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 

Abstract— State estimation process is one of the major 

concerns for controlling and monitoring systems in industry 

which requires high-cost measurements or involves 

unmeasurable variables of nonlinear systems. These drawbacks 

can be highly eliminated by designing systems without using any 

kind of sensors. In the proposed work, the state estimation 

technique is used for the state estimation of stepper motor. The 

theoretical basis of Extended Kalman Filter algorithm is 

explained in detail and its performance is tested with simulations.  

 A stochastically nonlinear state estimator named Extended 

Kalman Filter is presented. The motor model designed for EKF 

application involves rotor speed, rotor position and stator 

currents of the stepper motor. Thus, by using this estimator the 

states of the stepper motor can be estimated.  

 
Index Terms—Extended Kalman Filter, non linear system, 

state estimation, stepper motor  

I. INTRODUCTION 

  Most mechanical movements are performed by using 

electrical motors in almost every industrial process. In 

industry, the electrical motors consume a large percentage of 

the produced electrical energy. The control of the electrical 

motors plays an important role in the continuous increase of 

electrical energy consumption. The electrical motors operate 

at constant and variable speeds. Recent advances in 

technology support the evolution of the electrical machine 

drive systems. The motor drive systems controlled at variable 

speeds are widely used in industry. An effective speed control 

may be achieved by using a closed-loop control system, 

where motor current, position and speed of the rotor, etc., 

need to be known. All these requirements lead to an increase 

in the total cost of the motor drive systems. Generally, the 

speed/position information of motor can be directly measured 

by using an encoder or a tacho generator which are mounted 

on the motor shaft. 

 However, the cost and volume of the system, weight of 

motor, and hardware complexity are increased by using a 

shaft-mounted measurement. Therefore, the reliability of 

drive system is reduced particularly at hard work 

environments [1], [2]. To reduce the cost of the system and 

increase its robustness and reliability, the position and speed 

of the rotor can be estimated by using the observers. The 

observer is an algorithm and consists of mathematical state 
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equations. In motor drive applications, the observers estimate 

the position/speed of motor without using any kind of shaft  

speed sensors. The observers are more reliable than the 

sensored operations [3]–[5]. However, the observers require 

some mathematical equations and some measurements of 

motor such as current and voltage. The speed information 

must be estimated at high accuracy. Any variable of linear 

state-space system can be estimated by using the KF which is 

a basic recursive solution method. However, the KF cannot 

be directly applied to estimate a state variable of nonlinear 

dynamic systems. In a nonlinear dynamic system, the EKF 

can be used instead of the KF. It is the nonlinear version of 

the KF which linearizes about the current mean and 

covariance. In the EKF, the state transition and observation 

models need not be linear functions of the state but may 

instead be differentiable functions [6], [7]. However, the 

EKF always approximates the process and observation noises 

to be Gaussian.  Speed estimation methods for stepper 

motor control are becoming very popular in recent years. 

Elimination of the speed sensors and the associated 

measurement cables have the advantages of lower cost, 

ruggedness, as well as increased reliability. State estimation 

is the process of estimating the values of parameters based on 

measured data having random component. The parameters 

explain the underlying physical setting in such a way that 

their value affects the distribution of the measured data. An 

estimator attempts to approximate the unknown parameters 

using the measurement data. Many types of estimators are 

available. The commonly used effective estimator is the 

Kalman Filter and its types. The Kalman Filter has a good 

dynamic behavior and disturbance resistance when compared 

to a nonlinear observer. It can work even under standstill 

conditions. The Kalman Filter provides optimal filtering of 

the noises in measurement and inside the system if the 

covariances of these noises are known. The Extended 

Kalman Filter (EKF) based on the nonlinear stepper model 

that includes the rotor speed, rotor position and stator 

currents as the state variables is presented in this paper. 

 The format of paper presentations is as follows: In Section 

II, the system model of stepper motor is given. In Section III, 

the nonlinear state estimation by using EKF is introduced. In 

Section IV, simulation implementations are evaluated for the 

performances of the EKF. Finally, the concluding remarks 

are stated in Section V. 

