estimation, Code Smell Detection, Software Maintenance 

and Evolution, and Defect Localisation. Feature selection in 

software engineering helps focus on the most important 

factors influencing quality, productivity, or maintenance. It 

enhances model performance, supports better decisions, and 

can guide improvements in software design, testing, and 

development. Choosing the proper feature selection method 

depends on the Dataset size and nature, as well as the 

Prediction goals (e.g., fault vs. effort). Desired balance 

between accuracy, interpretability, and scalability. [57] 

Below is a summary of the most applied feature selection 

techniques categorized by methodology  

Table-VIII: Representation of the Feature Selection 

Techniques in SFP 

Category Technique Name 

Filter Methods - Information Gain (IG) 

- Chi-Square 
- ReliefF 

Wrapper 

Methods 

- Forward Selection 

- Backwards Elimination 

- Recursive Feature Elimination (RFE) 

Embedded 

Methods 

- LASSO (L1 Regularization) 

- Ridge (L2) 

- Tree-Based (e.g., Random Forest) 

Metaheuristic / 
Hybrid 

Methods 

- Genetic Algorithm (GA) 
- Particle Swarm Optimization (PSO) 

- Whale Optimization Algorithm (WOA) 
- Grey Wolf Optimizer (GWO) 

- Graph-based Hybrid Approaches 

 

Table 9 Representation of the Feature Selection Techniques in 

SFP.  The Filter methods are fast, but may ignore feature 

interactions. Wrapper methods give better performance, but are 

slow. Embedded methods balance speed and accuracy. 

Metaheuristics are particularly effective for large and complex 

datasets and have gained 

popularity in recent SFP 

research.

http://doi.org/10.35940/ijese.B8280.13080725
http://doi.org/10.35940/ijese.B8280.13080725
http://www.ijese.org/


International Journal of Emerging Science and Engineering (IJESE)  

ISSN: 2319–6378 (Online), Volume-13 Issue-8, July 2025 

                                 31 

Published By: 
Blue Eyes Intelligence Engineering 

and Sciences Publication (BEIESP) 

© Copyright: All rights reserved. 

Retrieval Number:100.1/ijese.B828014020725 
DOI:10.35940/ijese.B8280.13080725 

Journal Website: www.ijese.org 

Table-IX: Comprehensive Overview of Software Fault Prediction Methodologies/Techniques 

Ref. No Aim of the Study Methodologies/Techniques Objectives Result Challenges 

[2] 

Software Fault 

Prediction Using an 

RNN-Based Deep 

Learning Approach 

and Ensemble Machine 

Learning Techniques 

RNN-based deep learning 

approach (RNNBDL) 

Adoption of advanced 

machine learning and deep 

learning techniques in the 

software development 

lifecycle 

The RNNBDL model 

demonstrated the highest 

accuracy (ACC) on large 

datasets, such as Apache 

ActiveMQ and SFP XP-

TDD. 

Indicates a direction 

towards creating a novel 

hybrid technology that 

combines various 

methodologies for 

software fault prediction 

[3] 

BPDET: An Effective 

Software Bug 

Prediction Model using 

Deep Representation 

and 

Ensemble Learning 

Techniques 

Bug Prediction Model using 

Deep Representation and 

Ensemble Learning 

Techniques 

proposes a classification 

framework called Bug 

Prediction using Deep 

Representation and 

Ensemble Learning 

(BPDET) for SBP. The 

research focuses on 

improving the performance 

of SBP models using deep 

learning techniques 

The proposed BPDET 

model outperformed 

baseline methods in 

eight out of twelve 

datasets 

The class imbalance 

problem, which affects 

the accuracy of 

predicting faulty and 

non-faulty modules 

[5] 

A new Ensemble 

approach for Software 

Fault 

Prediction 

Model averaging ensemble 

method (combinations of 

classifiers and resampling 

techniques)  

The study aims to 

investigate the impact of 

different classifiers and 

resampling techniques on 

software fault prediction 

(SFP) performance. 

Significant results were 

found for all classifiers 

except Naive Bayes in 

the Friedman test. 

The research also 

highlights the scarcity of 

studies that report the 

impact of resampling 

techniques on classifier 

performance. 

[4] 

An empirical study of 

ensemble techniques 

for software fault 

Prediction 

Ensemble techniques such as 

Dagging, Decorate, Grading, 

Multi BoostAB, Real 

AdaBoost, Rotation Forest, 

Ensemble Selection and 

classification algorithms are 

naive Bayes, logistic 

regression, and J48 (decision 

tree) 

It aims to evaluate the cost-

effectiveness of SFP 

models based on the 

ensemble techniques used. 

Cost-benefit analysis 

indicates that SFP 

models can save testing 

costs for 20 out of 28 

datasets. 

It notes that many new 

ensemble techniques 

have not been explored 

for software fault 

prediction. 

[7] 

A Deep Ensemble 

Learning Method for 

Effort-Aware 

Just-In-Time Defect 

Prediction 

Fusion-based method that 

combines deep learning 

techniques with Random 

Forest and XGBoost 

classifiers. 

The research also 

introduces a reinforcement 

learning technique to 

minimize false alarms in 

real-time predictions. 

The study highlighted 

the importance of 

handling unbalanced 

data for effective model 

performance. 

