
International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378, Volume-1, Issue-12 October 2013

13

Abstract—Nowadays, as computers get more advanced each

day, so do the software being written for them. This advancement

brings about increasing complexity in system configurations.

Most, if not all, requirements are mentioned in lengthy

user/installation manuals, reading those becomes all the more a

tedious job. Small scripts are being used for automation to verify

the configuration. However managing the scripts became more

tedious as the numbers of configurations become huge. We

figured that it would be so much easier on everyone if there could

be a framework in place to do the verifications, instead of

someone doing it manually. We have come up with a

knowledge-based EXP framework which can be extensible using

Microsoft Excel, XML schema and PERL script which we intend

to verify, things that overlooked, system health check up, product

specific optimal value, database and kernel.

Index Terms— knowledge-based system, EXP framework,

system health check-up tool, verifying configuration tool.

I. INTRODUCTION

 The signaling components that we work with at Comviva

Technologies are integrated with our SMS and USSD

platforms on-field. So for the implementation, engineers

on-site, the manual system verification before installation of a

product of ours takes up 2-3 days. The biggest challenge for

an implementation engineer is to verify the system by

checking requirements specified by both the signaling as well

as the SMS/USSD team. The signaling components require

several configurations to be scrutinized and also synced over

various files. All these verifications have been automated

using scripts but the validation of the results of each of the

scripts proves to be a tedious task altogether.

Installation of a complete signaling product would typically

include checks such as OS version, system architecture,

values of environment variables, memory status, database

configurations, file permissions and various kernel-level

configurations. These features vary depending on the type of

deployment and as such, could be overlooked if being done

manually. Also, in the case of occurrence of any issues, a

support engineer would have to manually validate a long list

of these checks.

Manuscript received October 2013.

Sambit Kumar Patra (Senior Technical Lead), Mobile Financial

Solutions, Mahindra Comviva, Bangalore, India.

Krishna TG, Core Engineering Group, Mahindra Comviva, Bangalore,

India.

A major challenge that is faced in such kind of validation is

that the list of checks is not static. The requirement checks for

a product increase with time and with product up-gradation.

There are two ways of doing something; manual or

automated. In the same way, verification of a computer

system prior to the installation of particular software can

either be done manually, or by running certain automated

scripts. The manual verification would require a person to go

through installation manuals provided by the software

developer, and would demand a lot of patience and care.

Automated system configuration solves only part of the

problem. In the course of its lifetime, a server will undergo

numerous configuration changes, software and operating

system patches, and security updates. The automated

verification would require some scripts to be written

beforehand, and a person could be told to match the result of

each script with a list of possible options, and then infer what

each of it means.

However, this type of automated checking would require

some level of care to be taken, in order to ensure the results

being interpreted correctly. Using our proposed framework,

we intend to eliminate this possibility of error too. We have

verified our algorithms by the writing scripts for hardware

specification, OS, database, signaling stack, SMSR, USSD

and various products across the organization.

II. PROBLEM DEFINITION

A. Challenge to Support and Implementation people:

Developers only help in forming the product. Implementation

and support engineers are the ones who finally have to ensure

that the product works efficiently in the field. The biggest

challenge faced by the implementation and support groups is

the fact that since they were not part of the development of a

product, their scope of work is limited to the FAQs and

READMEs shared by the product development teams. This,

in turn, needs careful reading of the same, and more often than

not, one misses out on minor details in these documents.

B. Automation with XML:

Shell and Perl scripts are provided as a means of automating

debugging, as well as to gather information regarding a

particular issue before it can be reported to the development

team for fixing. The interpretation of the outputs of scripts is

way more tedious and also important than simply executing

them. So it made sense to have a framework which could be

used to execute scripts, and give clear objective results for the

same. So we thought of having an XML file to hold these

scripts to be given as input to a Perl script which would in turn

execute the scripts, interpret the results and tabulate the same

in an HTML file for easy viewing.

Knowledge-Based EXP Framework (Verifying

System and Product Configurations Using

MS-Excel, XML and PERL Script)

Sambit Kumar Patra, Krishna TG

Knowledge-Based EXP Framework (Verifying System and Product Configurations Using MS-Excel, XML and PERL Script)

14

C. Writing/Modifying XML for inexperience will be

difficult:

However, editing XML files is complicated, and one needs

expertise to do so.

