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Evaluation of a Low-Cost MEMS IMU for Indoor Positioning System
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micro-electro-mechanical systems (MEMS) technolggie
Abstract— Indoor Positioning Systems (IPS) have gail have made such units smaller and cheaper, howkseemare
popularity for their potential application to traclpeople in  prone to error. The main characteristics of the MES¢nsors
risky environments or in rescue missions. This pap@oks are: the small dimensions of the capsules, low kteigpw
at how an Arduino combined with a foot-mounted irteal  power consumption, low cost, small starting timéghh
measuring unit (IMU) can be used to provide absaut performances and a small number of additional comapts.
positioning despite the presence of drift in theeiial unit.
The IMU we have used contains a tri-axis accelerderea Accurate people tracking in a general environmesihgi
tri-axis gyroscope and a tri-axis magnetometer. Thesmall and wearable inertial sensors has yet toetiabty
orientation was calculated using quaternion outp@om  shown, although previous attempts have been ma@. [2
the IMU which uses gyroscope with drift correction theqretically, single and double integration of gyeo and
performed by referencing the earth's gravity fortph and 5 cojerometer outputs will provide velocity and ipos
roll "’?”d the geomagnetic field from magnetometerrfp information. In practice when working with standdiU
heading. Acceleration signal outputted by the IMUs i . . . : .

units, the non-linearity and noise present in #resers make

doubly integrated with time that yields the traved . . . . .
distance. During the preceding time instants, thesiion the trajec_tory _predlctlon valld_f_or short pe_nodfstl_tme. So
Kalman filter is needed to utilize for solving thisoblem

information becomes increasingly untrustworthy anthe
validity of the position updates decays. So, we duse [4,5].
smoother algorithm based Kalman filter for better
estimation accuracy in position estimation. A secbn In this paper we demonstrate how to locate and @gzerson
method for distance measurement was implementedctvhi in @ building for which we have an accurate modsing an
uses an algorithm that measures the distance tradeby off-the-shelf wearable inertial system and a Kalrfider to
counting the number of steps. The step lengthtackle the traditional drift problems associatedhwnertial
determination was made by an algorithm that takdwet tracking. Since the system requires very little eix
angle between legs made by the accelerometer arififrastructure, the monetary costis proportionahe number
gyroscope. Experiments were conducted on differenff users, rather than to the coverage area asisabe for
scenarios and the results were compared which iadiéc traditional indoor location systems. We proposé theeh a
that the typical positioning accuracy is below 5%rfboth System could be used to enable the deployment of
methods. Issues and proposed improvements to tiseesy location-aware applications in large buildings, vene¢he
are also discussed in this work. installation of a high accuracy absolute locatigatam is
either too expensive or impractical.

Index Terms— IPS, IMU, Kalman Filter, Arduino, A. Outline of The Paper
Quaternion.
The outline of this paper is as follows. In sectband 3 we
. INTRODUCTION first review relevant literature and how a foot-mted IMU

Today, GPS provides localization outdoors, but iseec Might be used to provide a sequence of relativatioss and
indoor tracking of peop|e remains an open resepmmem' different orientation representation methods. $edti covers
We have seen indoor location systems based onriadra discussion on two distance measuring algorithmse Th
ultrasound, narrowband radio, Wi-Fi signal strengihvB, —€Xperiments, results, and issues are discusseettiors5. At
vision, and many others [1]. However, few can bsilga last, the conclusion and proposed further workgpegsented
deployed over large buildings whilst still providimccurate ©On section 6.

localization. To minimize deployment and infrastwre

costs, we wish to develop a wearable location sysat can Il. ARDUINO AND IMU

Arduino (Fig-1(a)) is an open-source electroniastqiyping
position itself absolutely within a complex struguOne type platform based on flexible, easy-to-use hardwarel an
of sensor which does seem applicable to peopl&itgds  software. It's intended not only for engineersaestists but
inertial measuring units (IMUs). Recent advances ialso for artists, designers, hobbyists and anyotezdsted in

creating interactive objects or environments. Inwark we
Manuscript received September 01, 2013 have used Arduino to process data collected fraeni¥hJ

Md. Galib Hasan, EEE, Pabna University of Science & Technology, !
Pabna, Bangladesh. sensors as well as running the necessary algorilasisd on

Md. Kamrul Hasan, Embedded System, SinePulse GmbH, Munichthe data received to determine the location.

