
 
International Journal of Emerging Science and Engineering (IJESE) 

ISSN: 2319–6378, Volume-1, Issue-11, September 2013  

70 

  
Abstract— Indoor Positioning Systems (IPS) have gained 
popularity for their potential application to track people in 
risky environments or in rescue missions. This paper looks 
at how an Arduino combined with a foot-mounted inertial 
measuring unit (IMU) can be used to provide absolute 
positioning despite the presence of drift in the inertial unit. 
The IMU we have used contains a tri-axis accelerometer, a 
tri-axis gyroscope and a tri-axis magnetometer. The 
orientation was calculated using quaternion output from 
the IMU which uses gyroscope with drift correction 
performed by referencing the earth’s gravity for pitch and 
roll and the geomagnetic field from magnetometer for 
heading. Acceleration signal outputted by the IMU is 
doubly integrated with time that yields the travelled 
distance. During the preceding time instants, the position 
information becomes increasingly untrustworthy and the 
validity of the position updates decays. So, we used a 
smoother algorithm based Kalman filter for better 
estimation accuracy in position estimation. A second 
method for distance measurement was implemented which 
uses an algorithm that measures the distance traveled by 
counting the number of steps. The step length 
determination was made by an algorithm that takes the 
angle between legs made by the accelerometer and 
gyroscope. Experiments were conducted on different 
scenarios and the results were compared which indicate 
that the typical positioning accuracy is below 5% for both 
methods. Issues and proposed improvements to the system 
are also discussed in this work. 

 
 

Index Terms— IPS, IMU, Kalman Filter, Arduino, 
Quaternion.  

I. INTRODUCTION 

Today, GPS provides localization outdoors, but precise 
indoor tracking of people remains an open research problem. 
We have seen indoor location systems based on infra-red, 
ultrasound, narrowband radio, Wi-Fi signal strength, UWB, 
vision, and many others [1]. However, few can be easily 
deployed over large buildings whilst still providing accurate 
localization. To minimize deployment and infrastructure 
costs, we wish to develop a wearable location system that can  
 
position itself absolutely within a complex structure. One type 
of sensor which does seem applicable to people tracking is 
inertial measuring units (IMUs). Recent advances in 
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micro-electro-mechanical systems (MEMS) technologies 
have made such units smaller and cheaper, however also more 
prone to error. The main characteristics of the MEMS sensors 
are: the small dimensions of the capsules, low weight, low 
power consumption, low cost, small starting time, high 
performances and a small number of additional components.  
 
Accurate people tracking in a general environment using 
small and wearable inertial sensors has yet to be reliably 
shown, although previous attempts have been made [2,3]. 
Theoretically, single and double integration of the gyro and 
accelerometer outputs will provide velocity and position 
information. In practice when working with standard IMU 
units, the non-linearity and noise present in the sensors make 
the trajectory prediction valid for short periods of time. So 
Kalman filter is needed to utilize for solving this problem 
[4,5].  
 
In this paper we demonstrate how to locate and track a person 
in a building for which we have an accurate model, using an 
off-the-shelf wearable inertial system and a Kalman filter to 
tackle the traditional drift problems associated with inertial 
tracking. Since the system requires very little fixed 
infrastructure, the monetary cost is proportional to the number 
of users, rather than to the coverage area as is the case for 
traditional indoor location systems. We propose that such a 
system could be used to enable the deployment of 
location-aware applications in large buildings, where the 
installation of a high accuracy absolute location system is 
either too expensive or impractical. 
 
A.  Outline of The Paper 
 
The outline of this paper is as follows. In section 2 and 3 we 
first review relevant literature and how a foot-mounted IMU 
might be used to provide a sequence of relative locations and 
different orientation representation methods. Section 4 covers 
discussion on two distance measuring algorithms. The 
experiments, results, and issues are discussed on section 5. At 
last, the conclusion and proposed further works are presented 
on section 6. 

II.  ARDUINO AND IMU 

Arduino (Fig-1(a)) is an open-source electronics prototyping 
platform based on flexible, easy-to-use hardware and 
software. It's intended not only for engineers or scientists but 
also for artists, designers, hobbyists and anyone interested in 
creating interactive objects or environments. In our work we 
have used Arduino to process data collected from the IMU 
sensors as well as running the necessary algorithms based on 
the data received to determine the location. 
 
