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Abstract: Developments in plasmonic photovoltaics have 

yielded new mechanisms of trapping light.  In this review, we 

provide an overview of the light-trapping mechanisms to improve 

the efficiency of solar cells. Specifically, this work presents a 

concise review and addresses factors such as light absorption, 

light scattering, near-field enhancement, and localised surface 

plasmons. Light absorption and charge recombination are the 

major limiting factors affecting the efficiency of photovoltaic 

solar cells. The review also examines emerging theories and their 

relationship to technologies involving plasmonic materials. The 

use of metallic nanoparticles in solar cells enables the 

occurrence of surface plasmon resonance (SPR). Surface 

plasmon resonance occurs when light excites the electrons at the 

metal surface, causing electrons in the metal to become excited 

and move parallel to the surface. The surface plasmon resonance 

induces a resonance effect that occurs when the conduction 

electrons of metal nanoparticles interact with incident photons. 

This resonance effect generates an oscillating electric field that 

drives the conduction electrons to oscillate coherently, inducing a 

localised surface plasmon (LSP). These localised surface 

plasmon results in absorption and scattering of light. Light is 

deflected or re-radiated by the metallic nanoparticles due to the 

excitation of localised surface plasmons. Hence, plasmonic 

metallic nanoparticles improve the efficiency of solar cells by 

concentrating or trapping light at the absorber layer. The 

dimensions, such as size and shape of the nanoparticles, directly 

influence both light scattering and near-field enhancement. The 

elongated nanoparticles interact more effectively with light than 

spherical nanoparticles, resulting in improved light absorption 

and enhanced solar cell efficiency. 
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I. INTRODUCTION

The world’s most significant challenge currently is the

generation of clean and renewable energy [1]. Despite the 

Sun’s energy being inexhaustible, efficient use of it has been 

a challenge [2]. Enhancement in light conversion efficiency 

is one of the leading research targets that will help in 

fulfilling the global demand for energy [3]. There are four 

problems associated with efficient light harvesting in solar 

cells. These problems include: light absorption, charge 

separation, charge migration, and charge recombination [4]. 

To boost light absorption, nanophotonic light-trapping 

mechanisms are being explored in Plasmonic Solar Cells 

(PSCs). Plasmonic solar cells are solar cells that convert 

light energy to electrical energy with the aid of plasmons. 

The interface between the metal and the dielectric 

semiconductor facilitates the support of surface plasmons. 

Plasmonic elements enhance solar cell efficiency by 

concentrating or trapping light within the absorber layer [5]. 

Plasmonic elements also serve as a back contact or as an 

anti-reflective electrode [6]. The incident light of the 

resonance frequency of the plasmon causes electron 

oscillations at the nanoparticle surface, which are captured 

by the conductive layer and produce an electrical current 

[7]. Plasmonic solar cells were developed as a solution for 

overcoming the restricted light absorption in thin film 

photovoltaic devices, and consequently, different plasmonic 

solar cell types have been developed [8]. Techniques for 

light trapping and localising have become more feasible in 

plasmonics [9] Plasmonic light trapping by metallic 

elements is of specific interest for the enhancement of thin 

film solar cell efficiency. Plasmonic effects are beneficial 

platforms for strong light scattering and are effectively and 

physically relevant for high-efficiency light harvesting in 

organic solar cells.  Figure 1 depicts one of the architectures 

of PSCs. 

[Fig.1: Device Architecture of PSCs with Embedded NPs 

in the HTL and ETL] [9] 

The metallic nanoparticles  

placed on top of a solar cell, 

scatter the incident sunlight, 

coupling and trapping freely 

propagating plane waves into 
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the active absorbing thin film [10]. When metallic 

nanoparticles are embedded within the active layer, they 

function as sub-wavelength antennas, where the plasmonic 

near-field is coupled to the absorbing layer, thereby 

increasing the effective absorption cross-section. Light 

scatters more into a dielectric with a larger permittivity. This 

is because the dielectric polarizesmore in response to the 

electric field. A material with a higher permittivity stores 

more energy and is more resistant to external electric fields. 