Germany.
Ragib Ahsan Game Development, Playdom, Dhaka, Bangladesh.  An jnertial measurement unit, or IMU (Fig-1(b)s &n
Tania Sultana, Commercial Operation, DESCO, Dhaka, Bangladesh. electronic device that measures and reports on a

R. C. Bhowmik, Mathematics, Pabna University of Science & \ . . . . .
Technology, Pabna, Bangladesh. craft's velocity, orientation, and gravitationatdes, using a
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combination of accelerometers and gyroscopes, $me®t of weight experienced by any test mass at restdrirame of

also magnetometers. IMUs are typically used treference of the accelerometer device. For examale,

maneuver aircraft, including unmanned aeriaaccelerometer at rest on the surface of the ealitmeasure

vehicles (UAVs), among many others, and spacecraan acceleration g= 9.81 rifstraight upwards, due to its

including satellites and landers. Recent developsafiow weight. The triple-axis MEMS accelerometer includiedhe

for the production of IMU-enabled GPS devices. AdUl  IMU we have chosen has the following features:

allows a GPS to work when GPS-signals are unavaijlabch

as in tunnels, inside buildings, or when electramierference < Digital-output 3-Axis accelerometer with a progwaable

is present. full scale range of +2g, +4g, +8gand +16g

* Integrated 16-bit ADCs enable simultaneous sargif
accelerometers while requiring no external mlétier

» Orientation detection and signaling

 User-programmable interrupts

* High-G interrupt

* User self-test

(@) (b) 2. Gyroscope
Fig-1: (a) Arduino Uno (b) 9DOF IMU Agyroscopeis a device for measuring or
maintaining orientation, based on the principlesamjular
momentum. Most available MEMS gyroscopes use antuni
A. Arduino fork configuration. Two masses oscillate and mowestantly
in opposite directions. When angular velocity iplég, the
Coriolis force on each mass also acts in oppositxtibns,
which result in capacitance change. This diffeedntalue in
capacitance is proportional to the angular veloQity and is
then converted into output voltage for analog gyopes or
LSBs for digital gyroscopes. The triple-axis MEMS
gyroscope included in the IMU we have chosen has th
following features:

Arduino can sense the environment by receivingtiffum a
variety of sensors and can affect its surrounditgys
controlling lights, motors, and other actuators. eTh
microcontroller on the board is programmed usin
the Arduino programming language and the Arduin
development environment (based on Processing )uidaod
projects can be stand-alone or they can communigike
software running on a computer (e.g. Flask

Processing, MaxMSP). The version of the Arduinohage Dlgrlgt-:(())uf:tvﬁ'tgéinsirz. '?())(lsraa;?;l;irlghe” ssens o
used is called Arduino Uno and it has the followfegtures: (gy pes) hrog o caigy
+250, +#500, £1000, and +2000°/sec

* Integrated 16-bit ADCs enable simultaneous sargif

. ATmega328 microcontroller gyros
i Input. v.oltage - ?'12\/  Improved low-frequency noise performance
* 14 Digital I/0 Pins (6 PWM outputs) » Digitally-programmable low-pass filter
* 6 Analog Inputs « User self-test
. 32k Flash Memory, 2KB SRAM, 1KB EEPROM
. 16MHz ClockSpeed
2. Magnetometer
B. IMU