II. MATHEMATICAL MODELLING OF STEPPER 

MOTOR 

The stepper motor is an electromagnetic device that 

converts digital pulses into 

mechanical shaft rotation.  
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The stator and rotor of the two phase stepper motor is 

shown in the Fig. 1. When the windings of the phase are 

energized, a magnetic dipole is generated on the stator side.  

 

 
Fig. 1: Two Phase Stepper Motor 

 

In order to estimate the stator currents, rotor speed and rotor 

position of the stepper motor, the following state equations of 

the stepper motor are needed. 

 

-R ωλ u + Δua aI = I + sinθ +a a
L L L

          (1)        

 u + Δu-R ωλ b bI = I + cosθ +
b bL L L

              (2) 

 -3λ 3λ Fω
ω = I sinθ + I cosθ - + Δαa b2J 2J J

          (3) 

 θ = ω
                            (4) 

 

I va a
y = +

I v
b b

   
   
   

                      (5) 

where Ia and Ib are the currents in the two motor windings 

respectively. θ and ω are the angular position and velocity of 

the rotor. R and L are the motor winding’s resistance and 

inductance. λ is the flux constant of the motor. F is the 

coefficient of viscous friction that acts on the motor shaft and  

its load. J is the moment of inertia of the motor shaft and its 

load. ua and ub are the voltages that are applied across the two 

motor windings. Δua and Δub are noise terms due to errors in 

ua and ub. Δα is a noise term due to uncertainty in the load 

torque. y is the measurement. The two winding currents are 

measured by using sense resistors.  

 

The measurements are distorted by measurement noises va 

and vb, which are due to things like sense resistance 

uncertainty and electrical noise. In order to apply EKF to the 

motor, the states of the system have to be defined. The states 

can be seen by looking at the system equations and noting 

wherever a derivative appears. If a variable is differentiated 

in the system equations, then that quantity is a state. So we see 

from the above motor equations that our system has four 

states, and the state vector x can be defined as

 

Ia

I
bx =

ω

θ

 
 
 
 
 
 

                         (6) 

The system equation is obtained by discretizing the 

differential equations to obtain  

x = f(x , u ) + w
k+1 k k k

                   (7) 
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y = h(x ) + v
k k k

                      (9) 

 

vx (1)
akky = +

k x (2) v
k bk

  
  
    

                  (10) 

The derivative matrices are given by the 

(ˆ= h' x )
k k

C                      (11) 

 

       
1 0 0 0

0 1 0 0

 
  
 
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The measurement noise terms, vak and vbk are zero-mean 

random variables with standard deviations equal to 0.1 amps. 

In discrete time, the control inputs are equal to 

u = sin2πkΔt
ak

                    (14) 

u = cos2πkΔt
bk

                      (15) 

The voltages that are applied to the winding currents are 

equal to these values plus Δuak and Δubk, which are zero-mean 

random variables with standard deviations equal to 0.001 

amps. The noise due to load torque disturbances Δαk has a 

standard deviation of 0.05 rad/sec
2
. The values of the motor 

parameters are shown in the Table 1. These state equations 

are used by the Extended Kalman Filter to estimate the stator 

currents, rotor speed and rotor position. 

 

Table 1: Parameters of the Stepper Motor 

S.No Motor parameters Values 

1 Winding resistance 1.9 

2 Winding inductance 0.003 

3 Motor constant 0.1 

4 Moment of inertia 0.0001

8 

5 Coefficient of viscous friction 0.001 

III. EKF ALGORITHM 

The EKF is a mathematical algorithm which can be used to 

estimate unmeasurable state variables of the system by using 

measured variables and statistic of noise. The EKF is a 

stochastic observer for recursive state estimation of a 

nonlinear dynamic system in real time by using noisy 

measured signals. The noise correlates with measurement and 

modelling inaccuracies. The EKF algorithm has two main 

stages, namely, prediction step and update (filtering) step. In 

the prediction step, a mathematical model of the system 

containing the previous estimates is used, and in the update 

step, a feedback correction scheme is used for continuously 

correcting the predicted states. The feedback update scheme 

needs an additional term to the predicted states, which 

contains the weighted difference of the measured and 

estimated output signals. However, the mathematical 

dynamic model must be well known for accuracy. 

