
International Journal of Emerging Science and Engineering (IJESE) 

ISSN: 2319–6378, Volume-1 Issue-5, March 2013  

43 

 

Retrieval Number: E0218031513/2013©BEIESP 

  

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

 

Abstract—The group mutual exclusion problem extends the 

traditional mutual exclusion problem by associating a type (or a 

group) with each critical section. In this problem, processes 

requesting critical sections of the same type can execute their 

critical sections concurrently. However, processes requesting 

critical sections of different types must execute their critical 

sections in a mutually exclusive manner. A distributed algorithm 

is used for the group mutual exclusion problem in asynchronous 

message passing distributed systems for MANET. This algorithm 

is based on tokens, and a process that obtains a token can enter a 

critical section. To reduce message complexity, it uses a coterie as 

a communication structure, when a process sends a request 

messages. Informally, a coterie is a set of quorums, each of which 

is a subset of the process set, and any two quorums share at least 

one process. Performance of the proposed algorithm is presented. 

In particular, the proposed algorithm can achieve high 

concurrency, whch is a performance measure for the number of 

processes that can be in a critical section simultaneously. 

Index Terms—Distributed systems, critical section, mutual 

exclusion.  

I. INTRODUCTION 

  Distributed mutual exclusion is one of the most 

fundamental problems in distributed systems. In this problem, 

access to a shared resource (that is, execution of critical 

section) by different processes must be synchronized to 

ensure its integrity by allowing at most one process to access 

the resource at a time. Because it is a fundamental problem in 

distributed computing, many generalized problems have been 

proposed in the literature. The problem of distributed group 

mutual exclusion is considered, which is a generalization of 

the distributed mutual exclusion problem such that only 

processes in the same group can enter a critical section (CS) 

simultaneously. In other words, no two processes in different 

groups enter a CS at a time. 

Mobile ad hoc networks (MANETs) do not have fixed 

infrastructure and consist of mobile wireless nodes that have 

temporary interconnections to communicate over packet 

radios. The facility that ensures that only one node is in its 

critical section (CS) at any given time, namely mutual 

exclusion in a distributed system such as a MANET has 

received attention from various researchers recently. In 

general, distributed mutual exclusion algorithms may be 

classified as permission based or token based.  

 

 

 

 
Manuscript received on March, 2013. 

Ms. Pratvina Talele, IT Department, MIT College of Engineering, Pune 

University, Pune, India. 

Mr. Milind Penurkar, IT Department, MIT College of Engineering, 

Pune University, Pune, India. 

Mrs. Saranga Bhutada, IT Department, MIT College of Engineering, 

Pune University, Pune, India. 

Ms. Harsha Talele, IT Department, SSBT’s College of Engineering, 

North Maharashtra University, Jalgaon, India. 

In the permission-based algorithms, a node would enter a 

CS after receiving permission from all of the nodes in its set 

for the CS. In token-based algorithms however, the 

possession of a system-wide unique token would provide the 

right to enter a CS.Concurrency and waiting time are 

important performance measures for a distributed group 

mutual exclusion algorithm. Concurrency means the number 

of processes that are executing their respective code 

simultaneously, and higher concurrency is always better for 

system throughput. Waiting time is the time that a process 

must wait to enter the CS after it issues a request. The design 

of an algorithm that achieves high concurrency and small 

waiting time is nontrivial when processes in different groups 

make requests simultaneously. Consider the situation that 

some processes are in the CS and a process in the same group 

makes a request. If the request is granted immediately, 

concurrency increases. On the other hand, requests by other 

processes in different groups must wait to be granted 

permission to CS. The difficulty of algorithm design is the 

trade-off between concurrency and waiting time. 

Many distributed group mutual exclusion algorithms have 

been proposed in the literature, and they are categorized as 

follows: Decentralized permission type algorithm:- When a 

process wants to enter a CS, it sends request messages to some 

processes, and it enters the CS if it obtains permissions from 

some set of processes defined in advance. Typically, a 

quorum or its variant is used to define a set of processes from 

which a process must obtain permission.  