A magnetometer is a measuring instrument used tasune
The IMU we have used is the world's first 9-axis tda  the strength and, in some cases, the direction agnetic
Tracking MEMS device designed for the low powew mst, fields. There are many approaches for magneticirsgns
and high performance requirements of consumerrelgics whereas the most common magnetometer method Idathe
equipment including smart phones, tablets and vedmra effect method. It works on the principle that atage can be
sensors. This IMU contains a 3-axis gyroscope, 3-axisdetected across a thin metallic element, when lgment is
accelerometer, and an onboard Digital Motion Preces placed in a strong magnetic field perpendicular tie
(DMP) capable of processing complex 9-axis MotiaisiBn  element’s plane.The triple-axis MEMS magnetometer
algorithms; and a 3-axis digital compass. The partincluded in the IMU we have chosen has the follgwin
integrated 9-axis Motion Fusion algorithms accdigaternal  features:
sensors to gather a full set of sensor data.
1. Accelerometer » 3-axis silicon monolithic Hall-effect magneticrser with

magnetic concentrator

An accelerometeris a device that measures propeWide dynamic measurement range and high resalutio
acceleration. The proper acceleration measured iy a with lower current consumption.
accelerometer is not necessarily the coordinatelation * Output data resolution is 13 bit (0.3 uT per LSB)
(rate of change of velocity). Instead, the acceteri@r sees © Full scale measurement range is #1200 uT
the acceleration associated with the phenomenorSelf-test function
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lll. ORIENTATION REPRESENTATIONMETHODS

In geometry the orientation, angular position, tiitwde of

an object such as aline, plane or rigid body ig pé the

description of how it is placed in the space ihisNamely, it

is the imaginary rotation that is needed to mowe dbject
from a reference placement to its current placemént
rotation may not be enough to reach the curremeptent. It
may be necessary to add an imaginary translataltgdcthe

object's location (or position, or linear positiofihe location
and orientation together fully describe how theegbjis

placed in space. The above mentioned imaginaryieatand

translation may be thought to occur in any order,tle

orientation of an object does not change whenaitdiates,
and its location does not change when it rotates.

Euler's rotation theorem (Fig-2) shows that
dimensions any orientation can be reached with
single rotation around a fixed axis. This gives aoenmon
way of representing the orientation using an argi@
representation. Other widely used methods inclotktion

matrices , Euler angles, or quaternions.

Fig-2: Changing orientation of a rigid body is the same
as rotating the axes of a reference frame attatchiéd

A. Rotation Matrix

One way to represent the orientation of a coordisptce in
3D is to list the basis vectors of one coordingpacs,
expressed using the other coordinate space. Whkee thasis
vectors are used to form the rows of a 3x3 maitvix,have
expressed the orientation in matrix form. Anothayuo say
this is that we can express the relative orientatid two
coordinate spaces by giving the rotation matrix ten be
used to transform vectors from one coordinate spadhe
other. The most important property of matrix foisrthat we
can use a matrix to rotate vectors between objetirgertial
space. No other representation of orientation aldins.
However, a matrix uses nine numbers to store amtation,
and it is possible to parameterize orientationgsinly three
numbers. These “extra” numbers can cause somegonsbin
other words, a matrix contains six degrees of rddony.
There are six constraints that must be satisfieardier for a
matrix to be “valid” for representing an orientatid he rows
must be unit vectors, and they must be mutual
perpendicular.
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B. Euler Angle

The Euler angles are three angles introduced bphaa
Euler to describe the orientation of a rigid bo@ig. describe
such an orientation in 3-dimensional Euclidean spghree
parameters are required. They can be given in abwatys,
Euler angles being one of them. Euler angles ae uded to
represent the orientation of a frame of refereetative to
another. They are typically denotedoa$, y or o, 0, y and

named as “heading-pitch-bank” or “yaw-pitch-rolFig-3).

