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Abstract— Spectral unmixing and denoising of hyperspectral 

images have always been regarded as separate problems. By 

considering the physical properties of a mixed spectrum, this letter 

introduces unmixing-based denoising, a supervised methodology 

representing any pixel as a linear combination of reference 

spectra in a hyperspectral scene. Such spectra are related to some 

classes of interest, and exhibit negligible noise influences, as  hey 

are averaged over areas for which ground truth is available. After 

the unmixing process, the residual vector is mostly composed by 

the contributions of uninteresting materials, unwanted 

atmospheric influences and sensor-induced noise, and is thus 

ignored in the reconstruction of each spectrum. The proposed 

method, in spite of its simplicity, is able to remove noise effectively 

for spectral bands with both low and high signal-to-noise ratio. 

Experiments show that this method could be used to retrieve 

spectral information from corrupted bands, such as the ones 

placed at the edge between ultraviolet and visible light 

frequencies, which are usually discarded in practical applications. 

The proposed method achieves better results in terms of visual 

quality in comparison to competitors, if the mean squared error is 

kept constant. This leads to questioning the validity of mean 

squared error as a predictor for image quality in remote sensing 

applications. 

 
Index Terms— Denoising, hyperspectral images, image 

restoration, mean squared error, spectral unmixing. 

I. INTRODUCTION 

 The SPECTRAL range characterizing data acquired by 

state-of-the-art hyperspectral sensors mostly spans the 

frequencies between 400 and 2500 nm. Some sensors, such as 

the Airborne Visible/InfraRed Imaging Spectrometer 

(AVIRIS) and the future HySpiri mission, also acquire data in 

the portion of the spectrum that is placed at the edge between 

near ultraviolet (NUV) frequencies and visible light (380–400 

nm) [1]. The spectral bands in this range are affected by noise 

coming from several sources, and therefore difficult to model 

[2]. Such bands are typically characterized by a low 

signal-tonoise ratio (SNR), and as a consequence are usually 

discarded in a preprocessing step common to most practical 

applications. For some specific tasks, it would be desirable to 

keep such spectral information; a typical example is the study 

of colored dissolved organic matter (CDOM) in natural 

waters  CDOM inhibits phytoplankton productivity by 

absorbing UV and NUV radiation, affecting in turn remote 

estimates of clorophyll concentration [3]. As the bands in the 

NUV-blue portion of the spectrum are usually noisy and 
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therefore difficult to interpret, bands at longer wavelengths 

characterized by a better SNR are usually preferred to derive 

empirical indices for its estimation. As an example, 

Johannessen et al. [4]simulated the reflectance at  380 nm 

using the bands in the 400–500 nm portion of the spectrum. 

Therefore, a specific denoising methodology enabling a direct 

use of the information in the mentioned spectral range would 

represent a great aid  for such applications. 

 

 
Fig. 1. Workflow for unmixing-based denoising.  

 

The selected reference spectra are averaged over a given area 

of interest, which is homogeneous to some degree, and the 

image is reconstructed as a linear combination of the 

reference spectra. The residual of the unmixing process is 

discarded along with most of the noise in the data. 

Denoising is often carried out in image processing through 

filtering, usually based on convolutions with sliding windows 

in the image domain, on operations in the frequency domain, 

or on estimated noise statistics or degradation functions, if 

these are known for the image acquisition process [5]. In the 

case of hyperspectral images, the high dimensionality of the 

data and the correlation between adjacent bands can be 

exploited to carry out effective denoising procedures based on 

dimensionality reduction (DR) algorithms, which project the 

data onto a subspace where meaningful information is 

preserved, while noise and some high frequencies are 

discarded [6], [7]. The often preferred DR technique is the 

Minimum Noise Fraction (MNF) [8], and the problems 

arising from the use of this method have been seldom 

addressed. First, MNF needs the number of noisy components 

to be estimated, which is not a trivial problem [9]. In addition, 

this estimation is different for bands with different SNR, as it 

is not possible to achieve an optimal denoising for all the 

bands at the same time. Finally, the usual way of validating 

the quality of the denoised images 
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Fig. 2. Band at 380 nm. (a) Original image. (b) Reconstruction obtained with UBD using NNLS unmixing. (c)–(e) Reconstructed images 

using 4, 7, and 30 MNF components, respectively. (f) Reconstruction obtained with UBD using NCLS unmixing. Below: magnified areas 

represented by the square in (a), after a high-pass filtering of the image to make the noise more evident. 