Privileged token type algorithm: - A virtual object, called a 

token, is maintained by processes, and only a process that 

obtains a token may enter the CS. In the algorithm, a process 

sends request messages to all processes so that a request 

arrives at a process that holds a token.  

Hybrid type algorithm:- The first process to enter the CS 

obtains permission from some set of processes (decentralized 

permission type), and the process grants other processes in the 

same group to enter the CS by sending a token (privileged 

token type). Here, we have proposed a new distributed 

algorithm TQGmx that is of privileged token type for 

MANET. This algorithm uses coteries as a communication 

structure to reduce message complexity.  

II. RELATED WORK 

If In the literature, there are two popular approaches i.e. 

token-based and permission-based approach [2][3][4]. The 

DME algorithms proposed for MANETs are extensions of 

these classic algorithms to suit the requirements of MANETs. 

In the token-based algorithms [3], there exists a unique token 

in the system and only the node holding the token may access 

the critical section. In permission-based algorithms, the nodes 

wishing to enter the CS must explicitly gather permission 

from all other sites that are 

participating in the CS before 

it can enter the CS. 

A Token based Distributed Group Mutual 

Exclusion Algorithm with Quorums for MANET 

Pratvina Talele, Milind Penurkar, Saranga Bhutada, Harsha Talele 



 

A Token based Distributed Group Mutual Exclusion Algorithm with Quorums for MANET 

44 
Retrieval Number: E0218031513/2013©BEIESP 

  

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

A. A Distributed Mutual Exclusion Algorithm for Mobile 

ad hoc network [2] 

The proposed architecture has four layers for distributed 

mutual exclusion in mobile ad hoc networks. Distributed 

applications can be implemented on top of these layers. The 

lowest layer is the routing layer that can be one of the ad hoc 

network routing protocols like AODV, DSR or DSDV. 

Mobile Ricart Agarwal Algorithm 

(Mobile_RA)

Backbone formation Algorithm 

(BFA)

Merging Clustering Algorithm 

(MCA)

Ad Hoc on Demand Distance Vector 

(AODV)

 

Figure 1 The Mobile_RA Architecture 

 

In [2], authors used AODV since it is a widely used routing 

protocol which also has a stable network simulator-2 (ns-2) 

release. The second layer (the clustering layer) uses MCA.  In 

the third layer or backbone formation layer, BFA is used that 

inputs these clusters and builds a directed ring of the cluster 

heads. BFA can be implemented on top of any clustering 

algorithm that produces one cluster head for each cluster. 

MCA and BFA handle the link failures caused by the mobility 

of the nodes and also produce stable topologies against 

varying node densities. Finally the last layer is the 

Mobile_RA for distributed mutual exclusion. Any distributed 

algorithm running on top of ring architecture can be 

implemented as the last layer. 

  The main idea of the Mobile_RA algorithm is to form 

coordinators as interface of other nodes to the ring. The 

relation between the cluster coordinator and an ordinary node 

is similar to a central coordinator based mutual exclusion 

algorithm. Each node is in idle state initially. When a node 

wants to enter CS, an internal request event occurs, upon this 

event the node sends a request to its coordinator and makes a 

state transition to wait state. After the node receives reply 

message from the coordinator, it executes CS. When the node 

finishes the execution of CS, node sends a release message to 

its coordinator. 

 
Figure 2 Finite State Machine of Mobile_RA Node 

Algorithm 

 
The communication infrastructure to run the algorithm 

consists of a number of clusters of mobile nodes where each 

cluster is represented by a coordinator and the coordinators 

are connected to form a ring. The cluster formation and ring 

formation can be handled efficiently by the Merging 

Clustering Algorithm and the Backbone Formation 

Algorithm. Due to this hierarchical structure, significant gains 

in total message complexities are obtained with respect to the 

original Ricart-Agrawala algorithm. 

B. A Novel Permission-Based Reliable Distributed Mutual 

Exclusion Algorithm For MANETS [4] 

This part describes how this algorithm behaves when it 

enters CS, requests for CS, receives a REQUEST message, 

receives a HOLD message, and the adaptive timeout 

mechanism.  