Permittivity is a measure of a material’s electric 

polarizability. It measures how easily light polarizes in 

response to an electric field. Hence, light scattering is 

caused by fluctuations in the dielectric constant. It is the 

fluctuations in the dielectric constant that bring about light 

scattering [11]. If a nanoparticle is placed close to the 

interface of the two dielectrics, the optical length is 

increased by the angular spread of the light into the 

dielectric [12]. The metal contact reflects the light towards 

the surface, where metallic nanoparticles are present, 

causing the light to scatter again and resulting in multiple 

passes of light through the solar cell [13]. The metallic 

nanoparticles are primarily composed of silver, gold, or 

copper due to their strong interaction with light [14]. The 

surface nanoparticle material, size, shape, refractive index of 

the medium, and distance from the active layer are key 

factors in determining the scattering and coupling effects. 

The choice of nanoparticle size, concentration, and location 

in the device results in an enhanced power conversion 

efficiency compared to standard organic solar cells (OSCs) 

[15]. 

II. WORKING PRINCIPLE OF PLASMONICS 

Plasmonic solar cells utilise metallic nanoparticles to 

enhance light absorption in thin-film solar cells. The use of 

plasmonic elements improves the efficiency of thin-film 

photovoltaics by focusing or trapping light within the 

absorber layer [8]. The working principle of plasmonics 

operates based on:(i) Light scattering, (ii) Near-field 

concentration of light, (iii) Surface plasmon resonance, and 

(iv) electron oscillations [16]. 

A. Light Scattering 

Light scattering is how light behaves when it interacts with 

a medium containing a particle. When light encounters 

particles smaller than its wavelength, it is scattered in 

various directions. The scattering is dependent on the size of 

the particle and the wavelength of light, as shown in Figure 

2. The interface between a metal and a semiconductor helps 

support surface plasmons. In plasmonics, light is deflected 

or re-radiated by the metallic nanoparticles as a result of the 

excitation of localised surface plasmons (LSPs) [17]. LSPs 

refer to a collective oscillation of electrons on the 

nanoparticle's surface, which leads to enhanced scattering 

compared to particles of similar size without plasmonic 

properties.In essence, these nanoparticles scatter light 

significantly at specific wavelengths matching their plasmon 

resonance frequency [18]. 

 
[Fig.2: Plasmonic Light-Trapping by Metal 

Nanoparticles] 

Plasmonic metallic elements have been used to improve 

the efficiency of the solar cells by concentrating or trapping 

light at the absorber layer. These plasmonic elements serve 

as a back contact or as an anti-reflective electrode [19].  The 

incident light at the resonance frequency of the plasmon 

induces the electron oscillations at the interface of the 

electrode, thereby leading to the generation of surface 

plasmon polaritons, which are a collective oscillation of the 

free electrons [20]. The interaction of light with these 

oscillations enhances the electromagnetic field at the 

nanoparticle surface, thus producing the electrical current 

[21]. 

B. Near-Field Concentration of Light 

Near-field light is the light that exists near the surface of 

an object. Plasmon near-field arises due to localised surface 

plasmons and boosts the light scattering, which increases the 

light absorption [19]. The interaction of the light with the 

small NPs increases the localised plasmonic resonance due 

to near-field enhancement, which in turn causes an increase 

in absorption. The plasmonic near-field, when coupled with 

the active layer, increases the absorption of light in the 

presence of nanoparticles [22]. In these materials, near-field 

light is utilised to enhance the electromagnetic field near the 

material's surface, thereby creating hot spots where light is 

significantly amplified. 

C. Surface Plasmon Resonance  

Surface plasmon resonance (SPR) occurs when light 

strikes the metal surface at a specific angle, causing 

electrons in the metal to become excited and travel parallel 

to the surface [23]. SPR is the significance of a resonance 

effect that occurs when the conduction electrons of metal 

nanoparticles interact with incident photons [24]. When 

small spherical metallic nanoparticles interact with light, the 

oscillating electric field drives the conduction electrons to 

oscillate coherently [25]. The oscillation of the electron 

cloud is a direct result of the restoring force that arises from 

Coulombic attraction between electrons and nuclei.  This 

process results in a localised surface plasmon, as depicted in 

Figure 3. 
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[Fig.3: Localised Surface Plasmon: Incident Light on 

Metal Nanoparticles Causes the Conduction Band 

Electrons to Oscillate] 

The interaction of light and nanoparticles relies on the 

dimensions and shape of the metallic nanoparticles. The 

surface plasmon resonances manipulate light beyond the 

diffraction limit of light and create a localised 

electromagnetic field at the metallic surface. 