An inertial measurement unit, or  IMU (Fig-1(b)), is an 
electronic device that measures and reports on a 
craft's velocity, orientation, and gravitational forces, using a 
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combination of accelerometers and gyroscopes, sometimes 
also magnetometers. IMUs are typically used to 
maneuver aircraft, including unmanned aerial 
vehicles (UAVs), among many others, and spacecraft, 
including satellites and landers. Recent developments allow 
for the production of IMU-enabled GPS devices. An IMU 
allows a GPS to work when GPS-signals are unavailable, such 
as in tunnels, inside buildings, or when electronic interference 
is present. 
 

 
                         (a)                                       (b) 
 

Fig-1: (a) Arduino Uno (b) 9DOF IMU 
 

 

A. Arduino 

 
Arduino can sense the environment by receiving input from a 
variety of sensors and can affect its surroundings by 
controlling lights, motors, and other actuators. The 
microcontroller on the board is programmed using 
the Arduino programming language and the Arduino 
development environment (based on Processing ). Arduino 
projects can be stand-alone or they can communicate with 
software running on a computer (e.g. Flash, 
Processing, MaxMSP). The version of the Arduino we have 
used is called Arduino Uno and it has the following features: 
 
• ATmega328 microcontroller 
• Input voltage - 7-12V 
• 14 Digital I/O Pins (6 PWM outputs) 
• 6 Analog Inputs 
• 32k Flash Memory, 2KB SRAM, 1KB EEPROM 
• 16MHz Clock Speed 

 

B. IMU 

 
The IMU we have used is the world’s first 9-axis Motion 
Tracking MEMS device designed for the low power, low cost, 
and high performance requirements of consumer electronics 
equipment including smart phones, tablets and wearable 
sensors. This IMU  contains a 3-axis gyroscope, 3-axis 
accelerometer, and an onboard Digital Motion Processor 
(DMP) capable of processing complex 9-axis Motion Fusion 
algorithms; and a 3-axis digital compass. The part’s 
integrated 9-axis Motion Fusion algorithms access all internal 
sensors to gather a full set of sensor data. 
1. Accelerometer 
 
An accelerometer is a device that measures proper 
acceleration. The proper acceleration measured by an 
accelerometer is not necessarily the coordinate acceleration 
(rate of change of velocity). Instead, the accelerometer sees 
the acceleration associated with the phenomenon 

of weight experienced by any test mass at rest in the frame of 
reference of the accelerometer device. For example, an 
accelerometer at rest on the surface of the earth will measure 
an acceleration g= 9.81 m/s2 straight upwards, due to its 
weight. The triple-axis MEMS accelerometer included in the 
IMU we have chosen has the following features: 
 
• Digital-output 3-Axis accelerometer with a programmable  
   full scale range of ±2g, ±4g, ±8gand ±16g 
• Integrated 16-bit ADCs enable simultaneous sampling of  
   accelerometers while requiring no external multiplexer  
• Orientation detection and signaling  
• User-programmable interrupts  
• High-G interrupt  
• User self-test 
 
 
2. Gyroscope 
 
A gyroscope is a device for measuring or 
maintaining orientation, based on the principles of angular 
momentum. Most available MEMS gyroscopes use a tuning 
fork configuration. Two masses oscillate and move constantly 
in opposite directions. When angular velocity is applied, the 
Coriolis force on each mass also acts in opposite directions, 
which result in capacitance change. This differential value in 
capacitance is proportional to the angular velocity Ω > and is 
then converted into output voltage for analog gyroscopes or 
LSBs for digital gyroscopes. The triple-axis MEMS 
gyroscope included in the IMU we have chosen has the 
following features: 
 
• Digital-output X, Y, and Z Axis angular rate sensors  
  (gyroscopes) with a user-programmable full scale range of  
  ±250, ±500, ±1000, and ±2000°/sec  
• Integrated 16-bit ADCs enable simultaneous sampling of  
   gyros  
• Improved low-frequency noise performance  
• Digitally-programmable low-pass filter  
• User self-test 
 
 
2. Magnetometer 

 
A magnetometer is a measuring instrument used to measure 
the strength and, in some cases, the direction of magnetic 
fields. There are many approaches for magnetic sensing 
whereas the most common magnetometer method is the Hall 
effect method. It works on the principle that a voltage can be 
detected across a thin metallic element, when the element is 
placed in a strong magnetic field perpendicular to the 
element’s plane. The triple-axis MEMS magnetometer 
included in the IMU we have chosen has the following 
features: 
 