III. MOTIVATION

A. Motivation on Rough set approach to knowledge-based

decision support:

Software installations require several changes to a system,

which would all probably be shipped along with the package.

Software runs with a certain range of system configuration.

We may categorize them as pass, critical and warning stage.

For example, in critical condition, software cannot be

installed with the available memory size and CPU speed. In

warning condition, software may install with certain range of

memory. Looking at these categories and ranges we follow

rough set approach to knowledge-based decision support [1].

Information exchange processes are often characterized

by the need of translating from one data format into

another, in order to achieve compatibility between

information systems. This framework consists of an

MS-Excel sheet converted to a backend to XML format and

then given as an input to a Perl script, which would then

generate the report of the verification in a HTML format.

B. Motivation for Perl Script and XML as Back End:

Harlan Carvey[8] , defined a framework in Perl script to

monitor windows security system. To avoid hard-coding

threshold values in the script, he used XML file to store the

threshold information. The XML script compares the static

values with threshold values. The disadvantage of this

algorithm is, for version to version every time we need to keep

add and update the static values. We modified the algorithm

to execute the commands dynamically, and compare the

results with ‗N‘ number of values.

C. Motivation for Excel as Front End:

A product contains a lot of configuration values. The

system, OS and product versions keep on changing

constantly.

Writing the huge XML scripts and editing it will be

difficult at the time of development. To reduce this time,

there is a need for a good editor of XML file. Once it has been

written, it can be updated by Implementation and support

team.

Import and export XML file from Excel is easy.

Implementation and support engineers are well-versed with

writing simple shell and Perl scripts, and also using

MS-Excel. This was the main motivation behind the creation

of this framework. If there are some further checks to be

added to an existing list, one just needs to write a script for the

same, objectify the possible results and then add an entry for

the same in the Excel sheet. Import and export of XML file

from Excel is very easy. This edited XML file can then be

used in the framework to obtain the additional results too.

IV. SOLUTIONS

Using rough set approach, we categorize different modules

like OS and products. We collected the functionality that need

to be checked before and after installation of a package. We

wrote scripts to verify that functionality and categorized the

severity as pass, fail and warning. We designed the Excel

sheet according to these data. The Excel sheet (Table: I) has

been designed so as to contain the bash command to execute a

script from a particular path, and then to hold ―N‖ number of

different comparisons to which the output of the script would

be compared to, and the corresponding inference of each of

the possible results. Refer the flow chart in Figure 1.

TABLE I. FORMAT EXCEL FILE (XSLM)

Attributes Details

Key Key Number: easy to search

Module Module Name

Functionality Function Name

Command Shell/Perl Script for execution

Match-X Rule

Value-X Value

Severity-X Status (Pass/Fail)

Description-X Status in Details

This Excel sheet is then converted to an XML file and then

given as input to the Perl framework, which then executes

each of the commands mentioned in the XML file, and

generates a human-readable report of the entire exercise. This

idea of ours successfully solves our problem of encountering

any human error while verifying the system/product

configurations prior to use.

Illustrative Example:

In Table-II, we have defined few check lists to verify the OS

module only. The functionality column defines the check

type. The command column defines the check script to

execute on the system. The ―match‖ column contains the

conditional operator to match. The ―value‖ column containing

the value is to be matched. The number of match cases can be

increased depending on the requirements.

TABLE II. EXCEL SHEET (EXAMPLE)

K

e

y

M

o

d

u

le

Fu

nct

ion

alit

y

Com

mand

M

at

c

h

1

Va

lue

1

S

e

v

er

it

y

1

Desri

ption

1

M

a

t

c

h

2

Vc

alu

2

Ss

ev

ie

rt

y2

Des

crip

tion

2

1

O

S

fre

e_d

isk

_sp

ace

df -lk

| awk

'{if(/^

[^

]+$/)

{rem

embe

r=$0}

else{

print

reme

mber

$0}}'

e

q

""

F

ai

l

Free

disk

space

is not

there

"

n

e

"

""

P

as

s

Free

disk

spac

e is

avai

labl

e

2 O

S

mi

n_f

ree

_k

byt

es

sysctl

vm.m

in_fre

e_kby

tes |

awk

'{prin

t $3}'

