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Abstract- In this paper, we provide an interval of   existence of 

negative critical mortality rate parameters Mr and b in Allometry 

survival model, in the absence of age-speci c mortality data by age. 

Index Terms- Allometry, critical age, exponential growth, linear 

growth, mortality rate, , negative critical age. 

 

I.INTRODUCTION 

 

 It has been recognized for more than 100 years that the rate 

of physiological processes is affected by body mass. Several 

theories have been put forth to explain the scaling of whole 

animal metabolic rate, ranging from single-cause 

explanations of supply system limitations (e.g., West et al. 

2002)[1], to multi-cause assessments of the cellular 

pathways that determine the metabolic phenotype (e.g., 

Darveau et  al. 2002)[2]. These model-oriented approaches 

address ultimate causes of scaling patterns across diverse 

models. An alter-native approach to understanding 

metabolic scaling is to address more prox-imate 

relationships. Muscle, for example, shows the same patterns 

of scaling of oxidative enzymes. Regardless of the 

underlying basis for metabolic phe-notype in whole animals, 

the molecular mechanism regulating the reciprocal change 

in muscle phenotype is still unknown. Muscles also exhibit 

phenotypic plasticity in bioenergetic enzymes as a result of 

di erences between muscle ber types, in response to 

ecological and behavioral changes and throughout ontogeny. 

It seems intuitive that within a species, individuals with 

larger bodies also have larger constituent parts. Larger 

humans tend to have longer legs, arms and torsos, bigger 

livers and larger hearts. This scaling relationship between 

the sizes of individual traits and the size of the whole body 

is called allometry[3]. Allometry describes how the 

characteristics of an organism scale with each other and with 

body size [4]. 

Accurately modelling the distribution of individual sizes at 

age is a fun-damental problem, which must be addressed 

when modelling the dynamics of a population. Many 

important characteristics of a population, such as mortality 

rate, are size speci c. For instance, shing mortality rate is 

depen-dent on the size-speci c selectivity of the shing gear. 

In most cases, natural mortality is also size dependent. In 

addition, for some species that cannot be aged, size is the 

only available measurement that provides information about 

reproductive maturity [5]. 
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A theory of population that fails to consider a major 

determinant of the characteristics of populations is not an 

adequate theory. Standard texts in population biology and 

ecology tend to ignore body size as a factor in popu-lation 

dynamics, although birth and death rates, survivorship and 

longevity, population density and home range size, cycle 

periods for population boom and crash, and the annual 

increment in mortality due to aging all show a strong 

correlation with body mass (Calder [6]).Julian Huxley and 

Georges Teissier coined the term allometry in 1936. In a 

joint paper, simultaneously published in English and French 

(Huxley and Teissier [7]), they agreed to use this term in 

order to avoid confusion in the eld of relative growth. They 

also agreed on the symbols to be used in the algebraic 

formula of allometric growth: 

Y = am
b
 

 

This makes body size a good choice for baseline 
analysis, using the scaling (heterogonic or allometric) 
equation of Huxley[8] and Kleiber[9]: 
 

Y = am
b
; 

in which Y is a physiological, morphological, or ecological 

variable; the co-e cient a is characteristic of a class or order 

of animals and the physical dimensional units (if any) being 

used in the measurement of Y ; m is body mass (kg); and the 

exponent b is the ratio of changes in orders of magnitude for 

Y compared to m, thus expressing the e ect of body mass 

changes on Y. 

 

The layout of this paper is as follows. First in section 2, 

we state the problem under consideration. This section is 

divided into two subsections, rst in subsection 2.1 fully 

discussed with the linear growth allometry model problem, 

under this assumption, we derived the negative critical 

allometry parameter. Second in subsection 2.2 deals with the 

exponential growth al-lometry model problem, under this 

condition we derived the corresponding negative critical 

allometry parameter. Finally we give the conclusion about 

this paper in section 3. 