• 3-axis silicon monolithic Hall-effect magnetic sensor with  
   magnetic concentrator  
• Wide dynamic measurement range and high resolution   
   with lower current consumption.  
• Output data resolution is 13 bit (0.3 µT per LSB)  
• Full scale measurement range is ±1200 µT  
• Self-test  function   

 



 
International Journal of Emerging Science and Engineering (IJESE) 

ISSN: 2319–6378, Volume-1, Issue-11, September 2013  

72 

 

III.  ORIENTATION REPRESENTATION METHODS 

In geometry the orientation, angular position, or attitude of 
an object such as a line, plane or rigid body is part of the 
description of how it is placed in the space it is in. Namely, it 
is the imaginary rotation that is needed to move the object 
from a reference placement to its current placement. A 
rotation may not be enough to reach the current placement. It 
may be necessary to add an imaginary translation, called the 
object's location (or position, or linear position). The location 
and orientation together fully describe how the object is 
placed in space. The above mentioned imaginary rotation and 
translation may be thought to occur in any order, as the 
orientation of an object does not change when it translates, 
and its location does not change when it rotates. 
 
Euler's rotation theorem (Fig-2) shows that in three 
dimensions any orientation can be reached with a 
single rotation around a fixed axis. This gives one common 
way of representing the orientation using an axis-angle 
representation. Other widely used methods include rotation 
matrices , Euler angles, or quaternions.  
 

 
 

Fig-2: Changing orientation of a rigid body is the same 
as rotating the axes of a reference frame attached to it. 

 
A.  Rotation Matrix 
 
One way to represent the orientation of a coordinate space in 
3D is to list the basis vectors of one coordinate space, 
expressed using the other coordinate space. When these basis 
vectors are used to form the rows of a 3×3 matrix, we have 
expressed the orientation in matrix form. Another way to say 
this is that we can express the relative orientation of two 
coordinate spaces by giving the rotation matrix that can be 
used to transform vectors from one coordinate space to the 
other. The most important property of matrix form is that we 
can use a matrix to rotate vectors between object and inertial 
space. No other representation of orientation allows this. 
However, a matrix uses nine numbers to store an orientation, 
and it is possible to parameterize orientation using only three 
numbers. These “extra” numbers can cause some problems. In 
other words, a matrix contains six degrees of redundancy. 
There are six constraints that must be satisfied in order for a 
matrix to be “valid” for representing an orientation. The rows 
must be unit vectors, and they must be mutually 
perpendicular. 

 
 
B.  Euler Angle 
 
The Euler angles are three angles introduced by Leonhard 
Euler to describe the orientation of a rigid body. To describe 
such an orientation in 3-dimensional Euclidean space three 
parameters are required. They can be given in several ways, 
Euler angles being one of them. Euler angles are also used to 
represent the orientation of a frame of reference relative to 
another. They are typically denoted as α, β, γ or  φ, θ, ψ and 
named as “heading-pitch-bank” or “yaw-pitch-roll” (Fig-3). 
The basic idea behind Euler angles is to define an angular 
displacement as a sequence of three rotations about three 
mutually perpendicular axes. In this system, an orientation is 
defined by a heading angle, a pitch angle, and a bank angle. 
The basic idea is to start with the object in the “identity” 
orientation — that is, with the axes aligned with the inertial 
axes. From there, we apply the rotations for heading, then 
pitch, and finally bank, so that the object arrives in the 
orientation we are attempting to describe.  
 
Euler angles parameterize orientation using only three 
numbers, and these numbers are angles. Euler angles are easy 
for us to use, considerably easier than matrices or quaternions. 
Perhaps this is because the numbers in an Euler angle triple 
are angles, which is naturally how people think about 
orientation. If the conventions most appropriate for the 
situation are chosen, then the most important angles can be 
expressed directly. 
 
However, there is one major problem with the Euler angle 
attitude representation; there exists two attitudes where we 
have a singularity in the solution (also known as Gimbal 
lock). Let's have a look at Figure 1 and imagine that the pitch 
angle is equal to 90 degrees.   In  this  case  the  yaw  and  roll  
perform  the  same  operation.   This  may  not  be  a  problem  
in computer  graphics  applications  such  as  in  the  rendering  
of  the  orientation  of  an  object  since  every attitude does 
still have a representation, however for applications that 
require the controls this can be detrimental because we can 
run into severe math problems when dealing with angles that 
are close to these  singularity points. One way to get around 
this problem is to add an additional degree so that we have  an  
over  defined  attitude  representation.   This  is  what  the  
quaternion  does  in  a  very  simplistic sense. The quaternion 
is based upon the principal of Euler’s principal rotation. 
 