The basic idea behind Euler angles is to definarsgular
displacement as a sequence of three rotations ahoeg
mutually perpendicular axes. In this system, aardgation is
defined by a heading angle, a pitch angle, andnk bhagle.
The basic idea is to start with the object in thgeftity”

orientation — that is, with the axes aligned witle inertial
axes. From there, we apply the rotations for hepdinen
pitch, and finally bank, so that the object arriviesthe

orientation we are attempting to describe.

Euler angles parameterize orientation using onlyeeh
numbers, and these numbers are angles. Euler arglesasy
for us to use, considerably easier than matricgsiaternions.
Perhaps this is because the numbers in an Eulée aigge
are angles, which is naturally how people think wbo
orientation. If the conventions most appropriate the
situation are chosen, then the most important ancge be
expressed directly.

However, there is one major problem with the Ewaegle
attitude representation; there exists two attitualbsre we
have a singularity in the solution (also known asni@al

lock). Let's have a look at Figure 1 and imagire the pitch
angle is equal to 90 degrees. In this caseydve and roll
perform the same operation. This may notabproblem
in computer graphics applications such ash& rendering
of the orientation of an object since evaitytude does
still have a representation, however for applicstidhat
require the controls this can be detrimental bezaus can
run into severe math problems when dealing witHemnthat
are close to these singularity points. One wagebaround
this problem is to add an additional degree sowtledhave an
over defined attitude representation. This what the
guaternion does in a very simplistic sense {imaternion
is based upon the principal of Euler’s principdhtimn.

C. Quaternion

According to Euler's rotation theorem, any rotation
sequence of rotations of a rigid body or Coordirgtstem
about a fixed point is equivalent to a single riotaby a given
angled about a fixed axis (calleuler axis) that runs
through the fixed point. The Euler axis is typigall
represented by a unit vectsit Therefore, any rotation in
three dimensions can be represented as a combinaitia
vectora and a scalaf. Quaternions give a simple way to
encode this axis—angle representation in four nusylaad to
apply the corresponding rotation to a position
vector representing a point relative to the origiRR>.
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Pitch foecis

Taw Axiz

Fig-3: The principal axes of an aircraft

A Euclidean vector such as @4) or @, a,,a,) can be
rewritten as 2+ 3j + 4k ora,i +a,j + a,k, wherei, j, k are
unit vectors representing the three Cartesian axestation

spaces because a permanent communication witliteated
needed for pinpointing the location and measuring
traveled distance. The main sensors used for ditiegrthe
distance are: GPS, ultrasonic, infrared, optiaadrtial and
electromagnetic sensors.

In our work as we have used MEMS sensor i.e. IMUctvh
includes the accelerometer sensor the output aftwtan be
used to calculate distance. If an accelerometeragable, the
first solution that one might think of is to intedge twice the
acceleration to obtain the total distance. The jgrobwith
this approach is that sensors are inexact anddteirs would
accumulate by integrating. To avoid this, the Karfier is
used which is basically a statistical method tlmhisines a
knowledge of the statistical nature of system arneith a
knowledge of system dynamics, as represented biate s
space model, to provide an estimate of the statesystem.

with an angle of rotation @f around the axis defined by a unitAlternatively, researchers have come up with medhtml

vector

U= (U, Uy, U ) = Ugl + uyJ + u.k

is represented by a quaternion using an extendi&uler's
formula:

1 . .
q= EEE{“I ituyjtuzk) cos %S + (uzi + uy_] + u. k) sin %H

Because of the advantages of quaternion we hawkiuse
determine the orientation of the target object. TWE gives

the direct quaternion output which is accurate ghoto

determine the heading of a person. We have alsd

guaternion later to compensate gravity componam fraw
acceleration in order to get dynamic acceleratigrile

determining distance travelled. But in order to maklive
visual representation of the trajectory as we hasged
Processing and Euler angles were easier to use twerhave
simply used the following conversion formulae toneert

guaternion in to Euler angles:

2(qoq1+q2q3)

& arctany = " 5

0| = laresin(2(qog2 — g3q1))
| Hagngatagige) J

U [ arctan 127 +4d)

arctan and arcsin have a result betweef? -andn/2. With

detect steps and estimate their lengths withoagnating the
acceleration.

