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Abstract— Arcing faults in transmission networks are caused
when a current carrying conductor makes an unwantddarical
contact with ground or is temporarily short circuitewith another
current carrying conductor through a high impedana@edium.
High impedance arcing faults restricts the flow ofirent below
the detection level of the protective devices amthde cannot be
detected by conventional relays. In this paper amnmethod is
proposed for the detection of arcing faults dueléaning trees in
medium voltage (MV) networks. Firstly, an arc modeldsveloped
in order to reproduce the fault circumstances. Théased on a
fault detection algorithm the fault features are #acted using a
signal processing technique called Discrete Waveleansform
(DWT).The proposed algorithm is implemented in angle MV
network to identify the faulty phase and in a feedeetwork to
identify both the faulty phase and feeder. Furthehe results
obtained using DWT is validated with the help of Aitial Neural
Networks (ANN).The results obtained above validatee th
effectiveness of the proposed methodology.

Index Terms— Absolute sum, Arc modelArtificial Neural
Networks, Back propagation algorithm, Discrete Wawele
Transform ,High impedance fault, Universal Arc repsentation

I. INTRODUCTION

Over the years, conventional protection scherage lheen
successfully used to detect and to protect agaiestow
impedance faults in power system networks wherenalls
resistance only limits the fault current. Howewahen the
resistance of the fault path is very high and tueesthe fault
current cannot be easily recognized, it is callednigh
impedance fault.

A high impedance arcing fault result eithernirdiigh
impedance fault object or when a primary circuibaactor
makes an unwanted electrical contact, which restiie flow
of current below the detection level of the pratextevices.

an, Bobin.K.Mthew

distribution systems, using the conventional relagsause its
current is very small. It may also create a pubéeard, and
any unsafe condition is of concern to utilitiesr Bos reason,
the detection of high impedance arcing faults iacelc
distribution systems has been the subject of ieténerest
over the history of utility systems. Arcing oftaccompanies
these faults, which further poses fire hazard aedefore the
detection of such faults is critically important.

The faults which especially occur in mediumitage
networks in rural areas with overhead lines areroftue to
leaning trees. They are categorized as high impedarcing
faults due to the tree resistance (several hundheds) and
the associated arcs. Such faults often draw snoateots
which cannot be detected by conventional relayte@®n of
arcing faults due to leaning tress is hence imporéa they
pose a threat to the safety of general public amchals. In
this paper arcing fault due to leaning trees in Ma#works is
studied.

A. Methodology

Towards modeling and detecting of the high ingre
arcing faults, the arc representation has to bdiesfuand the
fault characteristics have to be measured usingraxpnts or
to be captured from field tests. For this differant models
and its characteristics has to be studied. The suitstble arc
model is then simulated to obtain fault charactiedss. The
simulated arc model is inserted in the test systéms
reproduce the fault circumstances. Then the faaliuies are
extracted using DWT.

Based on the proposed detection algorithmuitatse
MATLAB program is written and the extracted fawdatures
are utilized in this program. Using this prograre flaulty
section of the test system can be identified anlisislayed in
the command window.

High impedance faults often occur when an energized |n the second stage, the features extracted) BWT are

conductor breaks and falls to the ground.
Due to the existence of air between ground and uctod, the
high potential difference in such a short distagxetes

the appearance of the arc.eg. fault caused duertiaat of
leaning trees on conductors in EHV and MV netwosksch a
fault case cannot be reliably detected, in pamicuh
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fed as inputs to neural networks. Thus a combinaifdWT
and ANN is used which validates the effectivenekshe
proposed fault detection algorithm.

B. Literature Survey on Arc Models

In [1],[2],[3],[4] arc was firstly studied conceng
interruption capabilities of circuit breakers, irhish arc
models were initially introduced to enhance cirduieaker
testing. The arc models have been recently modifiestudy
the performance of arcing faults in different vghtdevels and
to test their detections and their discriminatiohs models
can be classified into physical models, black bwtnal
models and thermal models as discussed in [3].Bdlysi
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models are based on the actual physical procetseddrc. D. Artificial Neural Networks