In Figure 3, a simple operation of the algorithm is 

illustrated. The site S0 is initially interested in entering into 

CS, and it sends REQUEST message (in solid arrow) to all 

other sites in its Info_Set, S1 and S2. Since both the sites are 

not currently interested in entering into CS, they immediately 

respond with REPLY message (in dashed arrow). Since S0 

gets REPLY from all the requested sites, it enters CS. While it 

is in CS, S2 is interested in entering CS, and sends REQUEST 

message to S0 and S1. Since S1 is still not in CS, it simply 

sends back a response. S0 is already in CS, so it sends back a 

HOLD message. As soon as S0 exits CS, it sends back 

REPLY message to S2. S2 can now enter into CS, as it has 

received REPLY message from all sites. 

 
Figure 3 Illustration of an algorithm 

 
 
 



International Journal of Emerging Science and Engineering (IJESE) 

ISSN: 2319–6378, Volume-1 Issue-5, March 2013  

45 

 

Retrieval Number: E0218031513/2013©BEIESP 

  

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Requesting for CS: When a site Si wants to enter CS, it will 

send a REQUEST message to all the nodes in the Info_seti. 

Unlike waiting for a REPLY message that may come 

immediately or with a significant delay (if the other site is in 

CS), in this algorithm the requesting site is either sent with a 

REPLY message or a HOLD message in response to its 

REQUEST. For every site Sj to which Si has sent the 

REQUEST message, it will set TOREQ[j] as the expected 

round-trip time between Si and Sj. 

Receiving REQUEST message: When a site Si receives a 

REQUEST message from another site Sj, Si first checks 

whether it itself is in CS. If Si is not in CS or it is not 

contending for CS, then it immediately sends a REPLY 

message back to Sj. If Si is contending for CS, and it 

determines that Sj’s request has a higher priority than its own 

request, then it sends back a REPLY message. On the other 

hand, if Si is having a higher priority than Sj or Si itself is in 

CS, it sends a HOLD message with the expected time for 

completing CS and the timestamp of its REQUEST message 

tsreq back to Sj. The expected time includes the propagation 

delay for sending the message back to Sj and the value of 

ΤCS_DONE. Si also adds the site Sj to QHOLD.  

Receiving HOLD Message: When a site Si receives a 

HOLD message from site Sj, it understands that either Sj is in 

CS or it is having a lower precedence than Sj for entering CS. 

So it will update its HOLD message timeout TOHOLD, as the 

maximum of the timeout value, τ, from the message and the 

current value of TOHOLD.  

Since this algorithm uses an additional message, the 

performance of this algorithm is more than 2(Φ-1). The 

message complexity will depend on the number of times the 

HOLD message has to be sent. If the node is in CS 

miscalculates the timeout m times, and there are w nodes in 

QHOLD, then the message complexity of the algorithm will 

tend to be 2(Φ-1) + m*w. The ability to recover from any 

node failure offsets the additional message overhead incurred. 

C. A Distributed Mutual Exclusion Algorithm for Mobile 

Ad-Hoc Networks [3] 

A general DMUTEX algorithm presents features that allows 

it to be effectively used over a MANET. The algorithm aims 

at maintaining device power consumption as low as possible 

by reducing the number of hops traversed per CS execution 

and by not sending any control message when no processes 

request the CS. Mobility is addressed by exploiting the 

information of the routing table in order to send each message 

to the closest node in terms of number of hops. 

   This DMUTEX algorithm can be classified as “token 

based”: Token-based algorithms allow the process holding 

the token to enter its CS. These algorithms can be further split 

into two families: “Token- Asking” and “logical ring”. 

   Token-asking: A requesting process broadcasts a request 

for the token to all the processes. The process owning the 

token inserts the request in a request queue and when it leaves 

the CS, it sends the token to the first process in the queue, 

together with the request queue. When the request queue is 

empty, the process stops and waits for a request. In such a case 

we say that the system enters in an idle state. In other words 

idle states mean that no requests and no messages get 

exchanged by the DMUTEX algorithm.  