 
C.  Quaternion 
 
According to Euler's rotation theorem, any rotation or 
sequence of rotations of a rigid body or Coordinate system 
about a fixed point is equivalent to a single rotation by a given 
angle θ about a fixed axis (called Euler axis) that runs 
through the fixed point. The Euler axis is typically 
represented by a unit vector . Therefore, any rotation in 
three dimensions can be represented as a combination of a 
vector  and a scalar θ. Quaternions give a simple way to 
encode this axis–angle representation in four numbers, and to 
apply the corresponding rotation to a position 
vector representing a point relative to the origin in R3. 
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Fig-3: The principal axes of an aircraft 

 
A Euclidean vector such as (2, 3, 4) or (ax, ay, az) can be 
rewritten as 2 i + 3 j  + 4 k or ax i + ay j  + az k, where i, j , k are 
unit vectors representing the three Cartesian axes. A rotation 
with an angle of rotation of θ around the axis defined by a unit 
vector 
 

 

is represented by a quaternion using an extension of Euler's 
formula: 
 

 
 
Because of the advantages of quaternion we have used it to 
determine the orientation of the target object. The IMU gives 
the direct quaternion output which is accurate enough to 
determine the heading of a person. We have also used 
quaternion later  to compensate gravity component from raw 
acceleration  in order to get dynamic acceleration while 
determining distance travelled. But in order to make a live 
visual representation of the trajectory as we have used 
Processing and Euler angles were easier to use there, we have 
simply used the following conversion formulae to convert 
quaternion in to Euler angles: 
 

 
 
arctan and arcsin have a result between −π/2 and π/2. With 
three rotations between −π/2 and π/2 we can't have all 
possible orientations. We need to replace the arctan 
by atan2 to generate all the orientations. 
 
 

 
 

IV.  DISTANCE MEASUREMENT ALGORITHMS 

Over the last decades there have been lots of devices that 
measure traveled distance. The best results have been 
obtained with GPS, but these systems are useless in closed 

spaces because a permanent communication with satellites is 
needed for pinpointing the  location and measuring the 
traveled distance. The main sensors used for determining the 
distance are: GPS, ultrasonic, infrared, optical, inertial and 
electromagnetic sensors. 

 
In our work as we have used MEMS sensor i.e. IMU which 
includes the accelerometer sensor the output of which can be 
used to calculate distance. If an accelerometer is available, the 
first solution that one might think of is to integrate twice the 
acceleration to obtain the total distance. The problem with 
this approach is that sensors are inexact and their errors would 
accumulate by integrating. To avoid this, the Kaman filter is 
used which is basically a statistical method that combines a 
knowledge of the statistical nature of system errors with a 
knowledge of system dynamics, as represented by a state 
space model, to provide an estimate of the state of a system. 
Alternatively, researchers have come up with methods to 
detect steps and estimate their lengths without integrating the 
acceleration.  
 
A.  Distance Measurement: Accelerometer & Kalman Filter 
 
An IMU contains three orthogonal rate-gyroscopes and 
accelerometers, which report angular velocity and 
acceleration respectively. In principle, it is possible to track 
the orientation of the IMU by integrating the angular velocity 
signals. This can then be used to resolve the acceleration 
samples into the global frame of reference, from which 
acceleration due to gravity is subtracted. The remaining 
acceleration can then be integrated twice to track the position 
of the IMU relative to a known starting point and heading [6]. 
Unfortunately the error, or ‘drift’ in the calculated position 
grows rapidly with time. The main cause of drift is small 
errors perturbing the gyroscope signals, which cause growing 
tilt errors in the tracked orientation. A small tilt error causes a 
component of acceleration due to gravity to be projected onto 
the globally horizontal axes. This residual is double 
integrated, causing an error in position which grows cubically 
in time in the short term. The drift incurred by a high end 
MEMS IMU will typically exceed 100 meters after 1 minute 
of operation. 
 
Here comes the Kalman filter to give the solution. The 
Kalman filter operates by producing a statistically optimal 
estimate of the system state based upon the measurement(s). 
To do this it will need to know the noise of the input to the 
filter called the measurement noise, but also the noise of the 
system itself called the process noise. To do this the noise has 
to be Gaussian distributed and have a mean of zero, luckily 
for us most random noise have this characteristic. 
 