These models use the principle of fluid dynamics, An ANN may be considered as a greatly singdifimodel
thermodynamics and Maxwell's equations. These BRYSi of the human brain which can be used to perforrartiqular
models are normally used in the development ofulirc task or function of interest [16]. It is a powerfabl used for
breakers. Thermal models are described by simpittern recognition and classification. Hence it be used to
mathematical differential equations. These equat@ve the getect faults in transmission line networks. ANNsoa
relation between the arc conductance and measuraBlgssess excellent features such as generalizajoabiity,
parameters such as arc voltage and arc currenicalypell  nojise immunity, robustness and fault tolerance. Sthadard
known black box models are the Cassie model andt®  myitilayer feed forward network is the neural netkvo
model.. The Cassie equation is used during the dugrent g chitecture selected for the proposed work, amtkésribed
conditions and the Mayr equation for the zero aurperiods. pejow. It consists of three kinds of layers: thplit layer,
Based on these two models a number of arc modeile W igden layer and output layer. The function ofitiput layer
developed likeHadebank model, Schwarz model, Medifi js simply to buffer the external inputs to the netw The
mayr model, Improved Mayr model, KEMA model. Thepigden neurons have no connections to the inputsiputs.
differential equations of these models are givei4). These By including hidden layers, the network is empowiete
models are also known as thermal models. Arcindt fatpyiract higher-order statistics as the network aegua global
models are also based on these models. Paramedeisiaoe perspective despite its local connectivity by értf the extra
more accurate black box models. Parameters arénebita set of synaptic connections and the extra dimensioreural

from complex functions and tables. interactions [16]. Figure 2.shows the structurenofti-layer
For transmission line arcing faults in [6kth are two feed forward network.

arcing fault models that have been recently intoediuusing
the dynamic equations. The first one is the Kizilcaodel.
The second one is the Johns model. this paper for
developing an arc fault model due to leaning trieeMV
networks a combination of Johns and Kizilcay model
appropriate and the empirical equation is mentioimefb],
[6],[71 and the parameters were obtained from the

experimental setup described in[5The Johns-Kizilcay Input fisiion
model is known as the universal arc representafidre Output
universality of this approach is verified in papkks [5], [6], () Network nodes PO e R

[7] etc. Hence this model representation is impletee in
MV networks. The arcing fault model is representedwvo
parts: an arc model and a high resistance (tréstanse) [7].

Fig.2 Structure of a multilayer feed forward netiwor

Neural network for a particular application shube
trained. There are different training algorithmsr fo
C. Discrete Wavelet Transform feed-forward networks. All of these algorithms ute

Discrete Wavelet Transform is found to be useful irgradient of the performance function to determimev Ho

analyzing transient phenomenon such as that assdaiath adjugt the_ weights to minim_ize performance functiche
faults on the transmission line®lulti-Resolution Analysis gradient 1S dete_rmme_d using - a tech_mque calledk_bac
(MRA) is one of the tools of Discrete Wavelet Triamm propagation, which - involves performmg_ computations
(DWT), which decomposes original, typically nonti&taary b?(;:k;vaggzn tZ{Ogr%&r;hialTséwﬁében?ae?laj\lllaa?rozaﬂm back
signal into low frequency signals called approxiows and propag 9 ’ g-Marqual X
high frequency signals called details, with differéevels or algorithm was used for neural network training,csirthis

scales of resolution. It uses a prototype funatiafed mother ﬁqlgzreltrg?;-slisz egr}Ze(;)ffo:CerJar?;isrgl r::tt?/gﬂfs flgr h:?;'n
wavelet for this. At each level, approximation sibns :

obtained by convolving signal with low pass filtellowed by very efficient MATLAB |mplementat|on[10]_.The S'mva
dyadic decimation, whereas detail signal is obthiry network and fe_ede_zr ngtwo_rk used for implementatidn
convolving signal with high pass filter followed layadic proposed work is given in Figs.3 (a) & (b).

decimation. The three level decomposition of a aigas 20Ky
g|Ven |n [9] |S ShOWI’l |n F|g 1 100 MVA Transmission Line (41 kM)

( ~> I o LOAD
| A4 0.1MW.Y Earthed
‘—> dlfu] detail coefficient Measuring node
atlevel 1

|
"_,, 2{n]detail coefficient Fig.3 (a) Simple MV network test system

Xfu]
atlevel 2

d3[n]
detail coefficient
atlevel 3

a3[n]

approximation
coefficient

Fig.1 Three level decomposition of a signal
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Fig.5(a),(b)&c).Similar results were obtained wika same

o R 3, woan arc model was implemented in the feeder network
J | | 0.IMW,Y Earthed
n FEEDER 2(41 kM) 'l LOAD 8000, . ., e
A v l * 0.1IMW.Y Earthed

) 6000 ¢

‘:g[ﬂn,‘ 66/20kV, ATY
n FEEDER 3 (40kMN) 1 LOAD ; 40004
LY 4 | | 1.5 MW, Delta -
% 20001
A ppEDER 4GOI g - 5l
L] L5 MW, Delta g [ [

-2000
Fig.3 (b) Feeder network test system
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Il. MODELING OF ARC USING UNIVERSAL ARC e
REPRESENTATION Fig.5 (a) Arc voltage waveform

0.1,
0.08.
0.06

To model arcing fault due to leaning treelsIv networks
universal arc representation is used. It is repiteseby the

differential equation as given in Eq. (1). 0.04
dg 1 < o002
9 _-1c- (1) =
a7 9) E el
whereg is the time varying arc conductance, G=|j}{\6 the < ol
stationary arc conductancd,i$ the absolute value of the arc .06
current, V4 is a constant arc voltage parameter, arlthe 0.8
: H + -0.1) L L L L s L
arc time cc;nstant and is defined by Eq.(2). . e % aE ke & o s
T = Ae™ )