The paper discusses the 

challenges associated 

with the unbalanced 

properties of datasets, 

which can impact the 

performance of defect 

prediction models. 

[9] 

Software fault 

prediction based on the 

dynamic selection of 

learning technique: 

findings from the 

Eclipse project study 

It evaluates learning 

techniques: Naive Bayes 

(NB), Logistic Regression 

(LR), K-Nearest Neighbour 

(KNN), Support Vector 

Machine (SVM), Multilayer 

Perceptron (MLP), and 

Decision Tree (J48) 

It focuses on selecting the 

most appropriate learning 

techniques for fault 

prediction modelling. 

The approach effectively 

predicted software 

faults, enhancing 

reliability and quality. 

These challenges 

underline the need for 

comprehensive 

experimental analysis 

and cost-benefit 

evaluation in SFP 

approaches. 

[23] 

Nature-Inspired 

Approaches in 

Software Fault 

Prediction 

Nature-inspired algorithms, 

Ant Colony, Particle, Swarm 

Optimization, Firefly, Bat, 

Harris Hawks, and Genetic 

Algorithm, 

The research aims to 

investigate the performance 

of various nature-inspired 

optimization algorithms for 

software fault prediction 

The Firefly algorithm 

performed best on the 

CM1 dataset, achieving 

an accuracy of 79.38% 

with only 13 features. 

The paper does not 

specify the evaluation 

metrics used to assess the 

performance of the 

algorithms 

[27] 

Software fault 

prediction using the 

Whale algorithm with 

genetics algorithm 

Whale algorithms with 

Genetic algorithms and SVM 

classifiers 

The paper aims to develop a 

software fault prediction 

model integrating a genetic 

algorithm, Whale 

optimization algorithm, and 

an SVM classifier 

The integration of SVM 

with optimization 

algorithms improved 

prediction performance 

in terms of accuracy, 

precision, recall, and F-

measure 

The paper discusses the 

challenge of identifying 

definitive domain 

requirements during the 

test case generation 

process, which can lead 

to inefficiencies 

[38] 

Software defect 

prediction based on 

kernel PCA and 

weighted extreme 

learning machine 

KPWE, combining Kernel 

Principal Component 

Analysis (KPCA) and 

Weighted Extreme Learning 

Machine (WELM) 

The research evaluates the 

performance of KPWE 

against 41 baseline 

methods across multiple 

software projects. 

The KPWE method 

outperforms 41 baseline 

methods in defect 

prediction across 44 

software projects. 

The complex structures 

of software defect data 

make it challenging to 

extract suitable features 

and learn effective 

models. 
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Table-X: Comprehensive Overview of Software Fault Prediction Methodologies/Techniques 

Ref. No Aim of the Study Methodologies/Techniques Objectives Result Challenges 

[10] 

Deep Learning Based 

Software Defect 

Prediction 

support vector regression 

(SVR), Fuzzy support vector 

regression (FSVR) is also 

utilized in the proposed 

approach. 

It aims to evaluate the 

proposed model's 

performance using the mean 

squared error (MSE) and the 

coefficient of determination. 

The paper evaluates the 

proposed approach using 

performance metrics, 

such as MSE and R², 

through 10-fold cross-

validation on two 

datasets. 

The challenge lies in 

selecting the dataset, 

which affects defect 

prediction performance 

across different datasets. 

[11] 

Enhancing software 

defect prediction 

models using 

metaheuristics with a 

learning to rank 

approach. 

TR (Learning To Rank) and 

metaheuristics optimize. 

The study focuses on 

improving defect density 

prediction through a hybrid 

machine learning model. 

Hyperparameter tuning 

with metaheuristics 

enhanced the overall 

model. 

The complex nature of 

datasets makes building 

accurate machine learning 

models a challenging task. 

[15] 

Nature-Inspired 

Approaches in 

Software Fault 

Prediction. 

Nature-inspired algorithms, 

Ant Colony, Particle Swarm 

Optimization, Firefly, Bat, 

Harris Hawks, and Genetic 

Algorithm. 

The research aims to 

investigate the performance 

of various nature-inspired 

optimization algorithms for 

software fault prediction. 

The Firefly algorithm 

performed best on the 

CM1 dataset, achieving 

an accuracy of 79.38% 

with only 13 features. 

The paper does not specify 

the evaluation metrics used 

to assess the performance 

of the algorithms. 

[26] 

Software fault 

prediction using the 

Whale algorithm with 

the genetics algorithm. 

Whale algorithms with 

Genetic algorithms and SVM 

classifiers. 

The paper aims to develop a 

software fault prediction 

model that integrates a 

genetic algorithm, a Whale 

optimisation algorithm, and 

an SVM classifier. 

The integration of SVM 

with optimization 

algorithms improved 

prediction performance in 

terms of accuracy, 

precision, recall, and F-

measure 

The paper discusses the 

challenge of identifying 

definitive domain 

requirements during the 

test case generation 

process, which can lead to 

inefficiencies 

[27] 

Software defect 

prediction based on 

kernel PCA and 

weighted extreme 

learning machine 

KPWE, combining Kernel 

Principal Component Analysis 

(KPCA) and Weighted 

Extreme Learning Machine 

(WELM) 

The research evaluates the 

performance of KPWE 

against 41 baseline methods 

across multiple software 

projects. 