In  Fig-4,  whole  computational  process  for Kalman filter is 
laid out in a schematic diagram.  Although it bears the name 
‘filter,’  Kalman filter would rather be better considered as a 
computer algorithm.  In the Fig-4, the part in the dashed box is 
Kalman filter algorithm. The structure is very simple.  It 
receives only one input (measurement, zk) and returns one 
output (estimate, k

- ). Internal process is done through a 
four-step computation. 
 
Now let us look into the computational procedure of the 
algorithm in detail. The first step is for prediction. The two 
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variables k
- and Pk

- which will be used throughout the Steps 
II through IV, are  computed  in  this  step.  The  superscript  
‘-’  means  predicted  value.  The  formulae  in  this prediction 
step have  very close relationship  with system  model. This  
will be  discussed  in detail later. In Step II, Kalman gain (Kk) 
is being computed. The variable Pk

- computed in the previous 
step is  used.  H  and  R  are the values preset outside Kalman 
filter. In Step III, an estimate is computed from a 
measurement given as input. It has not been clearly revealed 
yet, but the formula in this step is related to low-pass filter. 
This will be explained later, as well. The variable k

-  is the 
one computed in Step I. In Step IV, error covariance is 
computed. Error covariance   is a measure indicating how 
accurate  the  estimate  is.   Normally,  decision  to  trust  and  
use  or  discard  the  estimate  computed  in  the  previous step 
is made based on the review of the error covariance. 
 
As each of the parameters is recursively computed based on 
its previous value, the previous on its previous value till initial 
condition, the Kalman filter incorporates the information 
obtained by all the previous values in its prediction. It does so 
without actually storing that data and uses simple equations in 
a loop, making it computationally inexpensive. It is also 
necessary to point out that Kalman gain and error covariance 
equations are independent of actual observations. 
 
Now we need to make a Kalman filter model for 
accelerometer. A Kalman filter model for accelerometer is 
well described in [5]. However, the model chosen was Weiner 
process acceleration model [7]. This model requires  
 

 

 
 

And ∆t = 0.005, q = σq
2, Hk = [001], Rk = [σr

2] 

 
Fig-4: Kalman filter algorithm 

 
Fig-5 shows how the accelerometer bias is modeled as a 
random walk process. The bias is modeled as an integrated 
white noise with a power spectral density (PSD) being W. The 
complete process is modeled by three integrators in cascade 
[8, p. 232]. From this model, the exact expressions for Φk and 
Qk can be worked out to the form as shown above. The power 
spectral density of the input white noise W is 1 (m/s2)2/(rad/s) 
and the sampling time ∆t equals 1/206.6s.The value of W was 
obtained after performing some experiments aimed to provide 
better results. 

 
 

Fig-5: The process model of the accelerometer data for the 
Kalman filter 

 
In order to remove the effect of gravity error, the raw 
acceleration values were gravity-compensated to get the 
dynamic acceleration before applying the Kalman filter 
algorithm. This was simply done using the quaternion as 
follows: 
 
dyn_accel_x =  raw_accel_x - 2(q1*q3 - q0*q2) 
dyn_accel_y = raw_accel_y - 2(q0*q1 + q2*q3) 
dyn_accel_z =  
raw_accel_z - (q0*q0 - q1*q1 - q2*q2 + q3*q3) 
 
The idea behind this is pretty simple. With the quaternion we 
can compute the expected direction of gravity and then 
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subtract that from the accelerometer readings. The result is the 
dynamic acceleration. 
 
 
B.  Distance Measurement: Step Detection 
 
There are several ways to do step detection using 
accelerometer information, but the main difference strives on 
whether the sensor is located on the foot, waist, or in a 
different place. Since this project deals with positioning using 
an IMU, the sensors are assumed to be on the feet. 
 
1.  Counting The Number of Steps 
 
We have used the motion interrupt feature of the IMU to 
detect and count the number of steps. The idea was to set a 
threshold value of acceleration within a certain motion period 
to detect the step. The threshold values were determined after 
some trials and errors.  
 
The graph in Fig-6 shows the total acceleration measured by 
the accelerometer while walking. After several tests it was 
observed that every step was introducing a significant 
increase in the acceleration during a short instant. These 
acceleration increments are in the form of sharp peaks in the 
graph. An approach to identify peaks in the acceleration was 
taken. A peak is detected when the acceleration tend changes 
from incrementing to decrementing.  
 
