
International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378, Volume-1, Issue-12, October 2013

44

Abstract—This paper reviews the working of different

concurrency control protocols in Distributed Databases. As the

development and maturity of the popular centralized database

system moves towards the distributed approach, the challenges

and roles start becoming more complex and complicated. The

discussion revolves around the variety of protocols, their working,

their advantages and their disadvantages in a distributed

environment. The paper is a comparative between the methods

that are popular and accepted.

Index Terms—Concurrency Control, Distributed Database,

Fragmentation, Replication.

I. INTRODUCTION

 The term „Distributed‟ in the concept of „Distributed

Databases‟ clearly signifies the nature of the database system

that it is not at one place or location but residing at physically

independent locations with some interconnection in the

logical design. In fact a „Distributed Database‟ can be

thought of as a collection of multiple, logically interrelated

databases distributed over a computer network in such a way

the distribution is transparent to the users.

The fact that the database is located at multiple sites,

obviously means that it promotes availability of data to

multiple users concurrently without losing the integrity and

veracity of the database.

Distributed database as compared to the Centralized database

differs mainly in the way the data is actually stored and

located. Since the data is not available at just one site it

signifies that it is located in „duplicate‟ at many sites. This

leads to the concept of Replication and Fragmentation of

database.

Replication: It clearly means that the same data is duplicated

at multiple sites so as to enhance „availability‟.

Fragmentation: It means fragments of the data are available at

multiple sites. These fragments could be in turn replicated

also. The fragmentation notion in a relational database which

is a two-dimensional design allows only two types of breakup

– a table divided horizontally or a table divided vertically. A

horizontal breakup (tuple level) would need a union to get

back the full database and a vertical breakup (column level

with primary key) would require a natural join.

Manuscript received October, 2013

Dr. Anjali Ganesh Jivani, Computer Science & Engineering

Department, The Maharaja Sayjirao University of Baroda, Vadodara,

Gujarat, India.

This scenario where multiple users are accessing the

distributed database and maybe the same data at varied

locations can create problems which are different from those

of a centralized system. There are many protocols which

ensure the ACID properties of a transaction in distributed

databases also. It is important that replication and

fragmentation do not violate the integrity of the database

system.

The protocols are discussed below briefly with their pros and

cons.

II. SINGLE LOCK MANAGER APPROACH

This approach has the following properties:

1) Can be implemented on replicated as well as fragmented

database.

2) Single site is assigned as the lock manager.

3) All lock requests are directed to that site so it works like

a centralized database.

Advantages:

a. Simple design as it simulates centralized approach.

b. Deadlock detection and handling is easy.

Disadvantages:

a. The lock manager site can become a bottleneck as all

read/write requests and locking is directed to it.

b. If that site fails then no locks can be granted and

processing can stop.

c. It is necessary to have backup sites when the lock

manager site fails.

III. DISTRIBUTED LOCK MANAGER APPROACH

This approach has the following properties:

1) Can be implemented on non-replicated database only i.e.

fragmentation has been done but no duplication.

2) Every site has its own local lock manager which handles

lock requests for data stored locally (fragment) e.g.

location-wise fragments for bank customers‟ data.

Advantages:

a. Simple implementation – again it is a centralized

approach at each site.

b. Reduces chances of any site becoming a bottleneck.

c. Low overhead.

Disadvantages:

a. Deadlock handling can be complex as inter-site

deadlocks are possible. This would require separate

deadlock detection techniques which are executed at all

the sites and are keeping track of transactions executing

at all the different sites.

IV. PRIMARY COPY

This approach has the following properties:

1) Generally used in data replication but can be used for

fragmentation also.

An Insight into Concurrency Control Protocols of

Distributed Databases

Anjali Ganesh Jivani

An Insight into Concurrency Control Protocols of Distributed Databases

45

2) One site chosen as the primary copy for each data – this

primary copy is to be locked whenever any lock is

required whether read or write.

3) Each data has a separate primary copy so one site can

never become a bottleneck. The primary copy is as

shown in Table. I.

Table I. Primary Copy

As shown above the primary copy for Q is site S5, for P is S1

and for R is S3. By equally distributing the primary copies the

chances of one site becoming a bottleneck reduces.

Advantages:

a. Concurrency control similar to that of centralized

database.

b. No site becomes a bottleneck.

c. Simple implementation.

Disadvantages:

a. If the primary copy for a data item fails that data

becomes unavailable though other sites have that data.

b. Can assign backup site for each primary copy but many

backup sites would be needed.

c. Deadlock handling is complicated.

V. MAJORITY PROTOCOL

This approach has the following properties:

1) This protocol can be implemented on replicated as well

as fragmented data.