The KPWE method 

outperforms 41 baseline 

methods in defect 

prediction across 44 

software projects. 

The complex structures of 

software defect data make 

it challenging to extract 

suitable features and learn 

effective models. 

[44] 

A hybrid model of 

wavelet neural network 

and metaheuristic 

An algorithm for 

software development 

effort estimation 

hybrid model: - neural 

network (WNN) and 

metaheuristic algorithms: 

firefly algorithm and the bat 

algorithm 

The research evaluates the 

proposed techniques on 

PROMISE SDEE 

repositories to assess their 

effectiveness 

The study indicates that 

the WBG technique 

performs best on the 

COCOMO and NASA93 

datasets 

The paper highlights the 

challenge of estimating 

software development 

effort (SDEE) due to the 

unknown characteristics of 

the software at the time of 

estimation, 

[47] 

Transfer Learning 

Code Vectorizer-based 

Machine Learning 

Models for Software 

Defect Prediction. 

Use of transfer learning with 

the Universal Language 

Model Fine Tuning 

(ULMFiT) for defect 

prediction 

The paper aims to utilize 

transfer learning for defect 

prediction by deriving 

features from software source 

code text. 

It discusses the correlation 

between data quality and 

the performance of 

machine learning 

algorithms. 

The high computational 

cost associated with 

machine learning methods 

is also mentioned as a 

challenge. 

[54] 

A Software Defect 

Prediction Method 

Based on Program 

Semantic Feature 

Mining 

Semantic feature mining 

(PSFM method) 

It focuses on extracting 

semantic information from 

source code to enhance defect 

prediction accuracy. 

The paper demonstrates 

improved performance in 

software defect prediction 

compared to other deep 

learning methods. 

The paper highlights that 

current methods lack 

features to mine defect 

manifestations at the 

semantic level of code. 

 

RQ3: Which Feature Selection Techniques are 

Commonly Applied in SFP? 

Research Question 3 (RQ3) - "What types of feature 

selection techniques are described and their effectiveness 

evaluated, to answer the RQ3? " For RQ3, the feature 

selection techniques used in the studies were analyzed.  The 

feature selection techniques described, along with their 

effectiveness in determining the generalizability and 

applicability of the SFP techniques, are presented in Table 

10. It explores types of feature selection techniques, specific 

algorithms that are most frequently applied, and certain 

techniques that are preferred over others. RQ3, we can guide 

future researchers to choose the  

most effective feature 

selection techniques, 

understand the trade-offs 
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among various methods and design more accurate and 

efficient fault prediction models. 

 

vi. Software Fault Prediction Datasets, Sizes, Software 

Metrics and Evaluation Criteria 

Software Fault Prediction (SFP), datasets play a crucial role 

in training and evaluating models. These datasets typically 

consist of software metrics (features) and fault labels (target 

values) for each module (e.g., class, file, function). The goal 

is to predict whether a software module is faulty or non-

faulty. [19]. Commonly Used Datasets in Software Fault 

Prediction are: -  

 

Datasets: - (1) NASA MDP Datasets Provided by the 

NASA Metrics Data Program (MDP), these are the most 

widely used datasets in SFP research. Dataset CM1 

(Spacecraft instrument software), PC1 (Flight software), KC1 

(Storage management for ground support), KC2 (Storage 

management system), KC3 (Scientific instrument controller), 

MC1 (Space shuttle software), MC2 (Flight software), JM1 

(Real-time predictive ground system), and MW1(Missile 

warning system) Each dataset typically includes: Software 

metrics: e.g., LOC, cyclomatic complexity, Halstead metrics, 

coupling, cohesion. Defect labels: Binary labels indicating 

fault-prone (1) or fault-free (0) modules [21]. 

 

 (2) PROMISE Repository includes NASA datasets and 

others like JEdit, Ant, and Eclipse. Contains both static code 

metrics and process metrics (e.g., number of revisions, bug 

reports) [30] 

 

 (3) Eclipse Datasets (Bug Prediction) Collected from the 

Eclipse open-source IDE. Data from multiple releases (e.g., 

2.0, 2.1, 3.0). Contains metrics from Eclipse's CVS, Bugzilla, 

and static analysis tools. Often used for temporal and just-in-

time defect prediction. 

 

Features (Software Metrics) in SFP Datasets. These 

datasets generally include the following types of features: 

Size Metrics - LOC (Lines of Code), Number of 

Functions/Classes. Complexity Metrics: - Cyclomatic 

Complexity and Halstead Metrics (volume, effort, bugs). 

Coupling & Cohesion Metrics and Coupling Between Objects 

(CBO), Lack of Cohesion in Methods (LCOM).  Change 

Metrics: - (AEEEM, Eclipse) Number of revisions, Number 

of bug-fixes, Recent changes.  

 

Data Characteristics and Challenges: Imbalanced data: - 

Most modules are non-faulty; faulty ones are fewer (class 

imbalance). Noisy data: -Fault labels may be inaccurate or 

missing. High dimensionality: -Some datasets contain many 

features, requiring feature selection. Cross-project 

generalization: - A model trained on one project may not 

perform well on another [34].  