 

in the literature is by computing the mean squared error 

(MSE) between original and reconstructed image, with MNF 

being optimal in a MSE sense, as it represents each band as a 

linear combination of other bands minimizing the MSE. This 

is also the case for other hyperspectral denoising algorithms 

driven by MSE minimization [10]. Nevertheless, in recent 

years, studies in image processing have shown that degraded 

images with constant MSE may exhibit very different visual 

image quality, and indices that capture statistical image 

properties related to human perception are becoming widely 

accepted in the image processing community to estimate 

distortions [11]. Therefore, validation techniques using MSE 

as a quality predictor may be biased. Nascimento and 

Bioucas Dias [12] explored the correspondences between 

another DR technique, the independent components analysis, 

and spectral unmixing [13], which aims at quantitatively 

decomposing each pixel in signals related to macroscopically 

pure materials, or endmembers. While the experiments in the 

aforementioned work are derived from a statistical analysis of 

the data, this letter introduces a supervised denoising 

algorithm based on spectral unmixing that results from 

considerations on the physical properties of a mixed pixel, 

which can be described as follows. In a first step, a set of 

reference spectra is derived by spatial averaging of 

neighboring pixels in each class of interest. Subsequently, 

each image element, considered as a mixed spectrum, is 

expressed as a linear combination of the reference spectra and 

a residual vector, which quantifies the unmixing error. If the 

considered reference spectra are noise-free and comprise all 

the relevant classes in the image, such a vector will mostly be 

composed by noise and components of less interest. 

Therefore, each full spectrum can be reconstructed ignoring 

the residual vector. Results obtained through the described 

unmixing-based denoising (UBD) algorithm show a superior 

visual image quality with respect to the reconstruction using  

 

MNF features, if the MSE is kept constant. The method 

works equally well for bands with high SNR, while a different 

number of components has to be kept in the inverse MNF 

rotation according to the band SNR. The reported 

experiments lead to questioning the validity of MSE as a 

quality predictor in applications to hyperspectral and, in 

general, remotely sensed data.  

This letter is structured as follows. Section II introduces the 

proposed denoising methodology based on spectral unmixing. 

We report experimental results and comparison with MNF 

based denoising in Section III, and conclude in Section IV. 

 

II. UNMIXING-BASED DENOISING 

A recently described classification methodology for 

hyperspectral data based on synergetics theory [14] projects 

any image element onto a semantic subspace, in which every 

dimension represents the similarity to a given class of 

interest. This procedure inspires a supervised methodology 

based on spectral unmixing. Given a hyperspectral image 

element m with p bands, and a training dataset containing n 

samples from each of k classes, with k < p, UBD is a simple 

procedure that can be described as follows. First, a set of 

reference spectra is defined as A = {x1, . . . , xi, . . . , xk}, where 

xi is the average of the n spectra belonging to class i. 

Considering the mean value for a given reference spectrum 

ensures that, if each class is spectrally homogeneous, the 

presence of noise in it is reduced to a minimum. Such 

assumptions are also made in [15], in which spectra averaged 

within some classes of interest are employed to perform a 

supervised spectral unmixing prior to classification. Even 

though no assumption on the purity of the reference spectra is 

made, the image elements belonging to a homogeneous area 

have a higher prior probability of being 

related to some pure material [16]. Afterward, any unmixing 

procedure can be employed to decompose the signal in a 

combination of the reference spectra. If we assume this to be 
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linear, we have 

 
where si is the fraction or abundance of the reference spectrum 

i in m, and r is residual vector. The latter can be expressed as 

 
where r1 is given to components related to materials not 

present in A, r2 is an error given by subtle variations of one or 

more materials in A, and rn is caused by atmospheric 

influence and instrument-induced noise. The noise here is 

regarded a additive, as a study in [2] concludes that 

signal-dependant noise in typical hyperspectral sensors can be 

neglected. If our classes of interest are well captured in A, we 

are not interested in other materials, and therefore, we can 

ignore r1, and if they are homogeneous we expect rn to be 

predominant over r2 for bands with low SNR. Therefore, we 

can derive a reconstruction mˆ for a spectrum m as 

 
ignoring r, and along with it most of the noise affecting m. 

The workflow is reported in Fig. 1. The described procedure 

is based on the assumption that if the contributions to the 

radiation reflected from a resolution cell are known, the value 

of noisy bands in that area can be derived by a combination of 

the average values characterizing each component in that 

spectral range. The proposed method is supervised and is 

carried out independently for each pixel. In addition, it 

assumes that the selected spectra in the scene are known or 

can reliably be estimated, and a certain homogeneity of the 

classes of interest, which is to be expected in a natural scene 

rather than in a scene where man-made objects are prevalent. 