2) As the name suggests, to lock a data item Q, more than

half of the sites where Q is replicated should be locked

i.e. if n sites have Q, then Q should be locked at n/2 +1

sites at least.

3) A transaction cannot proceed unless majority of the

replicas are locked.

4) Writes are performed on all replicas.

Advantages:

a. Locking is not centralized.

b. This protocol can be implemented also if some sites are

not available.

Disadvantages:

a. Complicated implementation

b. 2(n/2 + 1) requests to lock and (n/2 +1) requests to

unlock

c. Deadlock detection and handling is complicated.

Deadlock can occur also when just one data is being

locked. E.g. Q is replicated at say four sites. To lock Q,

n/2 +1 should be locked i.e. 4/2 + 1 = 3 replicas to be

locked.

If transactions T1 and T2 both are trying to lock Q which has

been replicated at four sites, as shown in Table II, a deadlock

can occur.

Table II. Deadlock in Majority Protocol

Sites S1 S2 S3 S4

Transactions T1 T1 T2 T2

Both transactions have locked 2 replicas and are waiting for

the third replica to be freed. This can happen with three

transactions also. Each of 3 transactions may have locks on

1/3rd of the replicas of a data. This can happen similarly for n

transactions.

This can be avoided by fixing the sequence in which sites are

to be locked e.g. if locking sequence is S1, S2, S3 and S4,

then if T1 has locked S1 and S2, T2 will wait till locks are

released on them. T2 cannot lock S3 before locking S1 and

S2. In this way T1 will complete first and there will not be a

deadlock.

VI. BIASED PROTOCOL

This approach has the following properties:

1) This protocol is used when there has been replication

only.

2) It is biased towards read requests. To read a data item

any replica containing that data item can be locked in

shared mode.

3) A write request however needs all replicas to be locked

in exclusive mode.

Advantages:

a. There is less overhead on read operations as only one site

is to be locked.

b. A fast and effective protocol if transactions are generally

read only.

Disadvantages:

a. Write operations have more overhead as many locks

required.

b. Deadlock handling is complicated as locking is

extensive.

VII. QUORUM CONSENSUS PROTOCOL

This approach has the following properties:

1) Generally used for replicated databases.

2) Each site is assigned a weight which is an integer.

3) Stable sites are assigned higher weights.

4) Every data item Q has two quorums (weights) associated

with it – Qr read quorum and Qw write quorum. These

quorums are also integers.

5) If S is the total weight of the sites where Q is replicated,

the following two conditions are to be satisfied to

implement this protocol,

a. Qr + Qw > S

b. 2* Qw > S i.e. Qw > S/2 (the write quorum is more than

half the total weight of sites where Q is replicated).

6) To execute a read or a write operation, enough replicas

should be locked so that their total weight is more than or

equal to the read quorum or write quorum respectively.

>= Qr or >=Qw

7) The read quorum is generally small so that less number

of sites are required to be locked and the write quorums

is kept are high to lock more sites.

8) This is a generalization of the majority/biased protocols.

E.g. Q is located at say S1, S2, S3 and S4.

Weights are:

S1 = 50 S2=50 S3=60 S4=70

S = 50+50+60+70 = 230 (total weigth)

Qw = 160 (3 sites to be locked for writing)

Qr = 70 (1 site to be locked for reading)

Qw + Qr = 160 + 70 = 250 > 230 (S)

2*Qw = 2*160 = 320 > 230

Sites: S1 S2 S3 S4 S5

Data: Q Q Q Q Q(pc)

P(pc) P P P P

R R R(pc) R R

International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378, Volume-1, Issue-12, October 2013

46

VIII. TIMESTAMP BASED PROTOCOL

This approach has the following properties:

1) Each transaction is given a unique timestamp to decide

serializability. There are two methods for generating

timestamps.

2) In the first method one site is fixed for generating

timestamps. For every new transaction starting at any

site, the timestamp is first to be obtained from this site.

This timestamp site can generate timestamps using a

counter or the system clock. This however has a major

drawback that the timestamp generating site can become

a bottleneck and if the site goes down all transactions

will stop processing.

3) In the second method each site generates a unique

timestamp using its local counter (LC). The timestamp

has two parts – LHS stores the counter value and RHS

stores the site identifier e.g.

001 1111 - 1
st
 transaction on site 1111

001 1112 - 1
st
 transaction on site 1112

The counter is stored on the LHS and site identifier on RHS

because otherwise a site with a lower address will always

generate timestamps which have higher precedence and will

always be older transactions compared to others. E.g.