Software Metrics: Common software metrics used in fault 

prediction or maintenance include Size Metrics, such as lines of 

code (LOC) and the Number of Functions. Complexity Metrics: 

- Cyclomatic Complexity and Halstead Metrics. Coupling & 

Cohesion Metrics: -Coupling Between Objects (CBO) and 

LCOM (Lack of Cohesion in Methods). Testing Metrics: - Code 

coverage and Number of test cases. Change/Process Metrics: - 

Number of revisions, Bug-fix count and Code churn. Object-

Oriented Metrics: - DIT (Depth of Inheritance Tree), NOC 

(Number of Children) [33]  

 

Evaluation Criteria: - Software Fault Prediction (SFP), 

evaluation criteria refer to the quantitative metrics used to assess 

the performance of a classifier or prediction model. These 

metrics indicate how effectively the model can distinguish 

between faulty and non-faulty software modules [39]. Since SFP 

is typically applied to imbalanced datasets (containing a small 

number of faulty instances), selecting the right evaluation 

metrics is crucial for an accurate and meaningful performance 

assessment. The most common Key Evaluation Metrics in 

SFP are Accuracy, which is the overall proportion of correct 

predictions. Precision: - Proportion of predicted faulty modules 

that are genuinely faulty. Recall (Sensitivity or True Positive 

Rate): Proportion of actual faulty modules correctly predicted. 

F1-Score Meaning: Harmonic mean of Precision and Recall. 

Specificity (True Negative Rate): Proportion of actual non-faulty 

modules correctly predicted. [20] 

 

RQ2: What types & typical sizes of datasets are 

predominantly used in software fault prediction  

And 

RQ4: Which types of software metrics are utilized in 

SFP research 

And 

RQ5: What evaluation criteria are commonly used to 

measure the performance of SFP models? 
 

Research Question 2 (RQ2) - "What kind of dataset is most 

used for software fault prediction?" For RQ2, the datasets used 

in the studies were analyzed.  The size of these datasets and the 

types of programming languages they encompass are critical 

factors in determining the generalizability and applicability of 

the SFP techniques. Research Question 4 (RQ4): “What types of 

software metrics are utilized in SFP research?” For RQ4, the 

types of software metrics used in SFP research are diverse and 

designed to capture different facets of code quality and 

evolution. Selecting the right combination of metrics has a 

significant impact on the performance of fault prediction models. 

Modern research often employs hybrid feature sets that combine 

static, object-oriented, and process metrics to achieve the best 

results [45]. Research Question 5 (RQ5) “What evaluation 

criteria are commonly used to measure the performance of SFP 

models?” Describe through a set of evaluation criteria — 

especially Accuracy, Precision, Recall, F1-score, AUC-ROC, 

and AUC-PR, with selection 

depending on data balance, 

domain needs, and risk level 

[46] and described in Table 11.
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Table-XI: Comprehensive Overview of Feature Selection Techniques in Software Fault Prediction   

Ref. No Aim of the study 
Feature Selection 

Techniques / Methodologies 
Objectives Result Challenges 

[8] 

Software fault 

prediction using lion 

optimization algorithm 

Lion Optimisation-based 

Feature Selection (LiOpFS)  

The research focuses on 

selecting optimal feature 

subsets from high-

dimensional defect 

datasets 

LiOpFS 

outperforms 

baseline 

techniques, 

achieving an AUC 

of 90.1% and an 

accuracy of 94.2% 

The paper discusses the 

challenge of the Curse of 

Dimensionality, which 

threatens the 

performance of 

classifiers in predicting 

fault-prone software 

modules 

[12] 

Issue-Driven Features 

for Software Fault 

Prediction 

Issue-Driven features 

The research aims to 

evaluate the performance 

of fault prediction models 

using issue-driven 

features compared to 

traditional feature sets. 

Issue-driven 

features showed a 

6% to 13% 

improvement in 

AUC across 86 

open-source 

projects. 

The paper discusses the 

challenge of accurately 

predicting software 

faults, which is 

exacerbated by the 

complexity of modern 

software systems. 

[16] 

A Novel Approach to 

Improve Software 

Defect Prediction 

Accuracy Using 

Machine Learning 

Random Forest, Logistic 

Regression, Multilayer 

Perceptron, Bayesian Net, 

Rule ZeroR, J48, Lazy IBK, 

Support Vector Machine, 

Neural Networks, and 

Decision Stump 

The objective is to enhance 

defect prediction accuracy 

by applying feature 

selection techniques to five 

NASA datasets: CM1, 

JM1, KC2, KC1, and PC1. 

On average, feature 

selection enhances 

defect prediction 

accuracy by 5% 

The proposed method 

heavily relies on feature 

selection techniques to 

enhance prediction 

accuracy 

[24] 

Feature Selection 

Using Golden Jackal 

Optimization for 

Software Fault 

Prediction 

Golden Jackal Optimization 

(GJO) algorithm, (which is 

inspired by the hunting tactics 

of golden jackals.) 

The paper aims to apply 

effective feature selection 

methods to identify a 

precise and interpretable 

model. 

FSGJO 

outperformed other 

feature selection 

techniques, 

achieving higher 

accuracy in most 

datasets tested. 

