
International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378, Volume-1 Issue-6 April 2013

 41

Retrieval Number: F0245041613/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication



Abstract— Technology and its applications are raises day by

day fashion, in our daily life we are various times interacted with

different kinds of computer and its application that shows effects

of technology in our daily life. To design and deploy an

application that helps us on different utilities are made possible

using the software engineering and its approaches. In this paper

we provide the different aspects and issues on the traditional

software development methodology, and discuss the proposed

solution in the direction of optimize the approach to find better

solutions with less effort and time. Additionally we focus mainly

on the vulnerabilities in software engineering at the time of

development and their solution. After all we propose a new way for

scan and trace the vulnerabilities in software application

development.

Index Terms — Vulnerabilities, software development,

security, processes.

I. INTRODUCTION

Secure Software Development covers activities which lead

to the development of quality software from a security point

of view. Software development is a layered architecture of

different activities. These activities are accepts intermediate

results and through these results new results are generated. If

any step is week then effect of this are reflect on complete

system.

Fig 1 Software development life cycle

 To understand the complete development life cycle, we

start with the requirement analysis. That is a phase where

developer team understand the requirement of end client, if

any problem in the requirement then it is cleared by the

developer because of problem in understanding leads a gap on

the development.

Once the requirement is gathered required to develop a

plan by which all the team members starts implementation of

the system. That planning phase is called as design, here all

the desired work is planed using the paper and pencil.

Manuscript received on April, 2013.

Sunil Patel, M.Tech Scholar, Computer Science & Engineering, CIIT

Indore, Indore, India.

Deepak Kulhare, Associate Professor,Computer Science & Engineering,

CIIT Indore, Indore, India.

Arif Khan, Assistant Professor Computer Science & Engineering, CIIT

Indore, Indore, India.

 Designed product is now read to become live, that is

derived in Implementation phase. To maintain or deliver

quality software testing is performed and finally after

complete system is deployed over client end. Here we can see

all the software development process activities are dependent

over each other. Thus care and precaution are required for

deliver a quality product.

To make more effective and efficient application

development various process models are available where the

developer team can manage their changes and other

requirements.

In this section of our paper we provide the general

introduction of SDLC and their dependency over each and

every layer. In the next section we provide the advantages and

issues of the different process model.

II. BACKGROUND

In this section of the work we provide the different process

models introductions and their relevant advantages and

disadvantages, additionally here we provide the effort and

technologies made in previous research work by the our

authors and researchers.

A. Waterfall

The waterfall development model originates in the

manufacturing and construction industries; highly structured

physical environments in which after-the-fact changes are

prohibitively costly, if not impossible. Since no formal

software development methodologies existed at the time, this

hardware-oriented model was simply adapted for software

development. The main advantages to use this model are as

follows:

 Simple goal.

 Simple to understand and use.

 Clearly defined stages.

 Well understood milestones.

 Easy to arrange tasks.

 Process and results are well documented.

 Easy to manage. Each phase has specific deliverable and

a review.

 Works well for projects where requirements are well

understood.

 Works well when quality is more important than

cost/schedule.

 Customers/End users already know about it.

 As they have some advantages the model having some

disadvantages too.\

 It is difficult to measure progress within stages.

 Cannot accommodate changing requirements.

 No working software is produced until late in the life

cycle.

 Risk and uncertainty is high with this process model.

 Adjusting scope during the life cycle can end a project

 Not suitable for complex

projects

Secure Software Development a Survey

Sunil Patel, Deepak Kulhare, Arif Khan

Secure Software Development a Survey

42
Retrieval Number: F0245041613/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

 Not suitable for projects of long duration because in long

running projects requirements are likely to change.

 Integration is done as a "big-bang” at the very end, which

doesn't allow identifying any technological or business

bottleneck or challenges early.

 Users can only judge quality at the end.

 Attempt to go back 2 or more phases is very costly.

 Percentage completion of functionality cannot be

determined in mid of the project because Every

Functionality is undergoing some phase.

 Very risky, since one process cannot start before

finishing the other.

B. Incremental

Iterative and Incremental development is any combination of

both iterative design or iterative method and incremental

build model for development. The combination is of long

standing and has been widely suggested for large

development efforts. Some key benefits are

 Some working functionality can be developed quickly

and early in the life cycle.

 Results are obtained early and periodically.

 Parallel development can be planned.

 Progress can be measured.

 Less costly to change the scope/requirements.

 Testing and debugging during smaller iteration is easy.

 Risks are identified and resolved during iteration and

Each Iteration is an easily managed milestone.

 Easier to manage risk - High risk part is done first.

 With every increment operational product is delivered.

 Issues, challenges & risks identified from each increment

can be Utilized/Applied to the next increment.

Disadvantages are:

 More resources may be required.

 Although cost of change is lesser but it is not very

suitable for changing requirements.

 More management attention is required.

 Each phase of iteration is rigid with no overlaps.

 System architecture or design issues may arise because

not all requirements are gathered. Up front for the entire

life cycle.

 Does not allow iterations within an increment.

 Defining increments may require definition of the

complete system.

