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 

Abstract— Noise reduction is always an active research area in 

image processing due to its importance for the sequential tasks 

such as object classification and detection. In this paper, we 

develop a sparse representation based noise reduction method for 

hyperspectral imagery, which is dependent on the  ssumption that 

the non-noise component in the signal can be approximated by 

only a small number of atoms in a dictionary while noise 

component has not this property. The main contribution of the 

paper is in introducing nonlocal similarity and spectralspatial 

structure of hyperspectral imagery into sparse representation. 

Non-locality means the self-similarity of image, by which the 

whole image can be partitioned into some groups containing 

similar patches. The similar patches in each group is sparsely 

represented with shared atoms making the signal and noise more 

easily separated. Sparse representation with spectral-spatial 

structure can exploit spectral and spatial joint correlations of 

hyperspectral imagery also making the signal and noise more 

distinguished, in which 3-D blocks are instead of 2-D patches for 

sparse coding. The experimental results indicate that the proposed 

method has a good quality of restoring the true signal from the 

noisy observation.  

 
Index Terms— Hyperspectral imagery, noise reduction, sparse 

representation, nonlocal similarity, spectral-spatial structure. 

I. INTRODUCTION 

  Hyperspectral imagery is acquired by a new imaging 

technique, and draws many attentions from various 

application fields. It can provide much information about 

spectral and spatial distributions of distinct objects owing to 

its numerous and continuous spectral bands. The noise of 

hyperspectral imagery comes from sensor, photon effects, and 

calibration error. Meanwhile, the increased spatial, spectral, 

and radiometric resolutions of hyperspectral imaging lead to 

an increased impact of noise on the results extracted from this 

kind of imagery. Recently, smoothing filters, anisotropic 

diffusion,  multi-linear algebra, and wavelet shrinkage 

methods have been exploited for noise reduction of 

hyperspectral imagery [1, 2]. In this paper, we focus on sparse 

representation based noise reduction with spectral-spatial 

structure. Sparse representation is one of powerful denoising 

methods, which typically assumes that the true signal can be 

well approximated by a linear combination of few basis 

elements [3]. That is, the signal is sparsely represented in the 

 
Manuscript Received on October 2013 

Milad Razmi, Department of Electrical Engineering, Branch Bushehr 

slamic Azad University, Bushehr, Iran. 

Ali Rafiee, Electrical Engineering Department Kazeroun Branch Islamic 

Azad University, Kazeroun, Iran. 

Zoheir Kordrostami, Department of Electrical Engineering, Shiraz 

University of Technology, Shiraz, Iran. 

transform domain. Some of existing sparse representation 

based image denoising methods imply that the whole image 

has the same properties of signal and noise in everywhere, 

which can  be considered as a global filter ignoring the local 

details of an image. To overcome this drawback, adaptively 

sparse representation based on the neighborhood property is 

proposed, 

which can be considered as a local filter [2]. However, the 

information provided by the neighborhood is too limited to 

preserve the true structure, details and texture of an image. 

Since the original nonlocal means algorithm was proposed for 

image denoising [4], non-locality or self-similarity became to 

be an very popular strategy for adaptively estimating 

statistical and geometric structures of signal and noise. 

Non-locality based denoising algorithms make use of the high 

degree of self-similarity of any natural image, i.e., every small 

patch in a natural image has many similar patches in the same 

image. Inspired by non-locality, a nonlocal sparse 

representation based noise reduction algorithm is introduced 

[5], in which sparse representations of the similar patches are 

recovered via a linear regularized regression model with 

shared constraint of sparsity, or called multi-task sparse 

representation. This method is based on the fact that the true 

signals in these similar patches can be represented by the 

same subset of basis elements while the noise lacks this 

consistence of representation. 

Most of noise reduction techniques for hyperspectral 

imagery are based on band-by-band or pixel-by-pixel 

processing, i.e., they process each band image separately or 

each pixel's spectral signature separately [6]. But this may 

lead to loss of correlation between bands or between pixels. In 

order to further exploit spectral-spatial joint correlations of 

hyperspectral imagery, we construct the sparse representation 

of 3-D block instead of 2-D patch or I-D line segment, which 

is based on the assumption that the true hyperspectral imagery 

is generally characterized by a strong spectral and spatial 

coruseing  relation, and conversely, noise sources are 

commonly to be independent from one another in 

spectral-spatial domain. In the section 2, the proposed 

denoising method called non local sparse representation with 

spectral-spatial structure is introduced, and its 

implementation is also discussed. Section 3 shows the 

experimental results on the real hyperspectral data sets. 

Conclusions are drawn in section 4.  
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II. ALGORITHM AND IMPLEMENTATION  

A. Denoising Model and Sparse Coding  

The generic noisy observation model has the form 

 

 where x is the position in the signal domain, z (x) is the 

observed signal, y(x) would be the true signal, and η(x) is the 

noise perturbation. 

For each 3-D block z
k
, the sparse representation based 

denoising model can be defined as 

 
where D is the dictionary of basis elements, W

k
 is the vector 

of coefficients corresponding to the basis elements. The last 

term in Equation 3 is the sparsity norm of W
k
, and λ controls 

the degree of sparsity. y
k
 is the recovered 3-D block from the 

noisy observation z
k
. 

This model considers every 3-D blocks independently, 

regardless of their correlation. Non-locality indicates there is 

similarity between these overlapped blocks, and exploiting 

the similarity will benefit the denoising [5]. Therefore, the 

nonlocal sparse representation is introduced based on the idea 

that similar blocks should share the same set of basis 

elements. Suppose we have K noisy signals z
k
 to be denoised 

by sparse representation, and the size of dictionary is P (the 

number of basis elements). Each signal y
k
 has a linear sparse 

coding 

 
A group of similar signals has a multi-task sparse coding 

 
where W is a P * K matrix of coefficients, W

k
 is its kth 

column, and Wp is its pth row. The constraint of sparsity in 

Equation 5 is a l1/l2 combined norm. 