The performance of the 

GJO algorithm varies 

significantly depending 

on the characteristics of 

the dataset used. 

[26] 

Boosted Whale 

Optimization 

Algorithm With 

Natural Selection 

Operators for Software 

Fault Prediction 

Whale Optimization 

Algorithm (WOA) 

The paper aims to propose 

new variants of the Whale 

Optimization Algorithm 

(WOA) for feature 

selection in software fault 

prediction (SFP) 

applications 

new variants of the 

Whale 

Optimization 

Algorithm (WOA) 

as wrapper 

algorithms 

specifically 

designed to address 

feature selection 

challenges in SFP 

applications 

Class imbalance in 

software fault prediction 

datasets poses a 

significant challenge 

[29] 

Software Defect 

Prediction Using 

Variant-based 

Ensemble Learning 

and Feature Selection 

Techniques 

Variant-based ensemble 

learning and feature selection 

techniques 

The research aims to 

propose a classification 

framework for predicting 

defect-prone software 

modules, thereby 

reducing testing costs in 

software development. 

The proposed 

framework 

achieved F-

Measure, 

Accuracy, and 

MCC scores of 

0.507, 84.974, and 

0.488 on the JM1 

dataset. 

 

The paper discusses the 

challenge of high costs 

associated with the 

testing process in 

software development, 

particularly when fixing 

defects during testing, 

which can lead to 

increased project 

completion time. 

[30] 

Performance Analysis 

of Feature Selection 

Methods 

in Software Defect 

Prediction: A Search 

Method Approach 

selection (FSS) methods: 

Correlation-based Feature 

Subset Selection (CFS) and 

Consistency Feature Subset 

Selection (CNS) 

The paper aims to analyze 

the performance of 

various feature selection 

(FS) methods in software 

defect prediction (SDP) 

models 

It highlights that 

the performance of 

FS methods varies 

across datasets and 

classifiers 

The selection of 

performance metrics, 

such as accuracy and 

stability measures, poses 

challenges in evaluating 

prediction models 
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Table-XII: Comprehensive Overview of Feature Selection Techniques in Software Fault Prediction   

Ref. No Aim of the Study 
Feature Selection 

Techniques / Methodologies 
Objectives Result Challenges 

[31] 

Feature selection using the 

firefly algorithm in 
software defect 

prediction 

firefly algorithm (FA) 

The study proposes a 
new technique inspired 

by the behaviour of 

fireflies for effective 
feature selection. 

Support Vector 

Machine (SVM) 

with feature 
selection (FS) 

achieved a 

classification 
accuracy that was 

4.53% higher than 

SVM without FS. 

The need for 

effective feature 
selection to manage 

software quality and 

predict defects is 
emphasized as a 

challenge 

[32] 

A Classification 

Framework for Software 

Defect Prediction Using 
Multi-Filter Feature 

Selection 

Technique and MLP 

Multi-Filter Feature Selection 

Technique and Multi-Layer 

Perceptron (MLP) 

The framework is 
designed to enhance 

software quality by 

identifying modules that 
require thorough testing 

MLP-FS-ROS 

outperformed in F-

Measure and MCC, 
while MLP-FS 

excelled in 

Accuracy 

The paper discusses 
the challenge of class 

imbalance in 

datasets, which can 
significantly affect 

the performance of 

classification 
techniques. 

[34] 

A Framework for Software 

Defect Prediction Using 

Feature Selection and 
Ensemble Learning 

Techniques 

Wrapper approach with 

Artificial Neural Network 

(MLP) AND search methods: 
Best First, Greedy Stepwise, 

Genetic Algorithm, Particle 

Swarm Optimization, Rank 
Search, and Linear Forward 

Selection 

The research aims to 

develop a framework for 
software defect 

prediction using feature 

selection and ensemble 
learning techniques. 

The results indicate 
that no single 

search method 

consistently 
outperformed base 

classifiers across all 

datasets. 

No classification 
technique achieved 

100% accuracy, 

indicating inherent 
challenges in 

software defect 

prediction. 

[35] 

Classification framework 

for faulty software using an 

enhanced exploratory 
whale optimiser-based 

feature selection scheme 
and random forest 

ensemble learning 

Binary Whale Optimization 

Algorithm (BWOA) 

The objective is to 
enhance classification 

performance by selecting 

the most informative 
features and eliminating 

those that are irrelevant. 

The study 

highlights the high 
accuracy achieved 

despite the 

complexity and 
computation cost of 

the proposed 
methodology. 

The paper highlights 

the need for efficient 

methods to improve 
algorithm 

performance, given 
the No Free Lunch 

argument. 