Time(s)

where A and B are constants or called fitting doifhts. .
Fig.5 (b) Arc current waveform

These parameters were obtained from the experirsesttap
as described in [5] which was conducted by Poweste3ys VAT CHARACTERISTICS
and High Voltage Laboratory, Helsinki University of
Technology (TKK), Finland by N.lLElkalashy and o000y i 1

M.Lehtonen. 4000 1
Using Eqns.(1)&2 the universal arc model waslehed in < 2000 B

MATLAB/Simulink.lt was implemented in the test sgsis g - |

under study as described in [8].The simulated arc = _

characteristics, arc voltage and arc current wawefo e ———— 1

obtained were similar to those obtained in[5]. Ttimfirms AU ~J

the model accuracy. The suitable parameters sdleatee: 6000

Ux=2050 V,A=8.5e-5,B=41977.The simulation time

chosen was 0.08s and fault was inserted to théeraygia a

circuit breaker at 0.02s.The MATLAB implementatiof Firt 5(e) Are characteristi

MV network with universal arc model inserted is whoin

Fig.4. . PROPOSEOFAULT DETECTIONMETHOD USING

From Fig.4 it is evident that arc resistanoesists of a DISCRETEWAVELET TRANSFORM

dynamic arc resistance and a tree resistance. T#® t pyring the process of HIF detection, the sigtzh need to
resistance is represented as series resistanchom® SN pe analyzed to find adequate information that canigeful
Fig.4.The value of series resistance insertedasiab50kilo o the fault detection, because it may not cleagiear in the
ohms. original signal. That is why we apply a signal pssing
— technique such as DWT. The implementation of DWT loa

°°°°°°°° done either by command line functions or by usingvélet
Toolbox in MATLAB. For this work, the detection algthm
was executed using command line functions.

After inserting the arc model in the testtsgs as
described in section I, the required signals basstanalyzed
in order to extract the fault features. To anatymesignal they
have to undergo the process of signal decomposi@immnal
decomposition is done with the help of an apprapreavelet

= family. Several wavelet families were tested to extraet th
Fig.4 MATLAB implementation of universal arc modela MV network fault features using the Wavelet commands whichraeilt
in MATLAB.Daubechies wavelet 14 (db14) is found
inappropriate for localizing this fault with a sanmglifrequency

uuuuuu

The simulated arc voltage, arc curresnteforms and
arc characteristics obtained is shown
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of 3 kHz. The details di including the frequency il
band1.5-0.75 kHz have been investigated for th@qsed ‘T ‘ I
work. The time of occurrence of fault chosen w&#26.and sl
simulation time 0.08s. a-| ! 1 \ | | ) 1 F
After setting the above parameters suitdbfeTLAB [ i 2 ] i ] I i
programs can be written according to the algoritgimen in m : Ll :
the next two subsections. o A\ ‘;,\ I
5l W
N ]
A. High Impedance Arcing Fault Detection algorithm for = it ik W i i i T
MV Network | ma?%{aw ‘
Step 1 Measure the phase currents or voltages of the tes -/ |7
system in Fig.3 (a) after the insertion of arc fambdel. For - el S S
the proposed work phase voltages has been selected. N ; : ] : ‘ ]
Step 2: The phase voltages are subjected to level 1 = ° e e s e s
decomposition using DWT. Thus we obtain the d1 ileta
coefficients. Fig.7 (a) Plot of d1 coefficients during faulty alition (say phase ‘c’ is
Step 3 The absolute sum of d1 detail coefficients foe on faulty)
cycle of power frequency is computed. Let it be &g, Sc for baise
respective phase voltages. - ‘ ‘ ' ! E
Step 4 Compare the absolute sums. The faulty phase will = o
have the highest absolute sum and correspondinggpll - | i
be printed in the command window. If it is a nolfaondition T W w W w W
the absolute sum of all three phases will be theesa » o , ‘
Step 5 Stop. m-f‘ | |
This algorithm can be illustrated more clearing the W\
flowchart shown in Fig.6. E | ‘ ] p 4
Figure.7 (a) & (b) shows the plot of detaikffiients of L -
each phase during faulty and no fault conditiopeesively. T ‘ . .
At 0.02s the voltage signals undergoes disturbascen in i “': 1
Fig.7(a).Whereas in no fault condition no disturtzris | N
visible in the signals as shown in Fig.7(b). | - = - . - & & o
Figure.8(a),(b),(c),(d) shows the plot of absmlaums of il
each phase when phase ‘a’ is faulty, phase ‘ludty, phase _ TmE—— N
‘¢’ is faulty, no fault condition respectively. Frothese plots Fig.7 (b) Plot of d1 coefficients during no fautiralition
the faulty phase can be easily identified as thayehthe ;
highest absolute sum. :
; ———
| E——
3
Obtain phase 2:7 i - ———
currents or voltages |
Va Vi, Ve I I bl o = "‘mmm - e s
| DWT Features Extraction
soemsintor — - - | ‘”I coefficients of Fig.8 (a) Plot of absolute sums of phase voltagesnvphase ‘a’ is faulty
se voltages Z hase currents
phase voltag sasnse P ‘ mﬁemummmmaa\swm
()ﬁ No fault detected | Sa,Sh.Se<threshold L
(} Phase a is faulty It - |
Sa>Sh,Sa>Sc -
YES NO : e N‘
) o
(1 7| Phaseb is faulty ; i
. NO i
<}>% "ﬁ%q ] 0 0 7 iz
Fig.6. Flowchart for fault detection in MV netwousing DWT Fig.8 (b) Plot of absolute sums of phase voltagesnphase ‘b’ is faulty
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shown in Fig.9(b).The other three feeders can ls® al
modeled similarly.