"

>

"

32

76

9

F

ai

l

min_f

ree_b

yte is

great

er

than

3276

8

"

<

"

81

92

Fa

il

min

_fre

e_b

yte

is

less

than

819

2

International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378, Volume-1, Issue-12 October 2013

15

K

e

y

M

o

d

u

le

Fu

nct

ion

alit

y

Com

mand

M

at

c

h

1

Va

lue

1

S

e

v

er

it

y

1

Desri

ption

1

M

a

t

c

h

2

Vc

alu

2

Ss

ev

ie

rt

y2

Des

crip

tion

2

3 0

S

net

.co

re.r

me

m_

def

aul

t

sysctl

-a |

grep

net.co

re.rm

em_d

efault

|awk

'{prin

t $3}'

"

>

"

10

48

57

6

P

as

s

net.c

ore.r

mem

_defa

ult is

great

er

than

1048

576

"

<

"

10

48

57

6

Fa

il

net.

core

.rme

m_d

efau

lt is

less

than

104

857

6

4 O

S

NI

C

bo

ndi

ng

che

cki

ng

in

/etc

/sy

sco

nfi

g/n

etw

ork

-sc

ript

s/

ls

/etc/s

yscon

fig/ne

twork

-scrip

ts/ifcf

g-bon

d*

>/dev

/null

2>&1

; echo

$?

"

=

=

"

0

P

as

s

NIC

bondi

ng

file

exists

"

>

"

0

W

ar

ni

ng

No

NIC

bon

ding

file

fou

nd

5 O

S

NI

C

bo

ndi

ng

che

cki

ng

in

/sy

s/cl

ass

/ne

t/

cat

/sys/c

lass/n

et/bo

nding

_mast

ers

>/dev

/null

2>&1

; echo

$?

"

=

=

"

0

P

as

s

NIC

bondi

ng

exists

"

>

"

0

W

ar

ni

ng

No

NIC

bon

ding

6 O

S

Sta

tus

of

IPv

6

[-f

/proc/

net/if

_inet

6]

&&

echo

'IPv6

ready

syste

m' ||

echo

'No

IPv6

suppo

rt

found

'

"

e

q

"

IPv

6

rea

dy

sys

te

m

P

as

s

Syste

m has

IPv6

suppo

rt

"

e

q

"

No

IPv

6

su

pp

ort

fou

nd

Fa

il

Syst

em

doe

s

not

hav

e

IPv

6

sup

port

V. ALGORITHM AND FLOWCHART

Result = „Execute

the Command‟

If index <

max_index

max_index = N

Index = 1

Match = get the

match operator

using index

Value = Get the

value using index

If (match eq “==” and result == value) ||

(match eq “!=” and result != value) ||

(match eq “>” and result > value) ||

(match eq “<” and result < value) ||

(match eq “eq” and result eq value) ||

(match eq “ne” and result nq value)

Index = index + 1

No Match Found,

Match Match should

be defined in EXCEL

Sheet

Return 1

START

Fig. 1. Flowchart

In Figure-1, the Perl script executes the command in the

command column. After execution of the command, the result

will be compared to the value from the value column using the

operator defined in the match column. If the match fails, the

result will be compared to the next match operator with the

value. When the result matches with the value it returns the

corresponding description and severity.

use XML::Simple qw(:strict);

use Data::Dumper;

use File::Find;

use CGI;

open OUTPUT, ">$check_out_file" ;

$xml_in=$ARGV[0];

my $maxIndex = 2; #MAX INDEX IS EQUAL TO

NUMBER OF MATCH CASES IN EXCEL SHEET

sub checkXML($xml_in) ;

sub checkXML($xml_in)

{

 my $check_list = XMLin("$xml_in", forcearray => [

qw(key_val module var cond)], keyattr => []) ;

 # Call HTML HEADER

 foreach my $row(@{$check_list->{Row}})

 {

 my ($matched, $result, $severity, $description) =

getMatchedRule($row) ;

 if($matched == 0){

 $severity = "Error";

 $description = "Command Error";

 $error++;

 }

Knowledge-Based EXP Framework (Verifying System and Product Configurations Using MS-Excel, XML and PERL Script)

16

 # Call HTML FOOTER ($row, $result, $serverity,

$description) ;