And about the entire model are having some advantages

and disadvantages, between these issues vulnerabilities is a

more important issue in software engineering. In the next

section we provide the previous researches and approaches

that indicate the issues and aspects of the software

development.

III. WORK DONE SO FAR

In this section we provide the different research

conclusions and our study around the domain of interest.

Vulnerabilities, if not uncovered and mitigated during

software development, can incur huge cost in terms of time,

money and efforts after implementation. Integrating security

within the development life cycle has been proven to be the

most effective way to develop secure software. To the aim,

this paper [1] author proposes a framework to identify,

analyze and mitigate vulnerabilities during the development

life cycle.

Fig 2 Software Vulnerability Detection & Analysis

Framework

Security checklists have been proposed at various phases

of software development life cycle to examine its

vulnerability. The overall concept is based on the fig 2. The

framework suggests technique for developing secure

software. Security checklist is generated and used to verify

whether security prerequisite has been fulfilled or not for each

phase of SDLC. Vulnerability detection phase analyzes the

vulnerable input at each phase and report the vulnerabilities

so that through next phases of vulnerability life cycle, the

vulnerable input can be modified to secure output, which is

send back to the software life cycle in the form of feedback.

In [2] author provides Security considerations during each

phase of a generic development life cycle. The generic phases

used for this document are Planning, Analysis, Design,

Implementation, and Support. Before expounding on the

security considerations encapsulated in each phase, each

major section of this document briefly discusses the spirit of

the life cycle’s phase, highlights the responsibilities of a

security analyst during that phase, and often compares the

similarities and differences between the developer and the

security analyst’s roles. In the end, a broad group of security

topics are addressed. These include the differences between

program and issue-specific policies, CIA (confidentiality,

integrity, and availability) and Risk Assessment, different

levels of Security Strategies, levels of an Application Security

Management Plan and how to manage vulnerability

assessments in application testing and other best practices.

Fig 3 Baking Security in SDLC

This composite demonstrates a repeatable process where

enterprise security policies allow business requirements to be

met through the execution of appropriate security strategies

and solutions, which contains the individual security policies

which are required to apply individually.

International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378, Volume-1 Issue-6 April 2013

 43

Retrieval Number: F0245041613/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

 Keeping in view the daily increase in software security

threats, developing secure software has become a necessity

and challenge. Early detection of vulnerabilities [3] in

software while developing it and countering them in the

software development cycle will save time, money and energy

spent on removing them after software release. We are

developing continuous process for systematic and

improvement of Software security throughout the various

software lifecycle stages, that is suitable for industrial

adoption, and focuses on preventing vulnerabilities in all

phases of software development cycle. To aim of this paper

we propose methodology for software security through

Testing Stage of software development life cycle. We are

enhancing the software through testing stage of SDLC.

Testing is moderately expensive. Vulnerabilities Detection

Tool is very good technique to cut down cost and time.

Testing efficiency and effectiveness is the criteria for

coverage-based testing techniques. Present tool well tested on

Banking Domain Future work is to suit the tool for all

domains.

IV. LIMITATIONS OF EXISTING

METHODOLOGIES

There are four tool or framework available related to

secure software engineering .security aware software

development life cycle (SaSDLC) tool, vulnerability analysis

tool or vulnerability analysis database, comprehensive

lightweight application security process (CLASP) and

microsofts SDL. For SaSDLC i.e. suraksha need to know use

case diagram because in this, functional requirements of the

system are analyzed and captured using UML tool and

methodology. This system can be secured only against known

threats.

In Vulnerability analysis database when a new

vulnerability is discovered, a new iteration of process is

initiated in order to prevent the vulnerability. When a known

vulnerability recurs, this indicates that the existing

vulnerability or activity models are incomplete. One of the

most important limitations of this method is that they are

inflexible and provide little or no support for evolution.

Another common drawback is lack of specificity.

CLASP is a lightweight process for building secure

software. CLASP is defined as a set of independent activities

that have to be integrated in the development process. This

does not determine whether the application is covered by

methodology. it does not determine the bug bar SDL not

having facility of data collection and reporting .periodically

collect and evaluate is also not possible in SDL.

V. OBJECTIVE AND DATA COLLECTION

During the study of literature and previous research we

found the following conclusion that leads to design a new

concept of providing the security in the software development

life cycle. The key factors that are found are listed below.

1. The software systems development is depends on the

stack of different processes where all elements of stack

(activity) are dependent on the previous activity.

2. Any gap, conflict, ambiguity or security gap can destroy

all the system or make failure of the system.

3. Vulnerable or problems are variable for each and every

project, thus preparation of individual policies are

required.

4. To make more stability additional efforts and check list

for gaps are required.

5. One main and most big challenge is ad hoc nature of

projects which is variable according to execution

environment, requirement gathering, and other phases of

the SDLC.

Thus required to find a most optimum way to recover the

problems and vulnerabilities in any project, for that purpose

we suggest the following solution of the proposed work.