ABSOLUTE SUM DETALS WHEN PHASE C 1S FALLTY

o L0F) 1
!
pover gui i E
e Ton Fron
FEEDER | FEEDER?
FEEDER | |
Phase Phase
- turreats of currents of
i £ FEEDER1 FEEDER?
\\)—@}W \El—nﬁ%é" ¥ B
gl Ha G
i e —
- e = i e 6KV FEEDER? o
7] T [ (3 [ ] 00Mvs  Translormer
timela) i
06720k @
b £
g From @
. ) a v i
e Pise FEEDER4
FEEDERS curreats of :
FEEDER3 Phase
currents of
—iy FEEDER4
Ly

Fig.8 (d) Plot of absolute sums of phase voltagemdault condition

B. High Impedance Arcing Fault Detection Algorithm for

Feeder Network

Using the algorithm given below the faulty phase feeder
can be identified
Step 1; Measure phase currents or phase voltages ineall th \&
feeders of Fig.3 (b) after the insertion of ardtfawdel .For
the proposed work phase currents have been selected
Step 2: The phase currents are subjected to level 1 Figure.10 (a) & (b) shows the plot of defadoefficients
decomposition using DWT. Thus we obtain the d1 iletawhen feeder 1, phase ‘a’ is faulty and no fault diton
coefficients. respectively.
Step 3 The absolute sum of d1 detail coefficients foe on
cycle of power frequency is computed. Let it be,Sa1,Scl

Fig .9 (b) Subsystem of Feeder 1

'DETAIL COEFFICIENTS OF PHASE CURRENTS DURING FALLTY CORDTICN

Phase a cument of feeder| Prass b cure of faeder! Prase ¢ cunert of feeder!
for feeder 1,Sa2,Sb2,Sc2 for feeder 2,Sa3,Sb3,8¢3 f | LA T - 4 b ‘
feeder3’sa4'Sb4'SC4 for feeder 4 ;M{ﬂ ﬂ;)l 0;1& 006 ﬂ.:lll ;0'9 ﬂ;ll oM ﬂ;JG 008 5 Nﬂ m Il;bl 006 II‘W
Step 4 Compare the absolute sums. e e st
If Sa1>Sb1&Sal>Sb1&Sal>Scl and i T

Sa2>Sh2&8Sa2>Sh2&Sa2>Sc2 and e s |
Sa3>Sh3&Sa3>Sh3&Sa3>Sc3and R T T
Sa4>Sb4&Sad>Sh4&Sa4>Sc4, then print phase sa’ i ;" N mE !
faulty else go to step 5. S RS RN N AN T A 3
Step 5 Sbl1>Scland Sb2>Sc2 and Sb3>Sc3 and Sbh4> ' o ¢omorow o gowom b
Sc4.Then print phase ‘b’ is faulty else print phiases faulty. P U i SN o
Go to step 6. 3 i w0 e s B
Step 6 If Sal>Sa2&Sa3&Sa4 or W e e YC o ow w5 W0
Sh1>Sb2&Sh3&Sh4or

. Fig.10 (a) Plot of d1 coefficients when feeder Hage ‘a’ is faulty
Sc1>Sc2&Sc3&Sc4, then feedes faulty else

go to next step.
Step 7 If Sa2>Sa3&Sa4 or Sh2>Sh3&Sh4or Sc2>Sc3&Sc4
then feeder 2 is faulty else go to next step.
Step 8:1f Sa3> Sa4 or Sh3 > Sh4 or Sc3> Sc4 then feeier 3
faulty else feeder 4 is faulty.
Step 9 Stop.