 

III.  RESULTS 

A. Salinas Dataset 

We analyze an AVIRIS hyperspectral scene containing 

agricultural fields acquired over the Salinas Valley, USA, of 

size 512 × 217 pixels with 192 spectral bands from 0.38 to 

2.5μm (water absorption bands removed as in [17]), and with 

a spatial resolution of 3.7 m. As expected, the band centered 

at 380 nm is severely affected by noise [Fig. 2(a)]. Ground 

truth is available for 15 classes in the area reported in Fig. 

3(f), and we select the average spectrum over a 6 × 6 pixels 

area for each class (the size of the averaging window has been 

set empirically), resulting in 16 reference spectra (the class 

corn has been divided in two classes as in [14]). 

As unmixing algorithm for (1) we adopt nonnegative least 

squares (NNLS), which has the advantage of being physically 

meaningful, as in its solution all abundances are positive [13]. 

In recent years, the fully constrained least-squares (FCLS) 

method, which enforces not only nonnegativity but also the 

sum-to-one constraint on the estimated abundances, has been 

debated by the community and is therefore not considered in 

these experiments [13]. The results for UBD using NNLS are 

reported in Figs. 2(b) and 3(b) for the bands at 380 and 750 

nm, respectively. Both bands, characterized by a different 

SNR, exhibit high visual quality, while spectral distortions 

appear negligible. The normalized RMSE (NRMSE), 

expressed in percentage, is around 15% and 1.7% for these 

two bands, and in the second case, it drops down to 0.9% in 

the area for which ground truth was available, and from which 

the reference spectra were selected (Table I). A magnification 

of a high-pass filtered version of the images shows clean and 

smooth areas, suggesting that such distortions are mostly 

related to the noise that has been removed. If nonconstrained 

least squares (NCLS) unmixing is used instead of NNLS 

results are much degraded, as the physical assumptions made 

are no longer valid: Fig. 2(f) is still severely affected by noise 

and presents some very distorted areas. As an example, no 

reference spectrum has been selected for the small pond of 

water on the upperleft side of the image, which exhibits 

abnormally high values. It is of interest to make some 

comparison to the same image reconstructed using a subset of 

k MNF features. The problem of selecting the optimal number 

k affects most algorithms, as generally the representation of 

noise and relevant information in the MNF components 

presents a certain overlap, and the boundary between these is 

difficult to locate automatically [9]. In the literature, this is 

usually set with an empirical threshold based on the 

eigenvalues related to the features, on a visual inspection, or 

on quality indicators for analysis carried out in the MNF 

parameter space, such as classification accuracy. A procedure 

is proposed in [9] to estimate the optimal value for k by taking 

into account the dark current measured by the images 

acquired by a hyperspectral sensor with a closed shutter, and 

to validate the results by comparing the reconstructed images 

to some ideally noise-free images. These present some 

similarity with UBD, as they are achieved by applying NCLS 

unmixing using as input a spectral library and an unsupervised 

classification of an input reflectance image. Nevertheless, as 

this method uses external libraries containing spectra 

acquired in diverse conditions, it cannot be applied to reliably 

remove noise from a real image; in addition, the advantages of 

using NNLS over NCLS have just been discussed. 

In these experiments, we choose to select the number of 

MNF feature k empirically to match the RMSE obtained with 

UBD, keeping in mind that RMSE is expected to decay as k 

grows. As no value of k yields a minimization both of the 

noise and of the spectral distortion across all the bands with 

varying SNR, we reconstruct the image with a varying number 

of MNF features.We match RMSE for the bands at 380 and 

750 nm, for the whole band and in the area where ground truth 

is available [applying the mask in Fig. 3(f)]. The resulting 

values for k are 4, 7, and 30, respectively. All results are 

reported in Figs. 2 and 3 and in Table I. It is clear that the 

noise in the band at 380 nm increases with the number of 

MNF features used in the back rotation. On the other hand, the 

noise in the band a 750 nm decreases, but no reconstruction 

can provide an image as clean as the result of UBD, as noise 

starts already to affect the image with a reconstruction using 

few MNF components 
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Fig. 3. Band at 750 nm. (a) Original image. (b) Reconstruction obtained with UBD using NNLS unmixing. (c)–(e) Reconstructed images 

using 4, 7, and 30 MNF components, respectively. (f) Areas in the image where ground truth is available. Bottom: (a)–(e) Magnified areas 

represented by the square in (a), after a high-pass filtering of the image to make the noise more evident. (f) Reference spectra collected from 

the ground truth. 

 

 
Fig. 4. (a) Single band centered at 370 nm from the Indian Pines 

dataset. (b) UBD results. 