[36] 

An effective feature 

selection-based 
cross‑project defect 

prediction model for 

software quality 
improvement 

cross-project defect prediction 
(CPDP): MIC_SM_FS and 

BPSO_FS. (Binary particle 

swarm optimization algorithm) 

The paper aims to 

propose a novel CPDP 
approach with two 

distinct feature selection 

strategies, one non-
iterative and one iterative 

BPSO_FS achieved 

comparable 
performance to 

baseline ALL with 

a 65% reduction in 
features 

The paper discusses 

the challenge of 

distribution 
dissimilarity 

between source and 

target project data, 
which limits the 

capability of cross-

project defect 
prediction (CPDP) 

models 

[38] 

3PcGE: 3-parent child-

based genetic evolution for 
software defect prediction 

3PcGE (three-parent child-

based genetic evolution) 

The research aims to 

demonstrate that 3PcGE 
enhances the 

performance of SDP 

classifiers as a feature 
selector 

The proposed 
3PcGE technique 

outperforms filter-

based FS 
techniques by 

18.98% in the AUC 

measure 

The challenge of  this 

work will involve 
expanding datasets 

and exploring 

additional multi-
objective algorithms 

[41] 

Optimal Feature Selection 

through Search-Based 
Optimizer in Cross-Project 

Search-based optimizer 

The research aims to 

select optimal features 

from multi-class data for 
cross-project defect 

prediction (CPDP) using 
a search-based optimizer. 

The research 
demonstrated that 

feature selection 

enhances prediction 
accuracy in cross-

project defect 
prediction 

scenarios. 

The paper discusses 

the challenge of 
heterogeneous data 

in cross-project 
defect prediction 

(CPDP), affecting 

model performance. 

[42] 

A two‐stage transformer 

fault diagnosis [43] method 
based on multi‐filter 

interactive feature 

selection, integrated 
adaptive Sparrow, and an 

algorithm-optimised 

support vector machine 

multi‐filter interactive feature 
selection method (MIFS) and 

adaptive sparrow algorithm 

(ASSA) optimized support 
vector machine (SVM). ( 

ASSA‐SVM) 

It proposes a two-stage 
integration model, 

MIFS-ASSA-SVM, for 

improved feature 
selection and parameter 

optimization 

The optimal feature 

subset selected 

under ReliefF-
mRMR showed the 

highest mean 

accuracy and the 
least dimension 

Redundant high-
dimensional feature 

sets can waste 

computing power 
and complicate fault 

identification 
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Table-XIII: Comprehensive Overview of Feature Selection Techniques in Software Fault Prediction   

Ref. No Aim of the Study 
Feature Selection Techniques / 

Methodologies 
Objectives Result Challenges 

[51] 

A Study on Software 

Defect Prediction 

using Feature 
Extraction 

Techniques 

feature extraction techniques: Principal 

Component Analysis (PCA), Linear 
Discriminant Analysis (LDA), Kernel-

based Principal Component Analysis (K-

PCA), and Autoencoders. And Support 
Vector Machine (SVM) classifier 

It explores the impact of 
different feature extraction 

methods on software defect 

prediction 

The study found that 

Autoencoders 
achieved the highest 

performance based 

on ROC-AUC with a 
p-value of 0.009 

The findings are based on 
experimental results 

without real-world 

validation. 

[48] 

A software defect 

prediction method 
with metric 

compensation based 

on feature 
selection and transfer 

learning 

peUpMeCom, which integrates metric 

compensation based on transfer learning 

and Pearson feature selection  

The research introduces a 

metric compensation 

technique to handle 
significant distribution 

differences between source 

and target projects 

The proposed method 

improves defect 
prediction accuracy 

using metric 

compensation based 
on feature selection 

and transfer learning 

The main external threat 

to validity identified in the 
paper is dataset bias, 

which raises concerns 

about the generalizability 
of the proposed defect 

prediction model 

[57] 

Cost-Effective 
Prediction Model for 

Optimal Selection of 

Software 
Faults Using Coati 

Optimization 

Algorithm 

A novel feature selection (FS) method 

called FS using Coati Optimization 

Algorithm (FSCOA) and classifiers: K-

Nearest Neighbors (KNN), Quadratic 

Discriminant Analysis (QDA), Decision 
Trees (DT), and Naive Bayes (NB) 

The algorithm aims to 

select relevant and optimal 

subsets of features from 

large datasets to enhance 

the performance of the 
machine learning model. 

The FSCOA model 

outperformed other 

feature selection 
algorithms in over 

90% of test cases. 

Data Quality Issues, Curse 

of Dimensionality and 

Optimization Algorithm 

Challenges of this Paper 

Table-XIV: Comprehensive Overview of Software Fault Prediction Datasets, Sizes, Software Metrics and 

Evaluation Criteria  

Ref. No Aim of the Study 
Datasets Types /   

Sizes 

Software 

Metrics 
Evaluation Criteria Result Challenges 

[2] 

Software Fault 

Prediction Using an 

RNN-Based Deep 
Learning Approach 

and Ensemble 

Machine Learning 
Techniques 

Eclipse (Java-
based open-

source), Apache 

Active MQ (JIRA 
bug repository) and 

large sample sizes.  

Chidamber and 
Kemer (CK) 

metrics, Object-

Oriented (OO) 
metrics, and 

entropy metrics 

Accuracy (ACC), Area 
Under Curve (AUC), F-

measure (FM), Cohen’s 

Kappa (KE), Precision, 
Recall, True Negative 

Rate 

ensemble ML 

Accuracy: 94.38% 
(Random Tree with 

RF) on Apache 

Active MQ and 
79.93% (SVM with 

RF) on the Eclipse 

dataset 

Development of a new 

dataset using JavaDoc 
documents and integrating 

transfer learning into the 

newly developed dataset 

[3] 

BPDET: An Effective 

Software Bug 

Prediction Model 
using Deep 

Representation and 

Ensemble Learning 
Techniques 

12 data sets from 

NASA's PROMISE  

Basic Halsted, 
Derived Halsted, 

and McCabe 

ROC (receiver 

operating characteristic 

curve), F-measure, 
Matthew’s correlation 

coefficient (MCC) and 

precision-recall area 
(PRC) 

The MCC values 
of BPDET is highest 

for CM1 (0.420), 

It highlights issues such as 
missing values, data 

redundancy, and irrelevant 

features that hinder the 
effective detection of 

faulty modules. 