The MATLAB implementation of feeder network isosvn
in Fig.9(a) and subsystem for feeder 1 is shown in
Fig.9(b).Assume that fault inserted in phase ‘afegfder 1 as
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DETAL GOEFFICIENTS OF PHASE CLRRENTS LMY NO FALLT CORDTION

ABSOLUTE SUM DETALS OF PHASE CURRENTS OF FEEDER 1

Phase a curent of feder! o Phase b curet of feder! . Phazse ¢ cunent of feder| 2 ‘ —
i i i e S e —
T T T T T T S T TR T 2 il F e EBEE e FEeR -
m;:s: tinefs) tinels) ; L i o :E
Phase acaret f 2 Phags b curent of e Phas e e 5 e —— . = T S S 2
2 13 o 3 e o g : il: 7 IR [ [ [17] [ ﬂm:n [ [ [17] [ [1%s
? .“ ! ! * 3 % f ‘\ i E : L : ABSOLUTE SUM DETALS OF PHASE CURRENTS OF FEEDER 3
® g . T ; ; howm ow w m 50 . : :
L] (174 L1 006 113 L] e o 113 e timals) H : i H i
meds) timefs) = = — :
R e e B e s e e e
Phase a curent of feeder Phase b cument of feederd Phase ¢ cunent of zeder’ Z oo Ll oue L o o L1 038 0w L
: : Lo 1} : i N “i i ; mlmsmmmuzrn:gmmwm
. s [ st i
F o 2 '[ ; L z | i i £ —
[T L] l]n [T ] “a [T L] ., —_— T S i - Ll
tmefs) timefs) times) 0z (I8 s [ o [13] o 0% [T 0
timets)
- Phase a ourent of feedert W Phase b cument of feedert - Phiase ¢ cunent of feederd
ﬂf;‘"*"i* S ﬂ'ﬁ“‘*“‘%**{*"r“i “‘ i - i Fig.11(c) Plot of absolute sums of phase currehisnweeder 1, phase ‘c’ is
h ml). (13 (13 106 113 . ‘“l} [ 1] o e oo i M;i 1] o 106 e faUIty
tmels) timefs) tme(s)
Fig.10 (b) Plot of d1 coefficients at no fault cdiah 7z ABSOLUTE SAETALSCF FASE CRRENTS OFFEEDER 1 |
%, ; j 1 Dhasa ¢
Figures 11(a), (b), (c) & (d) shows the plots ofalote sum &%= W W
of detail coefficients of phase currents in all dees. ;! o i
Figure.11(a) shows the case when feederl, phasefallty. HN AN ‘ j
Similarly Fig.11 (b), (c) & (d) shows the case whdrase ‘b’, PP, Sp—
phase ‘c’ is faulty and no fault condition respeely.
From the figures it is evident the absolutensaf faulty o W i " T
phase and faulty feeder is the highest. b S
; g ‘\ gt ﬂ‘ﬂ! L o 0% a6 awr = DL&
i ! Fig.11 (d) Plot of absolute sums of phase cur at no fault conditio
£ \_//*———\ - — Gi
A nl:i‘ 0.026 :II:za [13] ﬂﬂ]:m“ [} 003 nn‘]ﬂ n:u ao‘t?
e s IV. APPLICATION OFARTIFICIAL NEURAL
§ :
i S NETWORKS
3 3 == In order to validate the above results obthinging DWT
=g — B f a) artificial neural networks are employed. The pragedis
i [P ——— = depicted as shown in Fig.12.This includes a contiminaof
s b N — DWT and ANN.
002z o 00 (1] o‘ﬁ.”,\ oox a0 [I:3 003 17
. . (
Fig.11 (a) Plot of absolute sums of phase curnehen Feeder 1, phase ‘a’ is
faulty Plsse . Newl
Tilags o Dite %m:gg e Nefwork Tientificaton
phe \\m‘ele‘l‘ D coefficients D exfraction E> (Traning affalty
B e S TS PG T O T et Decommpsiion Al 1 aud section
H / = signils verifiatin)
i i i AT e ) |
i e g : \
I i : 2 i . ®

timds)

Neural Network Tool Box

ABSOLUTE SUM DETAILS OF PHASE CLURRENTS OF FEEDER

Fig.12 Procedure to detect high impedance arcinig ising combination of

Fig.11 (b) Plot of absolute sums of phase curneht Feeder 1, phase ‘b’ is DWT and ANN

faulty
The ANN operation is based in three importaagss that

are described below in the subsections. For thipqae
Neural Network Toolbox from MATLAB provides diffene
functions to design, initialize, simulate, trairdasshow results
of a neural network[15]. Among the various networks
available feed forward network is selected for pheposed
work and the training algorithm  chosen
Levenberg-Marquardt (LM) algorithm. The stages ddM
operation are:

is
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constitutes the absolute sums of detail coeffisiaritphase

This process is based on providing thetidpta training currents of all the four feeders. The output tragnset also
set and the desired output data training set. Usiiege Consists of thirteen sets of outputs. Based oniwieieder and

training sets the Neural Network is trained. Thevoek stops Phase is faulty the network outputs are either 0.or
The input and output training sets for theder network

are shown in Table Il and Table IV.
The neural networks for MV network and feedetwork
were trained with the given input and output tnainilata sets.
The training stopped when MSE reached a performahce
le-6.The numbers of iterations required in botlesagere 6.
The next step is to ensure whether the pedace of the
trained networks is valid or not. This procedurexplained
in the next subsection.