Success of software depends on the extent to which it meets

stakeholder expectations. Requirement capture and analysis

help in identifying stakeholders and their expectations, and

capturing these expectations in a form that is amenable to

analysis and implementation. Software projects fail to meet

their expectations due to problems in articulation of

requirements, poor quality of analysis and quite often, a lack

of sufficient focus on the business perspective. A framework

to remove vulnerabilities: analysis phase in SDLC will find

out bugs or errors and missing requirements for analysis.

Thus we starts with analysis phase if the software

development life cycle. Project requirement gathering involve

the analysis of requirement, that leads to understand the

problem identification and available resources in terms of

(what actually required by the client), and similarly what gaps

or vulnerabilities are occurred or possible in the project.

Fig 4 Activities in Vulnerability Life Cycle

But not all the customers are having the sufficient

knowledge or technical knowledge to explain the proper

requirement of project, thus proper analysis can improve the

project gaps.

In order to prevent vulnerabilities in the software under

development, the VLC [1] is designed keeping the following

objective in mind:

1. Detection of the vulnerabilities.

2. Classification of the detected vulnerabilities.

3. Identification of recurring vulnerabilities.

4. Determination of direct and indirect causes.

5. Listing the activities to resolve the causes of the

vulnerability or vulnerability itself.

6. Selection of the optimal set of activities.

7. Suggestions.

To achieve the above objective, the vulnerability life cycle

of VLC is divided into three major phases. Each phase of

Vulnerability Life Cycle performs activities as given Figure.

Due to consideration of security from initial phase of software

development costing of software will less. Because of this

new methodology less time is necessary. Due to this manual

work is reduced because software fed all requirements to the

next phase of SDLC, Due to this methodology analyst having

less work because of fulfillment of all requirements.

Secure Software Development a Survey

44
Retrieval Number: F0245041613/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

VI. CONCLUSION AND FUTURE WORK

Software engineering is a large and complex domain of

study, and the opinion about the SDLC and its phases are

different according to different authors and researchers. in

this paper we are study about the software development life

cycle and their impact on different activities involved in the

software development life cycle.

Additionally in this paper we discuss about the different

aspects of providing security in software development stages,

and provide the evidence where concluding facts are indicates

about the policies to apply in the secure software

development, after concluding the facts about security and

Vulnerabilities we propose a new approach to identify the

problems in initial stage, by which we take advantage of low

maintenance, cost and effort for any kind of gap or

Vulnerabilities.

In future we design, and implement the proposed technique

for making and find Vulnerabilities in software development

life cycle in analysis phase using the visual studio dot net

framework which provide a secure, programmer friendly

environment for development.

ACKNOWLEDGEMENT

Thanks to the professors of our institutution that have helped

in Research.

REFERENCES

1. A Framework to Detect and Analyze Software Vulnerabilities-

Development Phase Perspective, International Journal of Recent Trends

in Engineering Vol 2, No. 2, November 2009

2. The Role of the Security Analyst in the Systems Development Life

Cycle, SANS Institute InfoSec Reading Room, Brad Gray, MBA GIAC

Security Essentials Certification (GSEC Practical Assignment) January

12, 2005.

3. NEXT GENERATION SOFTWARE SECURITY THROUGH

TESTING STAGE OF SDLC, Vidyabhushan A. Upadhye1 and

Shashank D. Joshi, IJCSC Vol. 2, No. 2, July-December 2011, pp.

311-313

4. REVIEW ON COMMON CRITERIA AS A SECURE SOFTWARE

DEVELOPMENT MODEL, international Journal of Computer Science

& Information Technology (IJCSIT) Vol 4, No 2, April 2012, DOI:

10.5121/ijcsit.2012.4207 83

5. Baking in Security During the Systems Development Life Cycle,

CROSSTALK The Journal of Defense Software Engineering, March

2007

6. SOURCE CODE ANALYSIS TO REMOVE SECURITY

VULNERABILITIES IN JAVA SOCKET PROGRAMS: A CASE

STUDY, International Journal of Network Security & Its Applications

(IJNSA), Vol.5, No.1, January 2013

7. Software Vulnerabilities, Banking Threats, Botnets and Malware

Self-Protection Technologies, IJCSI International Journal of Computer

Science Issues, Vol. 8, Issue 1, January 2011 ISSN (Online): 1694-0814

www.IJCSI.org
8. Design and Development of Software for Launcher Control System,

Department of Computer Engineering and Information Technology

College of Engineering, Pune - 411005. June 2012

AUTHORS PROFILE

Sunil Patel graduated from Department of

Computer Science & Engineering at Central India

Institute of Technology, Indore and M.Tech Scholar

at CIIT, Indore and published his research work in 1

Research Paper in Conference at Indore and gave

presentations in many of the institutions in Indore

like RIT Indore, CIIT Indore, OIST, Indore etc..,

and he conquered his major research work in

Software Engineering from last Two years.

Deepak Kulhare Associate Professor of Computer

Science & Engineering, CIIT Indore, and published

many Research Paper in prestigious Conference,

Jounals.He gave Guidance to many M.Tech

Scholars.His major research work in Software

Engineering.

Arif Khan Assistant Professor of Computer Science & Engineering, CIIT

Indore, and published many Research Paper in prestigious Conference,

Jounals.He gave Guidence to many M.Tech Scholars.

http://www.ijcsi.org/