Logical ring: The token circulates perpetually around a 

logical ring using point-to-point messages. A process receives 

the token from its predecessor in the ring, accesses the CS, if 

needed, and then sends the token to its successor on the ring. 

In the best scenario, CS access can be achieved with very low 

overhead in terms of messages exchanged when all processes 

issue a request the token in the same round, i.e. one message 

for CS entry.  

This algorithm combines the best from the two families of 

token based algorithms (i.e., token-asking and circulating 

token) gets under heavy request load a number of hops 

traversed per CS very close to an optimal value. Moreover it 

is based on a dynamic logical ring, built on-the-fly by using a 

policy P at each process that selects as the next process in the 

ring the closest one in terms of numbers of hops. This paper 

shows that in a mobile ad-hoc networks P reduces as many as 

possible the number of hops experienced per CS execution in 

an algorithm round. 

 
 Figure 4 Algorithm state diagram 

 
The algorithm, from an external viewpoint, continuously 

executes transitions between two states: Idle and 

Coordinator-Change. The algorithm evolves in a sequence of 

rounds during which the two states alternate. A new round 

starts when the state switches to a Coordinator-Change state. 

For each round of the algorithm, one process is declared the 

coordinator. Each time coordinator changes from ck-1 to ck, 

there is a transition between Idle and Coordinator-Change 

state and the process pi that provokes the transition becomes 

the current coordinator ck. The latter is the only process 

enabled to execute the next transition from 

Coordinator-Change to Idle state. The state diagram is 

described in Figure 4. 

III. PROPOSED ALGORITHM 

A. Algorithm 

The proposed algorithm is based on the algorithm 

introduced in paper [1]. This algorithm uses two classes of 

tokens:- main token and sub-token. The main token is 

maintained as unique in the system. A sub-token is generated 

by the holder (process) of the main token and the number of 

sub-tokens varies. This algorithm assumes that network is 

reliable.  

Steps involved:  

When a node Pi wishes to enter the critical section (CS), it 

sends a request message to each node ( Pj ) in a quorum and it 

waits for a token to arrive. 

 
Figure 8 Requesting for Token 

 
 
 
 



 

A Token based Distributed Group Mutual Exclusion Algorithm with Quorums for MANET 

46 
Retrieval Number: E0218031513/2013©BEIESP 

  

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

When a node Pj receives a request message from Pi, it 

forwards the request to the holder Pk of the main token if Pj 

knows such Pk. Otherwise the request is buffered until Pj 

knows such Pk. 

 

 
Figure 9 Forwarding request message 

 

When the holder Pk of the main token receives a request 

issued by Pi and forwarded by Pj, the arrived request is in any 

case, put up into the queue of the main token. Each request in 

the queue is granted according to the following rules: 

If no node is executing the CS, the main token is transferred 

by a token message to a requesting node. 

If some processes are in the CS already and the requested 

group is the same as the current group, Pk sends a sub-token 

message to Pi, as long as there is no request in another group 

with a higher priority.  

Otherwise, the request is kept in the queue of the main 

token. The main token may be transferred to another process 

to grant the request of the process, and this may happen 

several times. The request of Pi is eventually granted by a 

process that holds the main token, say, Pl, which may not be 

the same as Pk. 

 

P1  P2  Pl  Pi  

Figure 10. Queue of main-token 
 

Process Pi enters the CS by receiving the main token (a 

token message) or a sub-token (a sub-token message). 

When process Pi exits the CS, if Pi is the holder of the main 

token it decrements the group size by one. Otherwise, i.e., Pi 

holds a sub-token, it returns a sub-token by sending a release 

message. 

 
Figure 11. Releasing the CS 

 

B. Fault Tolerance 

If node failed when it was in the CS, the current status of the 

CS is not saved. 

