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Abstract—Record linkage is an important process in data integration, 

which is used in merging, matching and duplicate removal from several 

databases that refer to the same entities. Deduplication is the process of 

removing duplicate records in a single database. In recent years, data 

cleaning and standardization becomes an important process in data 

mining task. Due to complexity of today’s database, finding matching 

records in single database is a crucial one. Indexing techniques are used 

to efficiently implement record linkage and deduplication. In this paper, 

three indexing techniques namely blocking index, sorting indexing and 

bigram indexing are used with a modification of existing techniques that 

reduces the variance in the quality of the blocking results. In addition to 

the indexing techniques, six comparison techniques and two classifiers 

are used. There is a potential for large performance speed-ups and better 

accuracy to be achieved by using indexing techniques along with 

comparison and classifier techniques. 
 

Keywords—Record linkage,Indexing techniques, data matching, 

blocking, Febrl framework 

I. INTRODUCTION 

With many businesses, government agencies and research 

projects collecting massive amounts of data, techniques that 

allow efficient processing, analyzing and mining of large 

databases have in recent years attracted interest from both 

academia and industry. An increasingly important task in the 

data preparation phase of many data mining projects is 

linking or matching records relating to the same entity from 

several databases, as often information from multiple 

sources needs to be integrated and combined in order to 

enrich data and allow more detailed data mining studies. 

The aim of such linkages is to match and aggregate all 

records relating to the same entity, such as a patient, a 

customer, a business, a consumer product, a bibliographic 

citation, or a genome sequence. Record linkage and 

deduplication can be used to improve data quality and 

integrity, to allow re-use of existing data sources for new 

studies, and to reduce costs and efforts in data acquisition. 

Record linkage can also help to enrich data that is used for 

pattern detection in data mining systems. Businesses 

routinely deduplicate and link their data sets to compile 

mailing lists, while withintaxation offices and departments 

of social security, record linkage and deduplication can be 

used toidentifypeople who register for benefits multiple 

times or who work and collect unemployment money. 

Another application of current interest is the use of data 

linkage in crime and terror detection. Security agencies and 

crime investigators increasingly rely on the ability to 

quickly access files for a particular individual, which may 

help to prevent crimes by early intervention. 
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The problem of finding records that relate to the 

sameentitiesnot only applies to databases that contain 

informationaboutpeople. Other types of entities that 

sometimesneed to bematched include records about 

businesses,consumerproducts, publications, and 

bibliographic citations,webpages, web search results, or 

genome sequences.Inbioinformatics, for example, record 

linkage techniques canhelp find genome sequences in large 

data collections that aresimilar to a new, unknown sequence. 

In the field ofinformation retrieval, it is important to remove 

duplicatedocuments (such as web pages and bibliographic 

citations)inthe results returned by search engines, in digital 

librariesor inautomatic text indexing systems. 

Anotherapplicationof growing interest is finding and 

comparingconsumerproducts from different online stores. 

Becauseproductdescriptions are often slightly varying, 

matchingthem becomes challenging. 

Removing duplicate records in a single database is a crucial 

step. Deduplication can be achieved more efficiently by 

using indexing techniques. One or more (blocking) indexes 

need to be built with the aim of grouping together records 

that potentially match and thus reducing the huge number of 

possible comparisons. While this grouping should reduce 

the number of comparisons made as much as possible, it is 

important that no potential match is overlooked because of 

the indexing process. After index are built, records within 

the same index block are compared by using field 

comparison functions, resulting in a weight vector for each 

record pair compared. These weight vectors are then given 

to a classifier that decides if a record pair constitutes a 

match, non-match or a possible match. 

In this paper Blocking method, Sort Indexing and Bigram 

indexing are used with changes in the existing system. In 

addition to indexing technique, six comparison and two 

classifiers are used to increase the efficiency. 

1.1 RECORD LINKAGE PROCESS 

 

 
Fig 1. Outline process of Record linkage 
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Record linkage techniques are used to link data records 

relating to the same entities, such as patients or customers. 

Fig.1 shows the outline of record linkage. Record linkage 

can be used to improve data quality and integrity, to allow 

re-use of existing data sources for new studies, and to reduce 

costs and effort in data acquisition for research studies. If a 

unique entity identifier or key is available in all of the data 

sets to be linked, then the problem of linking at the entity 

level is trivial – a simple join operation in SQL or its 

equivalent in other data management systems is all that is 

required. However, if no unique key is shared by all of the 

data sets, then various record linkage techniques need to be 

used. No matter what technique is used, a number of issues 

need to be addressed when linking data. Often, data is 

recorded or captured in various formats, and data items may 

be missing or contain errors. A pre-processing phase that 

aims to clean and standardize the data is therefore an 

essential first step in every linkage process. Data sets may 

also contain duplicate entries, in which case linkage may 

need to be applied within a data set to be de-duplicate it 

before linkage with other files is attempted. 