 }

}

sub getMatchedRule($row)

{

 my $index, $match = -1 ;

 my $pass = $fail = $warning=0 ;

 my $result = `$row->{Command}`; #Execute the Script

 for ($index = 1; $index <= $maxIndex ; $index++)

 {

 my $match = $row->{"Match_"."$index"};

 if($match)

 {

 my $val = $row->{"Value_"."$index"};

 $severity = $row->{"Severity_"."$index"};

 $description = $row->{"Description_"."$index"};

 $matched = is_rule_matched($result, $match, $val);

 if($matched == 1)

 {

 last;

 }

 }

 }

 return ($match, $result, $severity, $description) ;

}

sub is_rule_matched{

 my $result = shift ;

 my $match = shift ;

 my $val = shift ;

 if(($match eq '"=="' && "$result" == $val) ||

 ($match eq '"!="' && $result != $val) ||

 ($match eq '">"' && $result > $val) ||

 ($match eq '"<"' && $result < $val) ||

 ($match eq '"eq"' && "$result" eq $val)|| ($match eq

'"ne"' && "$result" ne $val)||

){

 return 1;

 }

 return 0;

}

Function checkXML(): It parses the XML and invokes the

getMatchRule function. The function getMatchRule()

executes the scripts , as per the number of index defined it

calls the is_rule_matched() until gets a suitable match.

VI. RELATED WORK

Many applications have been developed with Microsoft

Excel. Authors in [2] developed and presented a software

called BestKeeper that determines the best suited standards.

Excel is used for many decision support systems [3].

Today XML has reached a wide acceptance as intermediate

representation or data exchange format [4, 5]. Authors in [6]

present some strengths and weaknesses of XML technology.

In System CXML [7], authors provide a lightweight and Open

Source solution for source-to-source translations, structural

information extraction, model visualization and

documentation using intermediate XML data format. In [8],

authors present an experimental evaluation of the latency

performance of several implementations of Simple Object

Access Protocol (SOAP) operating over HTTP, and compare

these results with the performance of JavaRMI, CORBA,

HTTP, and with the TCP setup time. SOAP is an XML based

protocol that supports RPC and message semantics.

 Author ―Harlan Carvey‖[9], proposed a solution to Monitor

Windows security, CPU utilization. Here, authors store the

configuration in XML documents and evaluate it using Perl

Script. However the paper does not describe a unique solution

to generate the XML configuration file. Authors in

[10,11,12,13] purposed different XML editors.

VII. CONCLUSION AND FUTURE WORK

It is a widely-experienced problem in the world that we

intend to do away with. Software installations require several

changes to a system, which would all probably be shipped

along with the package. A blind execution of an update script

might alter certain changes to your system that are unwanted.

So, using this framework, a pre-installation check could be

performed to identify the required changes to be made. And

most importantly, the time required for this type of activity

has been brought down from 2-3 days to around 2-3 minutes.

Later, this same framework could be used to verify if all the

requirements are being fulfilled, prior to actual deployment of

the software.

This framework in future can be enhanced so as to run as a

cron-job. This would ensure constant monitoring of

configurations. If any monitored parameter is modified, this

framework could be used to alert appropriate personnel via an

SMS or an e-mail.

ACKNOWLEDGMENT

We are thankful to Comviva Technologies, Bangalore,

India, and in particular to Vikaas BV, Zunder L, Santosh BR,

Vishwanath L Hugar, Prashant Aski and the entire Signaling,

Performance, Support, Implementation, SMSR and USSD

teams of Comviva for providing the resources to carry out this

research work successfully.

REFERENCES

[1] Z Pawlak, Rough set approach to knowledge-based decision support,

European journal of operational research, 1997, Volume 99, Issue 1,

16 May 1997, Pages 48–57

[2] Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004)

Determination of stable housekeeping genes, differentially regulated

target genes and sample integrity: BestKeeper—Excel-based tool

using pair-wise correlations. Biotechnol Lett 26: 509–515

[3] Yunbo Lia, Qiping Shen, ―Design of spatial decision support

systems for property professionals using MapObjects and Excel‖.

[4] W3C, Extensible Markup Language (XML) 1.0, W3C Rec., Feb. 10,

1998.