[4] 

An empirical study of 
ensemble techniques 

for software fault 

prediction 

28 benchmarked 

software fault 

datasets from the 
PROMISE data 

repository 

object-oriented 

software metrics 

precision, recall, AUC 
(area under the ROC 

curve), specificity, and 

G-means 

Ensemble techniques 

produced mean 
values greater than 

0.7 for most 

performance 
measures. 

The study indicates that 

previous analyses were 

restricted to a few fault 
datasets and ensemble 

techniques 

[7] 

An ANN-Based 

Approach for 

Software Fault 
Prediction Using 

Object-Oriented 

Metrics 

18 public datasets 

from the PROMISE 

repository 

object-oriented 
metrics 

ROC-AUC (receiver 
operating characteristics 

area under the curve), 

accuracy, and mean 
squared error (MSE 

The accuracy of the 

proposed model 

ranges from 92% to 
93%, demonstrating 

high prediction 

reliability. 

The selection of 
appropriate metrics for 

fault prediction is 

identified as a critical 
challenge. 

[9] 

Software fault 

prediction based on 
the dynamic selection 

of learning technique: 

findings from the 
Eclipse project study 

5 Eclipse project 

datasets: JDT core, 

PDF UI, Equinox 
framework, Lucene, 

and Mylyn 

Object-oriented 

accuracy, AUC, 

sensitivity, and 
specificity 

Accuracy for Eclipse 
datasets was at least 

0.70, peaking at 

0.877 

The paper discusses the 

challenge of selecting 

suitable learning 
techniques for SFP due to 

variations in prediction 

performance across 
different software 

systems. 

[18] 

Evaluating the 
effectiveness of 

decomposed 

Halstead Metrics in 
software fault 

prediction 

5 public datasets 

Halstead base 

metrics, McCabe 

metrics, and Lines 
of Code (LoC). 

Accuracy, F-measure, 
and Area Under Curve 

(AUC) 

Accuracy improved 

from 0.82 to 0.97, F-
measure from 0.81 to 

0.99, and AUC from 

0.79 to 0.99 

The research indicates 

that different datasets may 
exhibit distinct 

characteristics affecting 

performance. 
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Table-XV: Comprehensive Overview of Software Fault Prediction Datasets, Sizes, Software Metrics and Evaluation Criteria 

Ref. No Aim of the Study 
Datasets Types /   

Sizes 

Software 

Metrics 

Evaluation 

Criteria 
Result Challenges 

[27] 

Software Metrics 

Selection for Fault 
Prediction: A Review 

limited number of 

datasets 

Lines of 

Code 
(LOC). 

Not specified 

variation in metric 

performance across 
different programming 

languages, suggesting 

further investigation is 
needed. 

Achieving high software 

quality while meeting 
predetermined goals is a 

significant challenge due 

to traditional testing 
limitations 

[42] 

Performance 

Evaluation of various 
ML techniques 

for Software Fault 

Prediction using the 
NASA dataset 

JM1 provided by 

NASA 
21 features 

Accuracy (ACC), 

recall, precision, 
and F1-score 

RF classifier showed 
improved accuracy of 

92.28140% with 

random sampling 

Software developers face 

significant challenges in 
creating high-quality 

software, requiring 

adherence to a series of 
actions and restrictions 

[47] 

Software Fault 

Prediction Using 
LSSVM with Different 

Kernel Functions 

PROMISE 

repository and 15 
fault prediction 

datasets are used 

object-
oriented 

Accuracy, 

F−Measure, True 
Positive (TP), True 

Negative (TN), 

False Positive 

(FP), and False 

Negative (FN) 

The study analysed the 
results using box plots, 

which showed high 

median values for the 

LSSVM models. 

The paper does not 

address the number of 

faults present in a 
module, which is a 

significant challenge in 

fault prediction. 

[53] 

Software Quality 

Prediction: An 

Investigation 
Based on Artificial 

Intelligence 

Techniques 
for Object-Oriented 

Applications 

PROMISE data 

repository and (8) 
eight open-source 

real-world 

software projects 
such as Tomcat, 

Velocity, Ivy, 

Jedit, Workflow, 
Poi, Forrest, Ant 

object-
oriented 

software 

metrics. 

Accuracy, 

Precision and 
Recall 

Bagging and Random 

Forest techniques 
achieved the highest 

AUC values, indicating 

strong predictive 
performance. 

Software reliability is 

challenged by the 

complexity of software 
and its associated defect 

rates. 