1111 002 would be older as compared to 1112 001 (first

transaction of site 1112).

4) Another method of generating LC is, every time a

transaction say T1 starts at say site S1, its timestamp

would be <001, 1111> (<x, y>), where x is transaction

identifier and y is the site identifier.

Assume T1 executes at three sites S1, S2 and S3. The

assigning of the timestamps is shown in Table. III. The

timestamp once assigned does not change till it completes no

matter which site it visits.

Only when a transaction visits a site, if the value of x is more

than or equal to its LC then the LC is incremented by x+1.)

Since T1 has not visited S4, when a transaction starts at S4,

its timestamp will be <001, 1114>.

When a transaction starts at S2 its timestamp will be <002,

1112>. If this transaction executes at S3, since LC of S3 = 2,

it now becomes 3.

In this way the local LCs are incremented every time a

transaction with the same or higher x value executes at that

site.

System clocks are also used to generate timestamps but all

clocks may not synchronize or run at the same speed.

IX. CONCLUSION

The paper contained distributed protocols with discussion on

their individual advantages and disadvantages. There are

many more protocols like the distributed 2-phase locking

protocol, distributed wound-wait protocol, distributed

optimistic protocol, etc. Each protocol preserves the ACID

properties of transactions. Many more protocols are being

designed as per the requirement of present distributed

scenario.

ACKNOWLEDGMENT

I would like to thank Silberschatz, Korth and Sudarshan for

the wonderful book that they have written on Database

Concepts. This book was the sole reason for writing this

paper which makes the understanding of the protocols

simpler.

Table III. Assigning Timestamps
Sites S1(1111) S2(1112) S3(1113) S4(1114)

Initial LC LC = 0 LC = 0 LC = 0 LC = 0

LC of S1 is 1 as it

is the first

transaction

executing at S1.

Timestamp of T1

is <001,1111>

T1 starts

LC=

1(<001,11

11>)

LC of S1

incremented by 1

as T1 has visited

S2 and T1 had x =

1.

 T1 (<x,
y>)

x = 1, y =

1111
Since x

>LC of

S2
LC =

x+1= 2

Same as above for

site S3

 T1

Again

x>LC of

S2

LC = x+1

= 2

T2 starts at S4.

LC if S4 is 1 as it

is the first

transaction

executing at S4.

 T2 starts

LC = 1

(<001,
1114)

T3 starts at S2.

LC if S2 is 2 as it

is the second

transaction

executing at S2.

 T3 starts

LC = 2
(<002,

1112>)

REFERENCES

[1] Silberschatz, Korth and Sudarshan , “Database system concepts”, 5th
Edition, Mc-graw Hill 2008.

[2] Ricardo, Catherine, “Database Systems: Principles, Design and

Implementation”, 1990, MacMillan Publishers, New York.
[3] K. Sugihara, “Concurrency Control Based on Distributed Cycle

Detection”, In Proceedings of International Conference on Data

Engineering, 1987,pp. 267-274.

[4] Mandeep Kaur, Harpreet Kaur, “Concurrency Control in Distributed

Database System”, In Proceedings of International Journal of

Advanced Research in Computer Science and Software Engineering,
Volume 3, Issue 7, July 2013.

[5] T.F. Keefe, W.T. Tsai, J. Srivastava, “Database Concurrency Control

In Multilevel Secure Database Management Systems”, IEEE
Transaction on knowledge and Data Engineering, 1993, 5 (6)

1039-1055.

[6] Ray, L. V. Mancini, S. Jajodia and E. Bertino, ASEP: A Secure
and Flexible Commit Protocol for MLS Distributed Database

Systems”, 2000, IEEE Transactions on Knowledge and Data

Engineering, 12(6): 880 – 899.

[7] S. Mehrotra, R. Rastogi, Y. Breitbart, H. F. Korth, and A. Silberschatz,

“The Concurrency Control Problem in Multidatabases: Characteristics
and Solutions”, ACM SIGMOD International Conference on

Management of Data, San Diego, California, June 2-5, 1992, pp:

288-297.

Dr. Anjali Ganesh Jivani has done her Ph.D. in

the field of Text Data Mining from The
Maharaja Sayajirao University of Baroda,

Gujarat, India. She is presently working as an

Associate Professor in the Computer Science &
Engineering department of The M. S.

University. She has published a number of

National and International level papers in
conference proceedings as well as international

journals related to her field. She has also co-authored a book on „SQL and

PL/SQL‟. She has won prizes at paper presentation competitions and her
papers have been cited by many authors. Her main area of interest is

Databases, Data and Text Mining, Image Processing and Big Data. She is a

life member of ISTE and CSI.