A. Distance Measurement: Accelerometer & Kalman Filter

An IMU contains three orthogonal rate-gyroscopesl an
accelerometers, which report angular velocity and
acceleration respectively. In principle, it is gbss to track
the orientation of the IMU by integrating the aragwelocity
signals. This can then be used to resolve the exat&n
samples into the global frame of reference, fromictvh
acceleration due to gravity is subtracted. The neimg

us%cceleration can then be integrated twice to tthekposition

of the IMU relative to a known starting point areblding [6].
Unfortunately the error, or ‘drift’ in the calcuéat position
grows rapidly with time. The main cause of driftamall
errors perturbing the gyroscope signals, which egmewing
tilt errors in the tracked orientation. A smalt gfror causes a
component of acceleration due to gravity to bequrgd onto
the globally horizontal axes. This residual is deub
integrated, causing an error in position which grawbically
in time in the short term. The drift incurred byhigh end
MEMS IMU will typically exceed 100 meters after limate
of operation.

Here comes the Kalman filter to give the solutidie
Kalman filter operates by producing a statisticadytimal
estimate of the system state based upon the meassui(s).
To do this it will need to know the noise of the@um to the

three_ rotatiqns b_etweenn/—z and n/2 we can't have all filter called the measurement noise, but also tiieenof the
possible orientations. We need to replace the mrctsystem itself called the process noise. To dotti@soise has

by atan2 to generate all the orientations.

¢ atan2(2(goq + g2g3). 1 — 2(qf + 43))
gl = arcsin(2(gogz — gaq1))
W atan2(2(goga + 0192), 1 — 2(q3 + ¢3))

IV. DISTANCE MEASUREMENT ALGORITHMS
Over the last decades there have been lots of eeviat

to be Gaussian distributed and have a mean of herkily
for us most random noise have this characteristic.

In Fig-4, whole computational process for Kainilter is
laid out in a schematic diagram. Although it bethesname
filter,” Kalman filter would rather be better csidered as a
computer algorithm. In the Fig-4, the part in dashed box is
Kalman filter algorithm. The structure is very siep It
receives only one input (measuremenj, and returns one
output (estimates), ). Internal process is done through a
four-step computation.

measure traveled distance. The best results haem be

obtained with GPS, but these systems are useledssad

73

Now let us look into the computational proceduretlod
algorithm in detail. The first step is for predarti The two
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variabless),” and R which will be used throughout the Steps

Il through IV, are computed in this step. Theperscript
‘" means predicted value. The formulae s fprediction
step have very close relationship with systemdehaoT his
will be discussed in detail later. In Step Il,likan gain (K)
is being computed. The variablg €&mputed in the previous
stepis used. H and R are the values pressileltKalman
filter. In Step Ill, an estimate is computed from
measurement given as input. It has not been cleaviyaled
yet, but the formula in this step is related to HJoass filter.
This will be explained later, as well. The varia$lg is the
one computed in Step I. In Step IV, error covar&ans
computed. Error covariance is a measure indigatiow
accurate the estimate is. Normally, decisiontrust and
use or discard the estimate computed inpitevious step
is made based on the review of the error covariance

As each of the parameters is recursively compugsedb on
its previous value, the previous on its previouseaill initial
condition, the Kalman filter incorporates the imfation
obtained by all the previous values in its predictilt does so
without actually storing that data and uses sireglgations in
a loop, making it computationally inexpensive. gt also
necessary to point out that Kalman gain and emmwacance
equations are independent of actual observations.