A. Artificial Neural Network Training

learning when Mean Squared Error performance fancti

(MSE) or the number of iterations reach a predatexch
value[15]. During training, the input and desiredget are
repeatedly presented to the network. As the netleakns,
the error decreases towards zero.

After testing different configurations thmumber of
layers selected for MV network and feeder netwoals four.
The number of neurons selected for both cases Y&ré5,
15 and 15, 30, 30 respectively. The design of hiddger is
basically based on a heuristic approach.

For the MV network the input training set simts of the

absolute sums of phase voltages for different yault

conditions. For example the absolute sums Sa,Sh<e

constitute one input when phase ‘a’ is faulty. $any three
more sets of inputs when phase ‘b’ is faulty, phasés
faulty and no fault condition is chosen .Thus fov ketwork

the total number of inputs to ANN is four. Simikadhe
output training set consists of four numbers opatg. Each

output corresponds to each of the faulty condit®ased on
which phase is faulty the network outputs are eitheor

1.The input and output training sets used for ingimeural
network(for MV network) shown in Table | & Table |

respectively.

TABLE I. INPUT TRAINING SET OF MV NETWORK

TABLE Il. OUTPUT TRAINING SET OF MV NETWORK

From Table Il it is evident that output will bgh when
corresponding phase is faulty while it will be zéncother
cases. This training set is entered as the detsirgdt output

to the Neural Network Toolbox in order to train tretwork.
To train the neural network for feeder netwgiken in

Fig.3 (b) the input and output training sets areseim based
on the concept described above.
The input training set consists of thirteetsof inputs.

OUTPUT 1 OUTPUT 2 OUTPUT 3 OUTPUT 4
PHASE A PHASE B PHASE C NO FAULT
FAULTY FAULTY FAULTY CONDITION
1 0 0 0
0 1 0 0
0 0. 1 0
ABSOLUTE SUM INPUT 1 INPUT 2 INPUT 3 | INPUT 4
DETAILS OF PHASE A PHASE B PHASE C No
PHASE FAULTY FAULTY FAULTY FAULT
CURRENTS CONDITIO
N
ABSOLUTE SUM OF 0.0436 0.0285 0.0262 0.0007
PHASE ‘A’ CURRENT
ABSOLUTE SUM OF 0.0135 0.0982 0.0259 0.0007
PHASE ‘B’ CURRENT
ABSOLUTE SUM OF 0.0135 0.0290 0.1135 0.0008
PHASE ‘C’' CURRENT

The thirteen sets corresponds to different faudtyder and
faulty phase feeder configurations.

Each trainingt s
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TABLE IIl. INPUT TRAINING SET OF FEEDER
NETWORK

ABSOLUTE INPUT | INPUT | INPUT | INPUT | INPUT | INPUT | INPUT | INPUT | INPUT | INPUT | INPUT | INPUT INPUT

SUM 1 2 3 4 5 [} 7 8 9 10 11 12 13
DETAILS OF Feeder | Feeder | Feeder Feeder Feeder | Feeder | Feeder | Feeder | Feeder | Feeder | Feeder | Feeder No
PHASE 1 1 1 2 2 2 3 3 3 4 4 4 Fault
CURRENTS Phase Phase Phase Phase Phase Phase Phase Phase Phase Phase Phase Phase condition
INALL a b [s a b c a b c a b c
FEEDERS faulty faulty faulty faulty faulty faulty faulty faulty faulty faulty faulty faulty

Absolure | Ial

sum of 0.0280 | 0.0050 | 0.0057 | 0.0065 0.0064 | 0.0023 | 0.0069 | 0.0065 | 0.0023 | 0.0071 | 0.0065 | 0.0023 | 2.6e-05

Phase ‘a’ T2

“"':;’,’”‘ 0.0068 | 0.0065 | 0.0159 | 0.0268 0.0050 | 0.0096 | 0.0069 | 0.0065 | 0.0023 | 0.0071 | 0.0065 | 0.0023 | 2.6e-05

Feeders Ta3

1,234 0.0068 | 0.0065 | 0.0159 | 0.0065 0.0064 | 0.0023 | 0.0281 | 0.0050 | 0.0097 | 0.0071 | 0.0015 | 0.0023 | 2.6e-05
Ia4