If node (holding the main token) fails before passing main 

token to requesting node, the main token will be issued to the 

first requesting node having the temporary queue that is 

maintained at each node in the quorum. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Performance Metrics 

Performance of a distributed mutual exclusion algorithm 

depends on whether the system is lightly or heavily loaded. 

the system is lightly loaded If no other process is in the CS, 

when a process makes a request to enter it. Otherwise, when 

there is a high demand for the CS that results in queuing up of 

the requests, the system is said to be heavily loaded. The 

important metrics to evaluate the performance of a mutual 

exclusion algorithm are the number of messages per request, 

response time and the synchronization delay as described 

below: 

• Number of Messages per Request: The total number of 

messages required to enter CS is an important and useful 

parameter to determine the required network bandwidth for 

that particular algorithm.  

• Response Time (R): The Response Time R is measured as 

the interval between the request of a node to enter a CS and 

the time it finishes executing the CS. When the system is 

lightly loaded, twice the number of message transfer times 

and the execution time of the CS success results in Rlight = 2T 

+E units. Under heavy load conditions, assuming at least one 

message is needed to transfer the access right from one node 

to another, then Rheavy = w (T + E) where w is the number of 

waiting requests. 

• Synchronization Delay (S): The synchronization delay S is 

the time required for a node to enter a CS once another node 

finishes executing it. The minimum value of S is one message 

transfer time T, since it requires one message success to 

transfer the access rights to another node. 

B.  Performance Evaluation 

The implementation of a token based distributed group 

mutual exclusion algorithm with quorum for MANET is done 

using the Network Simulator 2 (ns-2) simulator. IEEE 802.11 

standards are used for medium access control and physical 

layer, where the transmission range of a mobile node is 30m. 

Total number of nodes is selected from 20 to 100 nodes.  

 
Figure 12 Average Message Delivery Ratio against Density 

 

 

 



International Journal of Emerging Science and Engineering (IJESE) 

ISSN: 2319–6378, Volume-1 Issue-5, March 2013  

47 

 

Retrieval Number: E0218031513/2013©BEIESP 

  

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

As the number of nodes increases in the network, the packet 

delivery ratio increases from 6 to 35 as seen in Figure 12.  

 
Figure 13 Average Response Time against Density 

 

As the number of nodes increases in the network, the 

response time increases as shown in Figure 13. It reaches the 

optimum value and then starts decreasing. This indicates that 

for lower response time, number of nodes should be greater 

than 80. The average response time vary from 2.79s to 7.57s. 
 

 
Figure 14 Average Synchronization Delay against Density 

 

As the number of nodes increases in the network, the 

synchronization delay varies from 2.04s to 3.27s. 

Response times and synchronization delays as measured with 

respect to load, mobility are recorded. Response time 

decreases linearly with the load as seen in Figure 15. In low 

loaded networks, average response times is 4,92s whereas in 

high loaded networks average response times is 0.61s as seen 

in Figure 15. The synchronization delay is 2.51s in low load 

scenarios. When the load is increased, synchronization delay 

linearly decreases due to no waiting time of requests in the 

queue as seen in Figure 16.  
 

 
Figure 15 Average Response Time against Load 

 
Figure 16 Average Synchronization Delay against Load 

 

 
Figure 17 Average Packet Delivery Ratio against Load 
 

Random movements are generated for each simulation and 

random waypoint model is chosen as the mobility pattern. 

Low, medium and high mobility scenarios are generated and 

the mobility speed is varied by 5 m/s, 10 m/s, 15 m/s, 20 m/s, 

25 m/s. 
 

 
Figure 18 Average Packet Delivery Ratio against 

Mobility 

 
Figure 19 Average Response Time against Mobility 

 

 

 

 



 

A Token based Distributed Group Mutual Exclusion Algorithm with Quorums for MANET 

48 
Retrieval Number: E0218031513/2013©BEIESP 

  

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

As the mobility increases the packet delivery ratio decreases 

and response time, synchronization delay increases due to 

rapid change of network topology. 
 

 
Figure 20 Average Synchronization Delay against Mobility 

 
Figure 21 and Figure 22 shows the comparison of three 

algorithms in terms of response time and synchronization 

delay. The algorithms considered for comparison are token 

based group mutual exclusion algorithm, Ricart-Agrawala 

algorithm for MANET and the Ricart-Agrawala algorithm for 

wired network. 
 