Now we need to make a Kalman filter model
accelerometer. A Kalman filter model for accelertenas
well described in [5]. However, the model choses Migeiner
process acceleration model [7]. This model requires

( At At AP )
20 8 6
Ae* AP A"
Q;:{f 3 3 5
At Af
At
. 6 2 J

And At = 0.005, q =6, H, = [001], R = [6,]
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for

| . Predict state & error covariance:

i =dAx,

r

Il Compute Kalman gain:

Ky=F H (HEH" +R)™

1
1
]
1
]
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]
)
1
1
1
1
1
)
1
1
]
1
]
B =AP_ A" +Q |
]
)
]
)
1
1
1
1
]
)
1
]
]
1
]
)
1
1
I

lll. Compute the estimate:
Measurement ™

Zy X=X + K (2, - H5p) X

V. Compute the error covariance:

B =B K HF

Fig-4: Kalman filter algorithm

Fig-5 shows how the accelerometer bias is modeted a
random walk process. The bias is modeled as agrated
white noise with a power spectral density (PSDhg&V. The
complete process is modeled by three integratocascade
[8, p. 232]. From this model, the exact expressfond, and
Qk can be worked out to the form as shown above pbeer
spectral density of the input white noise W is 1s0)f¥(rad/s)
and the sampling tim&t equals 1/206.6s.The value of W was
obtained after performing some experiments aimguduvide
better results.

White noise
PSD=W A

5
3

Acceleration Velocity Postion

Fig-5: The process model of the accelerometer datdnéor t
Kalman filter

In order to remove the effect of gravity error, thew
acceleration values were gravity-compensated to tiget
dynamic acceleration before applying the Kalmaneffil
algorithm. This was simply done using the quaternas
follows:

dyn_accel_x = raw_accel_x - 2(q1*q3 - q0*q2)
dyn_accel_y =raw_accel_y - 2(q0*ql + q2*q3)
dyn_accel z =

raw_accel _z - (q0*q0 - q1*ql - g2*g2 + q3*q3)

The idea behind this is pretty simple. With thetguaion we
can compute the expected direction of gravity anent
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subtract that from the accelerometer readingsra$dt is the
dynamic acceleration.

B. Distance Measurement: Step Detection

There are several ways to do step detection usi
accelerometer information, but the main differest&ves on
whether the sensor is located on the foot, waistinoa
different place. Since this project deals with fiosing using
an IMU, the sensors are assumed to be on the feet.

1. Counting The Number of Steps

We have used the motion interrupt feature of théJIkd

detect and count the number of steps. The ideatavast a
threshold value of acceleration within a certairtioroperiod
to detect the step. The threshold values were m&ted after
some trials and errors.

The graph in Fig-6 shows the total accelerationsuesd by

the accelerometer while walking. After several destwas

observed that every step was introducing a sigmfic
increase in the acceleration during a short inst@hese

acceleration increments are in the form of shagkpén the

graph. An approach to identify peaks in the acegilen was

taken. A peak is detected when the acceleratiah¢banges
from incrementing to decrementing.

The arrows in the graph identify peaks. Howevertep s
normally introduces a peak that reaches at leasist3so a

2. Determination of Step Length

For the measuring of the distance we have resdddtie
counting of the steps. And for measuring the distasf every
step we determined the angle between the legs7(Fighe
device was attached in the upper part of the Kifiee know
rtlhe length of a leg and the angle between the Veggan
e%sily calculate the distance walk using the lawasines.

Fig.-7: Legs Angles

Where:
L — The length of the leg
D — Step distance

a, B — Angles between legs
Appling the low of cosines we have:

D_?' e LJ 4 L'?._.QL}C‘(}S (EI +JBJ'I
D=1 x x-‘gx [[ cc)s(rl * ﬂ)]

And for obtaining the final distance we have uded t

threshold of 12.5mfswas introduced to discard small peakdollowing equation:

and also be sure not to miss any step. Anothergshenon
which was observed is that sometimes one step gauldrate
more than one peak. This issue was solved addieg
requisite that the previous step should have hagpahleast
350 ms before. The same flow control of the totakderation
is used to detect motion. When during a period ¢éast 450
ms (25 samples) no peaks are detected, then thentstate
is set to no motion. As soon as there is a pealstike is
immediately set back to motion.

t

% T \2 X [1 —cos(c:r + ;5’)]

where N represents the number of steps.