 

II. APPLICATIONS OF ALLOMETRIC SCALING LAW 

 

A.Linear Growth  
 
Stocking is widely used in the management of freshwater 

and, to a lesser extent, coastal-marine sheries(e.g., 

Heidinger[10]). A key problem in the management of  

stocked sheries is the optimization of release size (e.g., 

Cowx[11]). The optimal release size depends on the 

contribution that sh of a particular size will make to the 

catch or shable stock and on the re-sources required to 
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produce seed sh of that size. Of the data required to assess 

optimum size, the survival of seed sh of di erent sizes to the 

shable stock (and/or contribution to the catch) are the most 

di cult to obtain. Systematic assessments have been either 

entirely empirical (release - recap-ture of marked seed sh of 

di erent sizes) or based on detailed ecological studies(Wahl 

et al.[12]). However, the costs and e ort involved in both ap-

proaches restrict their use to a small number of sheries, and 

the results are not readily generalized. An alternative 

approach that implies a simple gen-eralization is the use of 

allometric mortality-size relationship (Lorenzen[13]). 

Provided that natural mortality in stocked sh is subject to a 

consistent al-lometry, then an estimate of mortality for a 

single reference size is su cient to predict survival for a 

range of different release sizes. 
 

Theoretical and empirical studies Peterson and 
Wroblewski[14], Loren-zen [15]) point to the existence of 
an allometric relationship between natural mortality and 

body weight, of the form 
 

Mw = MuW 
b            

                   (1) 
 
where Mw is natural mortality at weight W ; Mu is mortality 
at unit weight; b is the allometry exponent; and where there 
is an implied RHS coefficient of (unit weight)

–b 
. Note that a 

mathematical structure of this form would also apply to a 
system transformed to corresponding dimensionless 
variables as mentioned in the Introduction. 

 

 B.Survival Model  
 
 The survival model follows that developed by Lorenzen 
[16] in which the allometric relationship between natural 
mortality and body length may be described by the equationl 

 

                                                  

 
where M(l) is the mortality rate at length l, Mr is the 

instantaneous mortality rate at reference length lr (e.g., 15 

cm { as used by Lorenzen  

[16]),and b is the allometric exponent of the mortality-

length relationship. This reference length, lr, needs to be 

chosen as a parameter such that it is smaller than another 

parameter, l0, the length at stocking. 

 

If this equation accurately describes mortality in the 

stocked population, then the decline in population size of a 

stocked cohort (organisms of the same age and size) of 

original population size N0, while su ciently large enough to 

be approximated as a continuous variable, is described by 

the differential equation. 

 

 = -N(t)                                                   (3) 

where l(t) is length at time t and N(t) is the population size 

at time t. This differential equation may be solved explicitly 

if a linear growth model is substituted for l(t). A linear 

length growth model is reasonably used in the empirical 

analysis, because time at large (i.e., the time interval 

between release at stocking and estimated survival age at 

death or recapture) is short and the size of the sh is small 

relative to the reported maximum sizes in all stocking 

experiments analyzed in [16]. A model of the form 

l(t) =lo+ut                                                             (4) 

 

is used where t is the time since stocking, and u is the linear 
length growth rate. Substitution of equation (4) into 
equation(3), integration, and division by N0 on both sides 
gives the following equation to predict survival, S(t) 
(proportion of stocked sh urviving), from the time of 
stocking to time t: 

 = ,             (5) 

 
: as was derived by Lorenzen [16] for the case where  
b ≠1. 

The two parameters Mr and b are of interest to 
many investigators in biogerontology and the evolutionary 
biology of aging [17 - 21]. Species com-parisons in 
mortality rates are aided by calculations of MRD (mortality 
rate doubling time) which changes in the same direction as 
lifespan and is given by  
 

MRD =                                                        (6) 

In the presence of mortality data by age, the 

Allometric scaling param-eters Mr and b have been 

estimated by using various statistical methods like 

maximum likelihood, linear regression, and nonlinear 

regression[20-26]. Usually, an experimentalist knows the 

lifespan of each individual in a given population and can 

make use of standard techniques such as MLE or linear 

regression [22 & 23] to estimate the model parameters. 