(namely 4). It may be argued that keeping more MNF features 

would reduce distortions, but it can be seen that increasing k 

in the back rotation severely affects the denoising of bands 

with low SNR [see Fig. 2(e)]. 

An interesting consideration to be done on this comparison 

is that the visual image quality is higher for UBD, for 

comparable values of RMSE. Fig. 2(c) present severe spectral 

distortions in comparison to UBD, while images in Fig. 3(d) 

and (e) are more noisy. In addition, some spectral information 

in Fig. 3(d) is visibly corrupted; for example, the bright fields 

in the center of the scene appear darker than in the original 

image in Fig. 3(a) (the histogram stretch is the same in all the 

images). Please note that RMSE is used in these experiments 

only as an empirical indicator to select a meaningful value for 

k, not as an evaluation metric. Indeed, our results suggest that 

RMSE could be a poor objective criterion to assess the image 

quality of remotely sensed data, as it has already been found 

to be for monochromatic and color pictures [11]. 

 

B. Indian Pines Dataset 

A second experiment is carried out on the popular AVIRIS 

Indian Pines dataset, of size 145 × 145 and containing 224 

bands. One reference spectrum has been collected from an 

averaged area of 5 × 5 pixels for each of the available 15 

classes in the groundtruth image. We applied UBD to the full 

dataset and report in Fig. 4 the results for the first band of the 

dataset. The denoised image has a NRMSE of 3.6%, with a 

mean NRMSE value across all bands of 1.6%. 

 

IV. CONCLUSION 

Spectral unmixing and denoising algorithms for 

hyperspectral remote sensing were always considered 

independently. In this paper, we propose Unmixing-based 

Denoising (UBD), a methodology based on the physical 

rather than statistical properties of the components of a given 

spectrum: while traditional algorithms are based on 

second-order statistics, UBD reconstructs a single spectrum 

as a linear combination of noise-free reference spectra. This 

allows reconstructing bands with low SNR with a certain 

degree of reliability and represents a viable solution for the 

recovery of junk bands, which are usually discarded in 

practical applications. A drawback of the method is that it 

requires either prior knowledge of the scene, or a reliable 

identification of the classes of interest in the image. 

Furthermore, it needs a reasonably large number of pixels for 

each reference spectrum in order to derive a meaningful mean 

value robust to noise and local  
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TABLE I 

Errors for Reconstruction Using UBD and Different Number of Features for MNF 

 
 

 B1 (380 nm) B2 (750 nm) 
Error RMSE NRMSE RMSE (masked) NRMSE (masked) RMSE NRMSE RMSE (masked) NRMSE (masked) 
UBD 

MNF, k = 4  

MNF, k = 7  

MNF, k = 30 

56.02 

55.94 

48.81 

39.73 

15.06% 

15.04% 

13.12% 

10.68% 

47.42 

56.74 

47.31 

29.85 

13.1% 

15.67% 

13.07% 

10.88% 

60.79 

654.1 

175.52 

31.18 

1.77% 

19.07% 

5.12% 

0.91% 

30.55 

613.92 

135.44 

29.85 

0.80% 

16.07% 

3.55% 

0.78% 
 

 

variations. The reference spectra selection step may be 

replaced in the future by a robust endmember extraction 

algorithm such as SSEE [18], which also reduces the noise 

influences by averaging spectra that are both spectrally  imilar 

and spatially close. The proposed algorithm does not use any 

post-processing through morphological filtering, as it 

operates pixelwise and may then preserve details in each 

image element. Experimental results show that UBD provides 

stable results across all bands, as it automatically intervenes 

more heavily on bands with low SNR, keeping the 

informational content of bands with high SNR mostly 

unaltered. This constitutes an advantage over traditional 

denoising methods such as MNF, as the optimal number of 

components to be used in the image reconstruction step for 

this algorithm is not constant across spectral bands with 

different SNR. Another interesting aspect is that MNF, like 

several denoising algorithms for hyperspectral images, is 

driven by a minimization of the MSE, which has been 

criticized in the literature due to its poor performance as a 

visual quality estimator. Our experiments confirm that such 

criterion on its own is not robust enough to evaluate 

qualitatively denoising and image reconstruction algorithms 

for hyperspectral data, both from the informational content 

and from the perceived visual quality points of view. In [19] 

the authors expand the structural similarity index (SSIM) [11] 

from the 2-D case to applications to hyperspectral images, but 

they do so by simply computing the average value of SSIM 

across all the spectral bands. The reported experimental 

results suggest that in the future a similar index, comprising an 

accurate prediction both for spatial and spectral distortion in 

hyperspectral images, would represent a valuable 

contribution to improve the validation of data compression, 

denoising and sparse reconstruction algorithms for this kind 

of data.  
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