D

total

V. EXPERIMENTAL RESULTS

The two described procedures result into an acbipta|n this experiment a user has walked through agjpndoor
performance. However possible improvements candme,d environment (Fig-8(a)). At first it was experimest® check

especially in the detection of false positives{ster motion how accurate the orientation i.e. heading wasrdeoto do
detected when the user is hot moving but shakeddtiee).

{
U‘I’L {!'_

v
l

Y

.

g bdei

(a) (b)
Fig-8 (a) User with foot-mounted IMU (b) Recorded
sample trajectory of user movemera@dbor

Fig-6Step and motion detection
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so the user has started walking from one room aalétes
straight for a while and then made a circular stidpep to
test the heading angle accuracy. Then he entet@thie next
room and finally returned to his starting posittbrough the

ISSN: 2319-6378, Volume-1, Issue-11, September 2013

The Fig-9 shows the real distance against meagliségihce
curve for both methods. It is seen that the peréoe of the
Kalman filter method was slightly better than theeps
detection method. The overall results for the pasing

shortest possible path making a smooth turn. Thelevh system show an average error rate in positionssftflean 5%

trajectory was recorded (Fig-8(b)) and later madctee the
original one. The result was satisfactory as thmiscy was
good enough for human positioning. Later, for tligtahce
measurement, the device was tested on a 50 metg.rahe
first 5 measurements were made in normal walkinglitions

without stopping. The next five measurements weeslen

with a low walking speed, and next five were dohdiigh
speed. The last three were made with stops. Thétseme

represented in the Table-1.

Table -1: Comparison of real and measured distance

No. | Real | Measured| Real Measured Distance (m)
Of | Steps| Steps Distance | Step Detect | Kalman
Try (m)
01 | 85 87 46 47
02 | 85 86 47 48
03 | 84 85 46 48
04 | 85 84 48 49
05 | 86 84 47 48
06 | 94 97 49 50
07 | 95 96 51 51
08 | 94 94 52 53
09 |93 | 94 50 51 52
10 | 95 94 49 51
11 | 80 80 46 48
12 | 80 81 45 49
13 | 79 78 47 47
14 | 81 78 45 46
15 | 81 82 46 48
16 | 85 85 48 49
17 | 85 86 49 51
18 | 86 84 48 49
" Plat of Real and Measured Position
Real 1
Br +  Step Detection [
—+—alman Filter

40

Fosition {rm)
b

Ar

Time (gec)

80

60

Fig-9:Comparison of step detection & Kalman filter matho
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with only one test over this result. It is impottém note that
only one solution was used for all the experimemtsaning
that no changes were made to the Kalman filter.grbbable
reason of errors could be the movement of the dedizing
experiment and the thermal bias drift of the acosteter as
well as magnetic disturbance.

VI. CONCLUSIONS

The experimental results have provided a usefduatian of
a low-cost solid state IMU. The performance of the
accelerometer is shown to be acceptable as a d@tion
distance-measuring device for mobile platform drato. So,
we applied a smoothing Kalman filter algorithm ihet
absence of absolute positioning information thatstaucted
the best estimate of the position over a time petsing all
the measurements in that time interval. Furtheeash
would focus on the better model for stochastic lsolid
state accelerometer in order to reduce the effebtas and
thermal noise and fuse the solid state accelerardata with
other positioning technologies like Wi-Fi or FM. sél,
considering the map information and an adaptive Eegth
algorithm could help to improve the overall perfame of
the system.
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