 
In the absence of age specific mortality data, in this 

paper we have de-veloped a method to estimate b from the 
instantaneous mortality rate at reference length, i.e., Mr; the 
original population size, N0; and the maximum lifespan, tm. 

 

In [29] we have derived the following result for linear 

growth 

 

≈ [      - ]                                                                         

(7) 

The average mortality rate of steady state population 

subject to age specific mortality rates of equation (2) is [20 

& 21] 

 =  .                                                         (8) 

Equation (7) gives, 

  =                                     (9) 
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And from equation (8), we get  

b+1 =  ,                     (10)       

          ≈    ,       see [29] 

Where   =  

 C. Existence of negative critical parameter 
 

  Recall that the age at which the mortality rate,  of 

initial population N0 has ceased increasing or, equivalently, 

it tends to a constant, is called a critical age, tc [30]. The 

remaining population left from an original population size 

N0 surviving at this critical age is called critical population, 

Nc, and the corresponding Allometry parameter in 

is called critical Allometry lr parameter, bc.Since 

the partials of b with respect to N0 and tm become zero at  Mr 

= 
 

 

 and using (9), we get, 
 

                                            (11) 

 
From (11)  it follows that  
 
 

 =                                              (12) 

 

The point     at which b changes sign is said to be the 

critical point of b. 

 
From our earlier work [30], we know that, for a given , 

 ; and N0 

 

With   <1 . 

 
 =  and   =  .                                          (13) 

 

On the contrary, when  > 1, 

 

 ,      and                     (14) 

  Note that tc tm for any given Aav; tm and N0. We also know 

that [31], the asymptotic solution b of (10) is a continuous 

function in the variables Aav; tm and N0 from puberty 

through critical life span (or, N0 Nc). What happens to 

solution b when N0 Nc (below the critical population). As we 

have already equated tm with tc when 
Aavtm

 < 1, what is then 

actual (species) maximum life span, tm?. Such tm > tm exists, 

since the critical population Nc has not yet diminished to one 

survivor. How to determine this tm? This in turn, leads us to 

consider negative allometry parameter, since 
Aavtm

     1 

 

for N0  =  Nc. 

To determine the negative allometry parameter consider (13) 

with N0 

N
c
 and (14) with t

c
    

ln
 

N0
 . Upon substitution N

0
 = N

c
 into 

(10), we get 

 ,                         (15) 

With 

  , where  when   <1 . 

And  when   > 1. 

Eq. (15) gives  

  . 

The above inequality ensures the existence of solution  

provided    =1. As a consequence, we get  

  .                                (16) 

A close observation of the inequality (16) reveals that 
any b≤ 0 also satisfies it. This result, in fact, motivates us to 
consider the negative critical allometry parameter. On the 
other hand, in the neighbourhood of the critical point 

  =1, it is necessary that    > 1 if b < 0 from (12). 

Hence 

 

  .                    (17) 

 Invalid for N0  =  Nc. provided    > 1. Clearly   > 1 

holds when  in (14). In case of (13, )   > 1 if 

N0  <  Nc and this gives  .  We designate  

 as the actual maximum life span. 

Since  becomes very large numerically as  →1 [30], 

we can choose any finite value greater than  and . 

Fortunately, we shall not use the  the numerical value of tm 

in our sequel. 

 Numerical experiments show that the transition from bc to 

bc is ex-tremely slow. The graphical illustration should 

enhance the understanding of this idea [19]. Further, it 

follows from (9) that as  b → 0 at N0  =  Nc.,  →  , 

since  

=  =  

 
As bc changes sign, from (9) we obtain  

                          (18) 

Which gives 

=  

Thus 

. 
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  C.Linear Allometry Survival function  

 

In the neighbourhood of the critical point,   =1 in view 

of (16) and (17) the survival function (5) takes the form 

S(t)=  if t (N    Nc.) (19) 

      =  if t (N    Nc.). 