Furthermore, the initial values of the covariance matrices  

 

 

 

                                                                               (13) 

 

 

 

 

 

 

must be arranged correctly. These can be obtained by 

considering the stochastic properties of the corresponding 

noises. Since these are usually not known, in most cases, they 

are used as weight matrices, but it should be noted that, 

sometimes, simple qualitative rules can be set up for 

obtaining the covariances of the noise vectors. 

 A critical part of the EKF is to use correct initial values for 

various covariance matrices namely, Q, R, and P. These have 

important effects on the filter stability and convergence time. 

The system noise covariance Q accounts for the model 

inaccuracy, the system disturbances, and the noise introduced 

by the voltage measurements (sensor noise and A/D 

converter quantization). The noise covariance R accounts for 

measurement noise introduced by the current sensors and 

A/D quantization [8]. Steps and initialization values of the 

EKF are presented as follows: 

 

x(t) = Ad * x(t − 1) + Bd * u(t − 1)               (16)  

 

where x(t) is the predicted state mean  

 

P(t) = Ad * P(t − 1) * Ad
T
 + Q                                 (17)  

 

where P(t) is the predicted state covariance 

 

IM = Cd x(t)                                                          (18)  

 

where IM is the mean of the predictive distribution of y(t) 

 

IS = R + Cd * P(t) * Cd
T
                                          (19)  

 

where IS is the covariance or predictive mean of y(t) 

 

K = P(t)*Cd
T
* IS

−1
                                                  (20)  

 

where K is the computed Kalman gain. The updated state 

mean and the updated state covariance are given in (11) and 

(12) respectively  

 

x(t) =x(t − 1) + K * (y(t) − IM)                                 (21) 

 

P(t) =P(t − 1) − K * IS * K
T
                                      (22) 

 

The steps in one cycle of the algorithm are given from 

(16)–(22). The discrete time t is increased by one in every 

cycle. 

IV. SIMULATION RESULTS 

 The Extended Kalman Filter algorithm is used to estimate 

the values of the current state variables such as stator 

currents, rotor speed and rotor position by using the values of 

previous state values and the nature of statistics of noise. 

ˆ ˆ ˆ-R / L 0 λsinx (4) / L x (3)λcosx (4) / L
k k k

ˆ ˆ ˆ0 -R / L -λcosx (4) / L x (3)λsinx (4) / L
k k kA =

k ˆ ˆ ˆ ˆ ˆ ˆ-3λsinx (4) / 2J 3λcosx (4) / 2J -F / J -3λ[x (1)cosx (4) + x (2)sinx (4)] / 2J
k k k k k k

0 0 1 0
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 The estimated outputs for the stepper motor variables are 

shown in the Fig. 2, 3, 4 and 5. 

 
Fig. 2: Plots of estimated and true values of winding A 

current 

 
Fig. 3: Plots of estimated and true values of winding B 

current 

 

 
Fig. 4:  Plots of estimated and true values of rotor speed 

 

 

 
Fig. 5: Plots of estimated and true values of rotor position 

 

In the Fig. 2 to 5, the straight line shows the true values of the 

stator currents and the dotted line shows estimated values by 

using the Extended Kalman Filter. It is found that the 

standard deviations of estimation error for both the estimated 

stator currents are 0.048857 and 0.050246 respectively. 

 The rotor speed and rotor position are estimated with the 

standard deviations of estimation error are 0.21378 and 

0.010227 respectively as shown in the Figures 4 and 5. 

V. CONCLUSION 

 The applications of stepper motors have grown 

significantly in recent years in the appliance industry and the 

automotive industry, among others. These motors are used in 

a variety of industries, including high and low propulsion 

technology, computer peripherals, machine tools, robotics, 

etc. Sensorless stepper motors are preferable to 

encoder-based systems because of compactness, low cost, 

low maintenance, and high reliability. The conventional 

sensorless method based on a neutral motor point has limited 

application since it has a low speed range, suffers from high 

common mode voltage noise and exhibits high frequency 

switching noise. So the Extended Kalman Filter is used to 

estimate the stator currents, speed and position of the stepper 

motor using its mathematical model. 
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