[5] W3C, XML Schema Part 1: Structures, W3C Rec., May 2, 2001.

[6] D. Berner, J.-P. Talpin, H. D. Patel, D. Mathaikutty, and S. K. Shukla.

Systemcxml: An exstensible systemc front end using xml. In FDL,

pages 405–409. ECSI, 2005.

[7] David Berner, Jean-Pierre Talpin, ―SystemCXML: An Extensible

SystemC Front End Using XML‖

[8] Dan Davis y and Manish Parashar, ―Latency Performance of SOAP

Implementations‖, Cluster Computing and the Grid, 2002. 2nd

IEEE/ACM International Symposium.

[9] Harlan Carvey, Jeremy Faircloth, Perl Scripting for Windows

Security: Live Response, Forensic Analysis, and Monitoring

[10] Y. S. Kuo, Jaspher Wang, and N. C. Shih, ―Handling Syntactic

Constraints in a DTD-Compliant XML Editor‖

[11] Y. S. Kuo , Lendle Tseng , Hsun-Cheng Hu , N. C. Shih, An XML

interaction service for workflow applications, Proceedings of the

2006 ACM symposium on Document engineering, October 10-13,

2006, Amsterdam, The Netherlands

[12] Y. S. Kuo , N. C. Shih , Lendle Tseng , Hsun-Cheng Hu, Generating

form-based user interfaces for XML vocabularies, Proceedings of the

http://www.sciencedirect.com/science/journal/03772217/99/1
http://www.sciencedirect.com/science/article/pii/S092658050400024X
http://www.sciencedirect.com/science/article/pii/S092658050400024X
http://www.sciencedirect.com/science/article/pii/S092658050400024X
http://www.sciencedirect.com/science/article/pii/S092658050400024X
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10335
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10335
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10335
http://dl.acm.org/author_page.cfm?id=81384600678&coll=DL&dl=ACM&trk=0&cfid=334194245&cftoken=87560488
http://dl.acm.org/author_page.cfm?id=81100171201&coll=DL&dl=ACM&trk=0&cfid=334194245&cftoken=87560488
http://dl.acm.org/citation.cfm?id=1166177&CFID=334194245&CFTOKEN=87560488
http://dl.acm.org/citation.cfm?id=1166177&CFID=334194245&CFTOKEN=87560488
http://dl.acm.org/citation.cfm?id=1166177&CFID=334194245&CFTOKEN=87560488
http://dl.acm.org/citation.cfm?id=1166177&CFID=334194245&CFTOKEN=87560488
http://dl.acm.org/citation.cfm?id=1096619&CFID=334194245&CFTOKEN=87560488
http://dl.acm.org/citation.cfm?id=1096619&CFID=334194245&CFTOKEN=87560488

International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378, Volume-1, Issue-12 October 2013

17

2005 ACM symposium on Document engineering, November 02-04,

2005, Bristol, United Kingdom

[13] Marc Dymetman, Chart-parsing techniques and the prediction of

valid editing moves in structured document authoring, Proceedings of

the 2004 ACM symposium on Document engineering, October

28-30, 2004, Milwaukee, Wisconsin, USA.

Sambit Kumar Patra is working as

Senior Technical Lead in Mahindra

Comviva, Bengaluru from 2004. He is

pursuing his postgraduate academic degree in

Sikha ―O‖ Anusandhan University,

Bhubaneswar. He has published many

papers. The last paper ―JavaScript Interpreter

Using Non Recursive Abstract Syntax Tree

Based Stack‖, has been published in

American Journal of Applied Sciences, 10 (4): 403-413, 2013.

Krishna TG obtained his Bachelor‘s

degree in Electronics and Communication from

Manipal Institute of Technology, Manipal in

July 2012. He has been working since July

2012 as a software engineer at Mahindra

Comviva as part of the signaling team in Core

Engineering Group.

http://dl.acm.org/citation.cfm?id=1030440&CFID=334194245&CFTOKEN=87560488
http://dl.acm.org/citation.cfm?id=1030440&CFID=334194245&CFTOKEN=87560488
http://dl.acm.org/citation.cfm?id=1030440&CFID=334194245&CFTOKEN=87560488
http://dl.acm.org/citation.cfm?id=1030440&CFID=334194245&CFTOKEN=87560488