Lemma: S(t) is continuous at t =  

Proof: Indeed 

 

      

                           

 

                            

 

  
Now we extend the formula (15) to -bc for N0  =  Nc. 

When given ,  satisfy  (13) with N0    Nc 

And (14) with  

Upon substitution bc =  bc into (15) we get 

-  =       

 

As such the above integral is unbounded. The 

unboundedness results in by the substitution tc = 1 or N0 = 1 

with N0 Nc into (15), when bc < 0. But inequality (17) 

implies the existence of bc. 

To overcome this situation, we need to introduce limit age, 

tlim of the critical population Nc. 

Following Suematsu [32], the limit age can be de ned as an 

age where the  nal member of the critical population Nc 

disappears. Stating mathematically, 

 

 =    

Clearly, if the population Nc at an age t  is less than 

unity, all the members under discussion must, in the 
statistical mean, vanish. Hence, the limit age can be 
identified with the minimum age, tlim, that satisfies 

  
     
Taking into account the above arguments, substitute N0 = 0 
(N0  Nc) into the upper limit of (15) when bc < 0 to get 

 

-  =                                                 

(21) 

where 

 

[x>0] 

Clearly, (21) satis es inequality (17). We could not obtain 
(17) directly from (21), since the integrand is unbounded at 
z = 0.  
From equation (21), on account of 8.214. 2 in [33], we get 

 

Where C=0.557215, Euler’s constant and  

 . 

Next, we shall obtain a greatest lower bound for bc. 
From the above equation, we get 

 

Since 

  =  

 

Further 

 [C+ln τ] [1- ] 

             [C+ln τ]  

             [C+1]  

            = [C+1]    

                                    (0.097= ) 

=  [1.097 +C]. 

On the other hand, from the inequality (17) we get 
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Combininig , finally we get 

 

                                  

Theorem 1:  For every  fixed ; tm and N0 satisfying 

either (13) with N0    Nc    or (14) with let I be 

the interval defi ned by 

 [1.097 +C],0). ! 

where C = 0:577215, Euler's constant 

Suppose there exists a unique solution of (21) in I. Then it is 

necessary 

that.     

   Moreover, the following estimation is true 
 

 

Remark 1. From (18) it is easy to get the asymptotic 
formula of initial mortality rate using (21). 

 
D.Exponential Growth  

 
  Two modes of growth have been proposed in the ecdysozoan: 

\saltational," in taxa in which a tanned cuticle permits size increase 

only at molts, and \con-tinuous" in taxa with stretchable, 

collagenous cuticles [34]. Research into these methods of growth 

has been limited almost exclusively to the arthro-pods (saltational 

growth) and nematodes (continuous growth), and even here, 

despite long standing interest in the details of the saltational growth 

of arthropod taxa (Alpatov [35], Rice [36] ), continuous growth has 

rarely been investigated closely (Howells and Blainey [37], Wilson 

[38]). Speci caly, little is known of how continuous growth is 

achieved at a ne scale, the role of cuticle, and the cells that secret 

it. Understanding the details of growth has important implications 

for understanding the signi cance of molting as an evolutionary 

conserved feature of the ecdysozoa (Wilson [38]) and for inter-

preting the increasing number of studies that seek to identify the 

molecular and cellular controls of the ecdysozoan growth (Estevez 

et al.[39], Johnston et al.[40], Oldham et al. [41]). 

In [34], Knight et al. used the free living nematode 

Canenorhabditis elegans as the best characterized example of 

continuously growing ecdysozoan (Riddle et al.[42]). The 

hatchling worm is 0.25 mm long and grows to 1.4 mm 

within 5 days, a 6-fold increase in length and over a 100-

fold increase in volume. C. elegans have an S-shaped 

growth curve an exponential phase of larval growth and a 

gradual approach to a plateau in late adulthood (Byerly et 

al.[43]). In view of this we assume that the growth variable 

l(t) (see equation (4)) is exponential. That is 

                                                                 (22) 

where v is the allometric exponent. 