The arrows in the graph identify peaks. However a step 
normally introduces a peak that reaches at least 13m/s2, so a 
threshold of 12.5m/s2 was introduced to discard small peaks 
and also be sure not to miss any step. Another phenomenon 
which was observed is that sometimes one step could generate 
more than one peak. This issue was solved adding the 
requisite that the previous step should have happened at least 
350 ms before. The same flow control of the total acceleration 
is used to detect motion. When during a period of at least 450 
ms (25 samples) no peaks are detected, then the current state 
is set to no motion. As soon as there is a peak the state is 
immediately set back to motion. 
 
The two described procedures result into an acceptable 
performance. However possible improvements can be done, 
especially in the detection of false positives (steps or motion 
detected when the user is not moving but shakes the device). 

 
                 Fig-6: Step and motion detection 

2.  Determination of Step Length 

For the measuring of the distance we have resorted to the 
counting of the steps. And for measuring the distance of every 
step we determined the angle between the legs (Fig-7). The 
device was attached in the upper part of the knee. If we know 
the length of a leg and the angle between the legs we can 
easily calculate the distance walk using the law of cosines. 

 
Fig.-7: Legs Angles 

Where: 
L – The length of the leg  
D – Step distance 
α, β – Angles between legs 
Appling the low of cosines we have: 

 
And for obtaining the final distance we have used the 
following equation: 

 

where N represents the number of steps. 
 

 

V. EXPERIMENTAL RESULTS 

In this experiment a user has walked through a typical indoor 
environment (Fig-8(a)). At first it was experimented to check 
how accurate the orientation i.e. heading was. In order to do  
 

 
                  (a)                                                   (b) 

    Fig-8: (a) User with foot-mounted IMU (b) Recorded                
              sample trajectory of user movement at indoor 
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so the user has started walking from one room and walked 
straight for a while and then made a circular shaped loop to 
test the heading angle accuracy. Then he entered into the next 
room and finally returned to his starting position through the 
shortest possible path making a smooth turn. The whole 
trajectory was recorded (Fig-8(b)) and later matched to the 
original one. The result was satisfactory as the accuracy was 
good enough for human positioning. Later, for the distance 
measurement, the device was tested on a 50 meter range. The 
first 5 measurements were made in normal walking conditions 
without stopping. The next five measurements were made 
with a low walking speed, and next five were done at high 
speed. The last three were made with stops. The results are 
represented in the Table-1. 
 

Table -1: Comparison of real and measured distance 

 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig-9:Comparison of step detection & Kalman filter method 

 
The Fig-9 shows the real distance against measured distance 
curve for both methods. It is seen that the performance of the 
Kalman filter method was slightly better than the step 
detection method. The overall results for the positioning 
system show an average error rate in position of less than 5% 
with only one test over this result. It is important to note that 
only one solution was used for all the experiments, meaning 
that no changes were made to the Kalman filter. The probable 
reason of errors could be the movement of the device during 
experiment and the thermal bias drift of the accelerometer as 
well as magnetic disturbance.  
 
 

VI.  CONCLUSIONS 

The experimental results have provided a useful evaluation of 
a low-cost solid state IMU. The performance of the 
accelerometer is shown to be acceptable as a short-duration 
distance-measuring device for mobile platform or robot . So, 
we applied a smoothing Kalman filter algorithm in the 
absence of absolute positioning information that constructed 
the best estimate of the position over a time period using all 
the measurements in that time interval. Further research 
would focus on the better model for stochastic bias of solid 
state accelerometer in order to reduce the effect of bias and 
thermal noise and fuse the solid state accelerometer data with 
other positioning technologies like Wi-Fi or FM. Also, 
considering the map information and an adaptive step length 
algorithm could help to improve the overall performance of 
the system. 
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No. 
Of 
Try 

Real 
Steps 

Measured 
Steps 

Real 
Distance 
(m) 

Measured Distance (m) 
Step Detect Kalman 

01 85 87  
 
 
 
 
 
 
 

50 

46 47 
02 85 86 47 48 
03 84 85 46 48 
04 85 84 48 49 
05 86 84 47 48 
06 94 97 49 50 
07 95 96 51 51 
08 94 94 52 53 
09 93 94 51 52 
10 95 94 49 51 
11 80 80 46 48 
12 80 81 45 49 
13 79 78 47 47 
14 81 78 45 46 
15 81 82 46 48 
16 85 85 48 49 
17 85 86 49 51 
18 86 84 48 49 
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