D. Electron Oscillations 

Plasmonics are free electron oscillations in a conducting 

material that manipulate light at the nanoscale level. 

Plasmons guide and confine light on the subwavelength 

scale. Electron oscillation is the periodic movement of an 

atomic electron in response to an imposed electromagnetic 

field, characterised by displacement, velocity, and 

acceleration synchronised with the frequency of the field.  

Electrons moving back and forth generate electromagnetic 

waves that spread outwards, thereby creating a ripple effect. 

In plasmonic materials, these electron oscillations give rise 

to surface plasmon resonance, which enhances the 

interaction of light with the material. 

When light strikes metal nanoparticles, surface plasmons 

are activated, resulting in both scattering and absorption. 

The scattered light moves along the solar cell back and forth 

between the substrate and the nanoparticles, thereby 

enabling the solar cell to trap light further [9]. Light at the 

plasmonic resonance frequency triggers electron oscillations 

on the nanoparticle surface [26]. These electron oscillations 

are then captured by the conductive layer, generating an 

electrical current.  The electrolyte potential in contact with 

the nanoparticles and the band gap of the conductive layer 

determine the resulting voltage. The dimensions and form of 

the nanoparticles, along with their placement within the cell, 

influence the overall solar cell efficiency [5]. Nanoparticle 

size is a recognized factor in determining both the local 

electric field and optical extinction. For instance, the use of 

two different-sized NPs can lead to synergy in the 

absorption of light at both short- and long-term wavelengths 

[27], thereby decreasing the loss of light within the cell. 

Increasing the size of the particle causes a red shift in the 

localised surface plasmon resonance wavelength [28]. The 

shape affects the uptake of the nanoparticles by the solar 

cells. The elongated nanoparticles exhibit stronger surface 

plasma resonances compared to spherical nanoparticles, as 

observed in the case of gold nanorods versus spheres. This is 

because the elongated nanoparticles have a higher ability to 

interact with more light-absorbing sites within the solar cell, 

thereby leading to potentially improved light absorption and 

enhanced solar cell efficiency [29]. On the other hand, the 

location of these NPs in solar cells affects the absorption 

and performance enhancement mechanisms. For instance, 

NPs placed at the back of the solar cell's surface scatter light 

into the active layer, hence enhancing the probability of 

absorbing photons [30]. The mechanisms used in the 

plasmonic enhancement of Organic Solar Cells make use of 

the near-field enhancement and efficient far-field [31]. The 

near-field enhancement occurs when light interacts with 

metallic nanoparticles, hence causing localised oscillations 

of electrons on the surface, thereby creating a strong electric 

field concentrated near the particle [32]. This strong field 

raises the likelihood of exciton creation in the surrounding 

organic material [33]. The intensity of the near-field effect is 

strongly tied to the nanoparticles’ dimensions and the 

arrangement in terms of spacing between the nanoparticles 

[34]. Conversely, the far-field enhancement uses the 

scattering of light by plasmonic nanoparticles, hence 

redirecting light back into the active layer of the OSC [35]. 

This action effectively increases the optical path length, 

thereby allowing more light to be back-reflected into the 

active layer of the OSC. The near-field enhancement is 

optimised by controlling the size and shape of the 

nanoparticles and their arrangement [36]. Surface plasmon 

resonance (SPR) provides an alternative approach to 

enhancing the functionality of solar cells.SPR arises when 

light energises the electrons at the metal surface [37]. This 

excitation leads to coherent electron charge oscillations 

within metallic nanoparticles, which are stimulated by light 

[38]. These oscillations, in turn, generate a localised electric 

field near the surface of the nanoparticle, thereby 

strengthening the local electric field near the nanoparticle 

surface. 

III. LIGHT TRAPPING MECHANISMS 

Plasmonic nanoparticles (NPs) can improve the light 

trapping mechanisms by utilising spectral modification 

techniques to move unabsorbed frequencies of the light 

spectrum into the area of maximum cell absorption through 

light scattering and focusing the electromagnetic field into 

the active region of the device [39]. Surface plasmons 

support the light trapping. The surface plasmons are a 

collective oscillation of the conduction electrons in metals 

linked to the light oscillations in metals [40]. The interaction 

of light with metallic nanoparticles induces oscillations of 

the free electrons on the metal's surface, known as surface 

plasmons. If the nanoparticles are small and isolated, these 

plasmons are localised. However, at the metal-dielectric 

interface, these oscillations can propagate along the surface, 

forming surface plasmon polaritons (SPP). These SPPs 

effectively guide and concentrate light at the interface [41]. 