  

E.Survival Model  
  
 A model of the form given in (22) is used. Substitution of 
equation (22) into equation(3), integration, and division by 
N0 on both sides gives the following equation to predict 
survival, S(t), 

                                                 (23) 

The two parameters Mr and b are of interest to many 

investigators in biogerontology and the evolutionary biology 

of aging [17 - 21]. Species com-parisons in mortality rates 

are aided by calculations of MRD (mortality rate doubling 

time) which changes in the same direction as lifespan and is 

given by 

 ln ( ).                                                       (24) 

 In the absence of age-speci c mortality data, we have 

developed a method to estimate b from the instantaneous 

mortality rate (Mr), original population size (N0), and 

maximum lifespan (tm). 

In [29] we have derived the following result for exponential 

growth 

≈ = .                                 (25) 

The average mortality rate of a steady state population 
subject to age speci c mortality rates of equation (19) is [20 
& 21] 

                                                     (26) 

Equation (25) gives 

  ,                                                   (27)    

And from equation (27) we get, 

   dt. 

A simple substitution in the above integral gives 

( .                              (28) 

F.Existence of Negative Critical Parameter  

  

  Recall that the age at which the mortality rate,  of 

initial population N0 has ceased increasing or, equivalently, 

it tends to a constant, is called a critical age, tc [30]. The 

remaining population left from an original population size 

N0 surviving at this critical age is called critical population, 

Nc, and the corresponding Allometry parameter in   

is called Allometry parameter,  

Since the partials of b with respect to and  become 

zero at  

), and using (27), we get 

                                                        (29) 

From (29) it follows that 
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                                                   (30) 

The point   = 1 at which b changes sign is said to be 

critical point of b. 

 In human populations, according to published studies 

(Witten, [20 & 24]), the acceleration of mortality rate slows 

after 85 years. After 105 years, the mortality rate appears to 

cease increasing and may even decrease at these extremely 

advanced ages. Decreasing mortality at advanced ages is 

described in detail for ies (Curtsinger et al., 1992 [44], Fukui 

et al., 1993 [45], Carey et al., 1992 [46]). There is an 

additional evidence for the exponential decay at higher age. 

Quite recently Wang and co-workers disclosed an elegant 

experiment for the senescence accelerated mouse (SAM), 

showing that the mouse mortality function also approaches a 

constant value at higher age (Wang et al., 1998[47]). All the 

evidences accumulated so far suggest strongly that the 

exponential decay of populations at higher age is a general 

theorem (K.Suematsu et al., 1999 [32]). 

From our earlier work [30], we know that, for a given 

  and  with  < 1 

and .                                            (31) 

On the contrary, when  > 1 

,     and                        (32) 

Note  that tc tm for any given Aav; tm and N0. We also know 

that [31], the asymptotic solution b of (28) is a continuous 

function in the variables Aav; tm and N0 from puberty 

through critical life span (or, N0  Nc). What happens to 

solution b when N0  Nc (below the critical population). As 

we have already equated tm with tc when, what is 

then actual (species) maximum life span,  Such < 

 exists, since the critical population Nc has not yet 

diminished to one survivor. How to determine this  This 

in turn, leads us to consider negative allometry parameter, 

since   for N0    Nc. 

To determine the negative allometry parameter consider (31) 

with N0    Nc.and (32) with . 

 
Upon substitution N0 = Nc into (28), we get 

                          (33) 

Where  when  <  and  when 

. 

Equation (33) gives 

  

The above inequality ensures the existence of solution , 

provided =1. 

As a consequence, we get 
 

                                                 (34) 

A close observation of the inequality (34) reveals that any  

 also satisfies it 

This result, in fact, motivates us to consider the negative 
critical Gom-pertz parameter.On the other hand, in the 

neighbourhood of the critical point  = 1, it is necessary 

that  >1 if b<0 from (30). 