0.0068 0.0065 0.0159 | 0.0065 0.0064 0.0023 | 0.0069 0.0065 0.0023 0.0286 0.0050 0.0096 2.6e-05

Abselure | Ibl
sum of 0.0168 0.0159 0.0196 | 0.0033 0.0123 0.0023 | 0.0036 0.0125 0.0023 0.0036 0.0125 0.0023 2.7e-05
Phase b°
CHrrents
of 0.0035 0.0125 0.0036 | 0.0162 0.0152 0.0096 | 0.0036 0.0125 0.0023 0.0036 0.0125 0.0023 2.7e-05
Feeders
1,234

0.0035 0.0125 0.0036 | 0.0033 00123 0.0023 | 0.0169 0.0159 0.0097 0.0036 0.0125 0.0023 2.7e-05

0.0035 0.0125 0.0036 | 0.0033 00123 0.0023 | 0.0036 0.0125 0.0023 00171 0.0160 0.0096 2.7e-05

Abselure | Il

sum of 0.0169 0.0050 0.0196 0.0033 0.0064 0.0058 0.0035 0.0065 0.0058 0.0036 0.0065 0.0057 2.9e-05
Phase c”
currents | 122
of 0.0035 0.0065 0.0036 0.0162 0.0050 0.0205 0.0035 0.0065 0.0058 0.0036 0.0065 0.0057
Feeders 2.9e-05
1,234 Ie3
0.0035 0.0065 0.0036 0.0033 0.0064 0.0058 0.0169 0.0050 0.0202 0.0036 0.0065 0.0057 2.9e-05
Ic4
0.0035 0.0065 0.0036 0.0033 0.0064 0.0058 0.0035 0.0065 0.0058 0.0172 0.0050 0.0201 2.9e-05
TABLE IV. OUTPUT TRAINING SET OF FEEDER
NETWORK
Qutput Output Qutput Output Output QOutput Output Qutput Output Qutput Output | Output Output
1 2 3 4 5 4 7 8 9 10 11 12 13
Feeder Feeder Feeder Feeder Feeder Feeder Feeder Feeder Feeder Feeder Feeder | Feeder No Fault
1 1 1 2 2 2 3 3 3 4 4 4 condition
Phase Phase Phase Phase Phase Phase Phase Phase Phase Phase Phase Phase
a b c a b c a b c a b c
faulty faulty faulty faulty faulty faulty faulty faulty faulty faulty faulty faulty
1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1] 1 0 1] 0 0 0 0 0 0
0 0 0 1] 1] 0 1] 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0

B. Artificial Neural Network Validation . .
) analysis between the network response and thespameing
The performance of a trained network can be medsto  targets. Figures.13&14 shows the regression plbtaied

some some extent by the errors on the trainingdatn and  for the trained networks of MV network and feedetwork
test sets, but it is often useful to investigate tletwork regpectively.

response in more detail. One option is to perfonegaession
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The network outputs are plotted versus the targstspen
circles. The best linear fit is indicated by a dabline. The
perfect fit is indicated by the solid line. Fronetfigures, it is
difficult to distinguish the best linear fit linedim the perfect
fit line, because the fit is good. This means that desired
output and the output obtained by training (netwoukput)
are almost the same. Hence the trained networlksneit are
valid. These are saved as say, ‘networkl’ and ‘ot and
imported to MATLAB workspace.

If the obtained plots are not satisfactory tha&ining
process should be continued until a satisfactorfopmance
level is reached.
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Fig.13 Regression plot of MV network
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Fig.14 Regression plot of feeder network

C. Artificial Neural Network Operation

The trained networks are saved and imported to MRBL [g)

workspace. These networks are further incorporatiedthe
suitable MATALAB program. Suppose ‘networkl’
incorporated into the MATLAB program using the coamd
sim(networkl,INPUT1).If the trained network is gerauthen
after running the program the output obtained shdug
‘OUTPUTY as shown in Table II. Likewise correspamgito
each input the corresponding outputs are obtained.

is

9]
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V.CONCLUSION

A model for high impedance arcing faults daideaning
trees in MV networks have been studied and simdlafee
arc model has been realized using the universal arc
representation. Based on the proposed fault detecti
algorithm using DWT the faulty sections of a simjMe/
network and feeder network could be identified. Awn
methodology using combination of DWT and ANN wesed
to validate the results obtained using DWT alone.

Future works include distance location of higipedance
arcing faults using DWT. The proposed method can ak
implemented by techniques like Support Vector Maehi
(SVM), ANFIS etc.

ACKNOWLEDGMENT
The authors wish to thank Mr .GeevargheseTitus
,Assistant Professor ,Department of Electronics and

Communication and MrAnish Benny ,Assistant Professo
,Department of Electrical and Electronics of Amgbthi
College of Engineering, Kottayam ,India for thealwable
suggestions for the completion of this paper.