The difference between independent and nonlocal sparse 

representation is shown in Fig. 1, where Y = [y1, y2, ... , yk]. 

In matrix W, the white small squares correspond to zero 

coefficients and the gray ones correspond to non-zero 

coefficients. The similar sparse structure can be derived via 

nonlocal sparse representation. 

Furthermore, a single dictionary is always not enough to 

support a sparse representation for complicated structures. 

For example, the cosine transform dictionary is not effective  

in representing impulsive transitions and singularities, 

whereas wavelet transform dictionary do poorly for textures 

and smooth transitions. Therefore, it is natural to use several 

complementary dictionaries for achieving a sparse 

representation over general signal. Here two dictionaries of 

3-D biorthogonal Daubechies wavelet and 3-D cosine are 

used, Le., D = Dwavelet U Dcosine. 

 

 

 

Fig. 1. Independent and nonlocal sparse representation 

 

The denoising algorithm of non local sparse representation 

with spectral-spatial structure can be summarized as: 

1. Divide a whole hyperspectral cube into 

overlapping 3-D blocks with the size of n x n x n, and 

each voxel (i,j, k) has a block N(i,j, k) whose center is 

this voxel. The overlapping division can avoid 

blocking effect. 

2. Partition the blocks into several groups by affine 

propagation (AP) clustering algorithm according to 

their similarity [7]. The similarity is measured by 

Euclidean distance between a pair of blocks 

3. Apply nonlocal sparse representation model for 

each group of blocks, and estimate the true signals for 

all blocks in one group by Equations 4 and 5. 

 

4. Calculate the denoised value of each voxel in the 

hyperspectral cube via weighted average method, as 

there are several blocks surrounding one voxel. 

 

B. Implementation 

Two problems should be highlighted in implementation of the 

algorithm. The first is concerned about step 2. As the number 

of blocks that is equal to the size of a hyperspectral cube 

because every voxel has their own subcube, is too large to AP 

or C-means clustering algorithm. To reduce the 

computational burden of the clustering algorithm, the 

grouping is performed within a three-dimensional window of 

size S x S x S centered at the coordinate of the current 

reference cube. Then we use AP algorithm again for these 

groups for merging similar groups, in which each group is 

represented by a data point. This divided-and-conquer 

scheme is very effective to real applications.  

The second is the optimization problem of nonlocal sparse 

representation in step 3. The non-smoothness of the l2,1- norm 
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regularization in Equation 5 makes the optimization be a 

challenging problem. In this paper, we use a fast optimization 

algorithm proposed by Liu and et al [8]. Consider a general 

l2,1 regularized minimization problem 

 

 
where f(·) is a differentiable loss function and ||W||2,1 is the 

l2,1 norm. The vector of coefficients W
*
 is obtained via 

iteratively applying accelerated gradient descent and 

proximal operator (see Algorithm 1). 

 

 

 

 

Fig. 2. Denoised results on Indian Pine data set. 

 

 

 

 

III. EXPERIMENTAL RESULTS 

 We will show some experimental results on two real 

hyperspectral data sets. The first data set was acquired by 

NASA AVIRIS instrument over the Indian Pine Test Site in 

Northwestern Indiana in 1992. The image size is defined as 

145 x 145, and the number of bands is 220. The size of 3-D 

block is 5 x 5 x 5, and the parameter of sparsity is λ = ½(m)
0.5

 

where m is the number of blocks in a group.  

We evaluate the proposed method by visually comparing 

the denoised hyperspectral imagery with the original imagery, 

and quantitatively comparing the classification results based 

on original and denoised images separately. It can be found 

from Fig.2 that the noise is reduced and the details are well 

preserved. Moreover, Fig.3 gives the classification results 

before and after noise reduction. This hyperspectral imagery 

contains 16 land-cover classes and 10366 labeled pixels.  E 

randomly selected and 5% and 25% labeled pixels from  each 

class for training, and use the rest for test. It can be clearly 

seen that the denoised data yield a much better classification 

performance. 

 The second data set was acquired by a hyperspectral 

camera on the ground with a high spatial resolution of 1280 x 

960, and there are 58 spectral bands in total. This data set 

contain more details than the first one. Due to the high 

resolution, we use a relatively large block size 9 x 9 x 9. Other 

parameters remain the same as the first experiment. The 

denoised results on band 58 are shown in Fig 4. We can find 

our method works well in both of edge/detail preservation and 

noise removal. 

 
Fig. 3. Classification results on Indian Pine data set. OA is overall 

accuracy. 
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Fig. 4. Denoised results on a hyperspectral data set acquired by a 

ground-based camera 

 

IV. CONCLUSION 

In this paper, we developed a novel sparse representation 

based denoising method for hyperspectral imagery, which 

combines nonlocal sparse coding with spectral-spatial 

structure to better separate the true signal and noise. Nonlocal 

sparse coding generates the sparse representations for several 

similar signal making them share the same basis elements in 

the dictionary. It considers the consistence of true signals and 

the randomness of noises so that the obtained sparse 

representation can more precisely recover the true signals. 

Instead of I-d line segments or 2-D patches, 3-D blocks are 

used for sparse representation, which enables the sparse 

representation to make the most of the correlations between 

spectral bands and spatial neighbors of true signal. 

Experimental results on the real hyperspectral data sets show 

the effects of the proposed method in noise reduction. 
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