Hence 

                                            (35) 

Is valid for    N0  =  Nc  provided  >1. Clearly  >1 

holds when  in (32). In case of (31)  >1 if N0  

<  Nc and this gives  =  We designate 

 as the actual maximum life span. Since  

becomes very large numerically as N0 ⟶ 1, we can choose 

any finite value greater than tc as . Fortunately, we shall 

not use the numerical value of in our sequel. 

 Numerical experiments show that the transition from bc to 
bc is ex-tremely slow. The graphical illustration should 
enhance the understanding of this idea [19]. Further, it 
follows from (28) that as 
 

N0  =  Nc,  

As  changes sign, from (27) we obtain 

 

 Which gives 

=   

Thus  

 . 

G.Exponential Allometry Survival function  

 

In the neighbourhood of the critical point  = 1, in view 

of (31) and (32)the survival function (23) takes the form 
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         =    (36) 

Lemma: S(t) is continuous at  
 
Proof  Indeed 

        

 

 

                           =  

. 

Now we extend the formula (33) to  for N0 =  satisfy 

(31) with  and (32) with  

Upon substitution bc =  -bc into (33) we get 

 

                         (37) 

As such the above integral is unbounded. The 
unboundedness results in by the substitution tc = ∞ or N0 = 1 
with into (33), when bc < 0. But inequality (35) 

implies the existence of bc. 

 
To overcome this situation, we need to introduce limit age, 
tlim of the critical population Nc. 
Following Suematsu [32], the limit age can be defined as an 

age where the final member of the critical population Nc 

disappears. Stating mathematically, 

   

Clearly, if the population Nc at an age t tc is less than unity, 
all the members under discussion must, in the statistical 
mean, vanish. Hence, the limit age can be identi ed with the 
minimum age, tlim, that satisfies 
 

 . 

Taking into account the above arguments, substitute N0 = 0 
(N0  ) into the upper limit of (33) when bc < 0 to get 
 

                      (38) 

        = -  , 

 

[x>0]. 

Clearly, (38) satisfies inequality (35). We could not  
obtain (35) directly from (38), since the integrand is 
unbounded at z = 0.  
From equation (38), on account of 8.214. 2 in [33], we get 

 

                   

Where C=0.577215, Euler’s constant ω=  

Next, we shall obtain a greatest lower bound for bc. 
From the above equation, we get 
 

[ -1], 

Since  

 =  

Further 

[ ] -  

[ ] -  

  

=  

=  

On the other hand, from the inequality (35) we get 

  

Combining, finally we get 

 

    

Summing up, we conclude that 

 

Theorem 2:  For every  fixed Aav; tm and N0 satisfying 

either (31) with N0    or (32) with , let I be the 

interval defined by 

 

  

where C = 0:577215, Euler's constant. 
 
Suppose there exists a unique solution of (38) in I. Then it is 

necessary 

that.  = 1 
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 Moreover, the following estimation is true 
 

  

Remark 2. From [20], here we listed in Table I the 
numerical values of bc for a comparison with that of positive 
bc for N0 = Nc. 
Remark 3. From (27) it is easy to get the asymptotic 
formula of initial mortality rate using (38). 

Remark 4. Kai Lorenzen [16] listed in Tables 1 and 2 the 

numerical values of each parameter. It is useful to compare 

our asymptotic formula [30] and the existence of critical and 

negative critical allometry parameter. 

 

Table I 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. CONCLUSION 

 

It is well known that the average mortality rate di ers 

between males and females. For instance, (Humans) 0.005 

for males and 0.015 for females [19-20]. The issue of sex di 

erences is not addressed in this article and presents further 

complexities. The body size dependent relationships of 

mortality and longevity are examined for birds and eutherian 

mammals [W. A. Calder III ]. Dif-ferences between mass 

exponents for maximum recorded longevity and survival 

times for fractions of original adult populations con rm the 

age dependence of mortality in both classes and a size 

dependency of population age distribution [16]. It is worth 

studying further the effect of body size on the mortality rate 

with sex differences. 
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