REFERENCES

[1] M.Sedighizadeh,A.Rezazadeh, Nagy |.Ekalashy,'Appgreac
in High Impedance fault detection—A chronologicaviRe/’,
Advances in Electrical and
ComputerEngineering0(3),114-128,2010.

Pieter H.Schavemaker and LouVanderSluis,’An impdove
Mayr-type model based on current—zero measureme¢BEsE
Transactions on Power Delivery5(2), 580-584, April 2000.
J.L.Guardado, S.G.Maximov, E.Melgoza, J.L.Naredal an
P.Moreno, ‘An improved arc model before currenbzeased
on the combined Mayr and Cassie arc modelEEE
Transactions on Power Delive®0(1),138-142,January2005.
Karel Jansen van Rensburdinalysis of Arcing Faults on
Distribution lines for Protection and Monitorihg Ph.D
Thesis, School of Electrical and Electronic Systems
Engineering, Queensland University of Technolo®02

(2]

(3]

[4]

[5] Nagy lbrahim Elkalashy,Modeling and Detection of High
Impedance Arcing Fault in Medium Voltage NetwrR.D
Thesis, Department of Electrical and Communications
Engineering,  Helsinki  University = of  Technology,
Finland,2007.

[6] H. A. Darwish and N. I. Elkalashy, “Universal Arc

Representation Using EMTPIEEE Transactions on Power
Delivery, 20(2), 772-779, April 2005.

Nagy. |. Elkalashy, M. Lehtonen, H. A. Darwish, AIM
Taalab and M. A.lzzularab,'A Novel Selectivity Tedque for
High Impedance Arcing Fault Detection in Compensatd
networks’, European Transactions on Electrical Power
ETEP, in press, published online on 23 April 2007.

Kamal M. Shebl, Ebrahim A. Badran, and Elsaeed AbdAl
Combined MODELS-TACS ATPdraw General Model of the
High Impedance Faults in Distribution Networf&oceedings
of the 14th International Middle East Power System
Conference Cairo University, Egypt, 527-531, 2010.
Wavelet Toolbox User's Guide for MATLAB,Version 1,
Mathworks 2009.

[7]

[10] Neural Network Toolbox User's Guide for MATLAB,Veosi

1, Mathworks 2009.

Hence the outputs obtained confirm the suéekss|;iy Nagyl Elkalashy,Matti.Lehtonen,Hatem.A.Darwish,

operation of trained neural networks.

101

Mohammed A.lzzularab and Abdel-Maksoudl.Taalab, DW




Arcing Fault Detection in Feeder Networks using DWTand ANN

Based Investigation of Phase currents for detechiigh [16] Wong, K. C. P.; Ryan, H. M. and Tindle.J, ‘Power sgsfault

Impedance Faults due to leaning trees in Uneartii&d prediction using artificial neural networksinternational
Networks’, IEEE Power Engineering Society General Conference on Neural Information Processing@4-27
MeetingFlorida,103- 108,2007. September 1996,Hong Kong.

[12] Chul-Hwan Kim Hyun Kim, Young-Hun Ko, Sung-Hyun
Byun, Raj K. Aggarwal and Allan T. JohnsA Novel
Fault-Detection Technique of High Impedance Arcirayplts
in Transmission Lines Using the Wavelet TransfoffEE  Gayathri Vijayachandran is Assistant Professor in Department of
Transactions On Power Delivey’(4),  Electrical and Electronics at Sree Buddha ColleigErgineering, Pattoor,
921-929,0ctober,2002. Kerala. She did her M. Tech in Power Electronicd &ower Systems at
[13] David C. Robertson, Octavia I. Camps, Jeffrey S. MayeAmal Jyothi College of Engineering, Kanjirappallarlier she has

Wiliam B. Gish, ‘Wavelets and Electromagnetic Powegompleted her undergraduate in the field of Eleatriand Electronics
System Transients|EEE Transactions on Power Delivery Engmesnng at Sree tI'::]u'd3dha Co.lllege of EngineerfPaftoor. Her email id is
11(2),1050-1056,April 1996. vijayachandrangayathri3@gmail.com
[14] ArcModele Blockset, User Guide Version 2, Delft Ustisity Bobin.K.Mathew is Assistant Professor of Electrical & Electronics
of Te_chnology12001. ) ... Engineering Department, Amal Jyothi College of Hegiing,
[15] lbrahim - Baqui,Inmaculada  Zamora,Javier Mazon, ‘Highkanjirappally. He received his M.Tech degree (Inated Power Systems)
Impedance fault detection methodolgy using wauedetsform  from Vishwesharaiya National Institute of Technglp(2009), Nagpur. His

and artificial neural networkElectric Power Systems area of research includes multilevel inverters, Rié8verters and Power
Researct,325-1333,2011. Quality. His email id idobinkmathew@amaljyothi.ac.in

102