 
Figure 21 Performance Comparison of Response Time 

 

 
Figure 22 Performance Comparison of Synchronization 

Delay 

The average response time and synchronization delay 

values can be seen in Figure 21 and Figure 22. The TQGMX 

is far more scalable than RA for MANETs as seen in Figure 

21 and Figure 22. But the average response time and average 

synchronization delay against RA_Mobile decreases linearly. 

Consequently, our results conform to the analysis that 

response time values against load decrease linearly with a 

small gradient. Synchronization delay values against load also 

decrease linearly. Synchronization delay values are not stable 

under different mobility. 

V. CONCLUSION 

There are many distributed mutual exclusion algorithms 

proposed for mobile ad-hoc networks. But most of them have 

not been implemented till now. The proposed algorithm is 

token based algorithm. This proposed algorithm achieves 

high concurrency which is an important factor for group 

mutual exclusion. Also it achieves low response time and 

synchronization delay as compared to Mobile_RA algorithm, 

permission based Distributed Mutual Exclusion algorithm 

and Distributed Mutual Exclusion algorithm.  

REFERENCES 

1. Hirotsugu Kakugawa, Sayaka Kamei, Toshimitsu Masuzawa, “A 

Token-Based Distributed Group Mutual Exclusion Algorithm with 

Quorums”, Published by the IEEE Computer Society 

1045-9219/08/$25.00  2008 IEEE. 

2. Kayan Erciyes, Orhan Dagdeviren, “A Distributed Mutual Exclusion 

Algorithm for Mobile Ad Hoc Networks”, International Journal of 

Computer Networks & communications Vol.4, N0.2, March 2012. 

3. Roberto BALDONI, Antonino VIRGILLITO, Roberto PETRASSI, “A 

Distributed Mutual Exclusion Algorithm for Mobile Ad-Hoc 

Networks”, Dipartimento di Informatica e Sistemistica Universita di 

Roma “La Sapienza”    Via Salaria 113, 00198 Roma, Italia 2001. 

4. Murali Parameswaran, Chittaranjan Hota, “A Novel Permission-based 

Reliable Distributed Mutual Exclusion Algorithm for MANETs”, 

978-1-4244-7202-4/10/$26.00 ©2010 IEEE. 

5. M. Benchaiba, A. Bouabdallah, N. Badache, M. Ahmed-Nacer, 

“Distributed Mutual Exclusion Algorithm In Mobile Ad-Hoc Networks 

: An overview”, Published in 2003. 

6. Y. –J. Joung, “The Congenial Talking Philosophers Problem in 

Computer Networks”, Distributed Computing, vol. 15, pp. 155-175, 

2002. 

7. Fransico J. Ros,  Pedro M. Ruiz, “Implementing a New Manet Unicast 

Routing Protocol in NS2”, University of Mercia, December 2004. 

AUTHORS PROFILE 

Ms. Pratvina Talele received the Bachelors of 

Engineering in Information Technology from North 

Maharashtra University in 2003. She is currently an 

Assistant Professor in MIT College of Engineering, 

Pune University. Her research interests are 

Distributed Systems and Data Structures. 

 

 

Mr. Milind Penurkar received the BE, MTech. in 

CSE from Pune University in 2002 and 2008 

respectively. He is pursuing his Ph.D. in CS from 

Nagpur University. He is currently an Associate 

Professor in MIT College of Engineering, Pune 

University. His research interests are Distributed 

Systems and Wireless Network. 

 

 

Mrs. Saranga Bhutada received the Bachelors of 

Engineering in Information Technology from North 

Maharashtra University in 2003. She is currently an 

Assistant Professor in MIT College of Engineering, 

Pune University. Her research interests are Distributed 

Systems and Wireless Network. 

 

 

Ms. Harsha Talele received the Bachelors of 

Computer Engineering from Pune University in 2009. 

She is currently pursuing master of engineering in 

SSBT.s College of Engineering, North Maharashtra 

University. Her research interests are Distributed 

Systems and Advanced Database. 