A. Surface Plasmonic Effect of Metallic Nanoparticles 

The excited localised surface plasmon resonance of the 

metal nanoparticles under light illumination can be 

incorporated to improve light harvesting in various devices 

effectively [17]. This unique property of these nanoparticles 

is effective for light absorption in  

devices such as solar cells.  

The plasmonic nanoparticles 

(NPs) exhibit excellent 

optical properties, such as 
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localised surface plasmon resonance (LSPR). LSPR is an 

optical phenomenon that occurs when light interacts with 

conductive nanoparticles that are smaller than the 

wavelength of the light. The electromagnetic field of the 

light incident on the plasmonic NP stimulates the electrons 

in the particle, hence making them move simultaneously 

[42]. Localised surface plasmon resonance excitation of 

noble metal nanoparticles (NPs) under light illumination can 

be effectively incorporated to improve light harvesting in 

devices [43]. 

B. Plasmonic NPs in Hole Transporting Layer (HTL) 

Plasmonic nanoparticles are incorporated into the HTL 

material to improve the performance of PSCs. The 

plasmonic NPs improve performance by enhancing the 

photoelectric performance through the extraction and 

transportation of charges [44]. The embedded nanoparticles 

increase the roughness and the surface area of the transport 

layers, and thus provide good adhesion with the active layer 

and consequently enhance the extraction of charge carriers 

[45]. The nanoparticles can improve the charge extraction 

and transportation by accelerating the charge carrier 

extraction [46]. The nanoparticles can also accelerate the 

extraction of charge carriers from one material to another 

[47]and increase charge carrier mobility. The NPs increase 

the mobility of charge carriers by introducing dopant states 

[48]. Dopants are new energy levels in the band gap of a 

semiconductor that are created by adding impurities or 

dopants to the semiconductor material. NPs can enhance 

light absorption in the HTL by improving light harvesting in 

the active layer through enhanced light scattering, the near-

field effect, and plasmon-induced charge separation. NPs are 

used to mitigate charge carrier recombination when placed 

in the interfacial layers of the solar cells. This, in turn, 

improves the stability of PSCs [43]. 

C. Plasmonic NPs in the active layer 

Plasmonic NPs embedded in the active layer of the solar 

cell can improve the cell’s efficiency by enhancing light 

absorption and increasing the production of electron-hole 

pairs [49]. The interaction of light incident on the OSCs and 

plasmonic NPs helps to create an electric field [50]. The 

field tends to increase the amount of light being trapped and 

absorbed in the active layer. On the other hand, the 

plasmonic NPs scatter light into the active layer, increasing 

the optical path length of light, [51] and hence further 

improving the absorption of light in the active layer [52]. 

This produces plasmonic-electric effects, effectively 

reducing the distance low-mobility holes travel while 

increasing the distance high-mobility electrons travel [53]. 

This, in turn, facilitates better carrier collection. 

Additionally, plasmonic nanoparticles can promote exciton 

generation, leading to an increase in free charge carriers 

[54]. 

IV. CONCLUSION 

This document summarises recent advances in enhancing 

plasmonic cell performance. Based on the discussions in this 

article, we can conclude that improving the absorption of 

light in the activated area plays a vital role in enhancing 

performance. The plasmonic mechanisms that enhance the 

performance output of solar cells include light scattering, 

near-field concentration of light, surface plasmon resonance, 

and electron oscillations. Light scattering is improved by 

carefully considering the size and shape of the NPs. The 

elongated nanoparticles interact more with light and are 

considered superior to spherical nanoparticles. Near-field 

enhancement is highly dependent on the shape, size, and 

spacing of the nanoparticles, and hence can be optimised by 

controlling the shape, size, and arrangement of these 

nanoparticles. Electron oscillations generate localised 

surface plasmons, which strengthen the local electric field 

and thus, intensify light concentration. 
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