III. DISCUSSION AND ANALYSIS 

In this section, an analysis and discussion of the 

considered research papers are presented in the form of 

answering the proposed research questions (RQ). The 

answers to the research questions are entirely based on the 

comparative analysis. This comprehensive review aimed 

to unravel the intricacies and current trends in Software 

Fault Prediction (SFP), addressing several pertinent 

research questions as detailed in the earlier sections of this 

paper. A total of 71 relevant studies were carefully 

selected and analysed to support the summarised findings. 

A. RQ1: What are the Most Commonly used 

Methodologies/Techniques for Software Fault Prediction? 

During the analysis of Table 8, it has been observed that 

among all Methodologies/techniques used in software 

fault prediction, Machine Learning Techniques are the 

most commonly used. The analysis of the most widely 

used methodologies and techniques for software fault 

prediction is shown in Fig. 4. 

 
[Fig.4: Analyses of Software Fault Prediction 

Methodologies/Techniques] 

B. RQ2: What types & typical sizes of datasets are 

predominantly used in software fault prediction studies? 

Software Fault Prediction studies predominantly rely on 

small to medium-sized benchmark datasets, such as those 

from NASA and PROMISE, due to their accessibility and 

standardization. However, there is a growing trend toward 

using open-source project data and industrial datasets for 

enhanced realism and scalability [56]. The typical sizes of 

datasets & Types used in software fault prediction studies 

by different researchers are shown in Table 11. and analysis, 

as shown in Fig. 5 

C. RQ3: Which Feature Selection Techniques are 

Commonly Applied in SFP? 

The selection techniques used by most researchers for 

software fault prediction are Filter Methods, Wrapper 

Methods, and Embedded Methods. Studies of feature 

selection techniques are commonly applied in SFP, shown 

in Table 10, and the analysis is shown in Fig. 6  

D. RQ4: Which types of software metrics are utilized in SFP 

research? 

In Software Fault Prediction (SFP) research, code 

metrics are the most widely used due to their availability 

and ease of extraction from source code. However, process 

metrics and object-oriented design metrics are 

increasingly being adopted to capture development history 

and structural design features [37]. Studies of software 

metrics are utilized in SFP research, shown in Table 11, 

and the analysis is shown in Fig. 7 
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[Fig.5: Analyses of Types Datasets are Used in 

Software Fault Prediction Studies] 

 

[Fig.6: Analyses of Feature Selection Techniques 

Software Fault Prediction Studies] 

E. RQ4: Which Types of Software Metrics are Utilised in 

SFP Research? 

In Software Fault Prediction (SFP) research, code 

metrics are the most widely used due to their availability 

and ease of extraction from source code. However, process 

metrics and object-oriented design metrics are 

increasingly being adopted to capture development history 

and structural design features. Studies of software metrics 

are utilised in SFP research, as shown in Table 11, and the 

analysis is presented in Fig. 7. 

F. RQ5: What Evaluation Criteria are Commonly used to 

Measure the Performance of SFP Models? 

In SFP research, a range of evaluation criteria is used to 

assess prediction models comprehensively. While accuracy is 

simple and commonly reported, it can be misleading in 

imbalanced datasets. Therefore, precision, recall, F1-score, 

and AUC-ROC/AUC-PR are more reliable for measuring 

performance, especially for detecting faulty modules. 

Moreover, cost-sensitive and effort-aware metrics are 

increasingly emphasized to ensure the practical utility of SFP 

models in real-world settings [49]. Studies of evaluation 

criteria are commonly used to measure the performance of 

SFP models, as shown in Table 11 and the analysis shown in 

Fig. 8 

 

 

[Fig.7: Analyses of Types of Software Metrics are 

Utilized in SFP] 

 
[Fig.8: Analyses of Evaluation Criteria are Used to 

Measure the Performance of SFP] 

IV. CONCLUSION 

This review has systematically explored methodologies, 

datasets, feature selection techniques, and evaluation 

criteria in Software Fault Prediction (SFP). The study 

highlights the significant role machine learning models, 

particularly neural networks, deep learning, and ensemble 

methods, play in advancing SFP by effectively handling 

the complexities of software fault datasets. The 

widespread use of repositories like PROMISE and NASA 

emphasises the importance of diverse datasets in 

enhancing model accuracy. However, persistent 

challenges such as data imbalance, the fast-evolving 

nature of software development, and the demand for real-

time prediction remain key hurdles. 

In this paper, an SLR is conducted to track the most recent 

research advances in techniques for software defect 

prediction. This review is conducted after critically analysing 

the most relevant research papers published in three well-

known online libraries: ACM, IEEE, SpringerLink, and 

ScienceDirect. Five research questions regarding the different 

aspects of research progress on the use of SFP techniques, 

Dataset, feature selection, software metrics & evaluation 

criteria for software defect prediction are defined and 

addressed in this study. From the comparative analysis, it has 

been observed that techniques such as Machine Learning 

Techniques and Traditional Statistical Techniques are 

primarily used by Researchers,  

with the most common use of 

Feature Selection Techniques, 

including Wrapper Methods, 

and Public Benchmark 
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Datasets (e.g., NASA MDP & PROMISE Repository). 

Confusion Matrix-Based Metrics (Accuracy, Precision, 

Recall (Sensitivity) & F1-Score).  Moreover, the diversity of 

classifiers used in building the SFP model should also be 

investigated to improve the effectiveness and quality of the 

software.  
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