The process of linking records has various names in 

different user communities. While epidemiologists and 

statisticians speak of record linkage, the process is often 

referred to as data matching or as the object identity 

problem by computer scientists, whereas it is sometimes 

called merge/purge processing or list washing in commercial 

processing of customer databases or mailing lists. 

Historically, the statistical and the computer science 

communities have developed their own techniques, and until 

recently few cross-references could be found. 

Computer-assisted record linkage goes back as far as the 

1950s. At this time, most linkage projects were based on 

adhoc heuristic methods. The basic ideas of probabilistic 

record linkage were introduced by Newcombe and Kennedy 

in 1962 while the theoretical foundation was provided by 

Fellegi and Sunter in 1969. Using frequency counts to 

derive agreement and disagreement probabilities, each pair 

of fields of each compared record pair is assigned a match 

weight, and critical values of the sum of these match 

weights are used to designate a pair of records as either a 

link, a possible or anon-link. Possible links are those pairs 

for which human oversight, also known as clerical review, is 

needed to decide their final linkage status. In theory, the 

person undertaking this clerical review has access to 

additional data (or may be able to seek it out) which enables 

them to resolve the linkage status. In practice, often no 

additional data is available and the clerical review process 

becomes one of applying human or common sense to the 

decision based on available data. One of the aims of the 

FEBRL project is to automate (and possible improve upon) 

this process through the use of machine learning and data 

mining techniques. 

To reduce the number of comparisons (potentially each 

record in one data set has to be compared with every record 

in a second data set), blocking techniques are typically used. 

The data sets are split into smaller blocks using blocking 

variables, like the postcode or the Soundex encoding of 

surnames. Only records within the same blocks are then 

compared. To deal with typographical variations and data 

entry errors, approximate string comparison functions are 

often used for names and addresses. These comparators 

usually return a score between 0.0 (two strings are 

completely different) and 1.0 (two strings are the same). 

The terms data cleaning, data standardization, data 

scrubbing, data pre-processing and ETL(extraction, 

transformation and loading) are used synonymously to refer 

to the general tasks of transforming the source data (often 

derived from operational, transactional information systems) 

into clean and consistent sets of records which are suitable 

for record linkage of for loading into a data warehouse. The 

meaning of the term standardization in this context is quite 

different from its use in epidemiology and statistics, where it 

usually refers to a method of dealing with the confounding 

effects of age. The main task of data standardization in 

record linkage is the resolution of inconsistencies in the way 

information is represented or encoded in the data. 

Inconsistencies can arise through typographical or other data 

capture errors, the use of different code sets or abbreviations 

and differences in record layouts. 

The FEBRL System is implemented in an object oriented 

design with a handful of modules, each containing routines 

for specific tasks. Record linkage consists of two main steps. 

The first one deals with data cleaning and standardization, 

while the second performs the actual linkage (or 

deduplication).  The user needs to specify various settings in 

order to be able to perform a cleaning/standardization and/or 

a linkage /deduplication/geocoding process.  

II. INDEXING 

The aim of indexing is to reduce the potentially huge 

number of comparisons (every record in one data set with all 

records in another data set) by eliminating comparisons 

between records that obviously are not matches. In other 

words, indexing reduces the large search space by forming 

groups of records that are very likely to be matches. 

Indexing can also be seen as a clustering method that brings 

together records that are similar, so only these records need 

to be compared using the more expensive (i.e. compute 

intensive) field comparisons functions. 

2.1 BLOCKING INDEXING 

Currently the FEBRL system contains several indexing 

methods, including the traditional blocking method used in 

many record linkage systems. Indexes are normally built 

while a data set is being standardized. After an index is built 

a compacting has to be done which builds index data 

structures that can return the blocks more efficiently. 

In the following example, three indexes are defined and a 

traditional blocking index is initialized. The first index is 

based on the Soundex encoding of the reversed surname 

field values, with a maximal code length of three, the second 

index is based on a combination of the first two characters in 

the given name field (the truncate method is used for this) 

concatenated with the values in the postcode field (the 

method is direct which means the postcode values are not 

encoded or modified in any way), and the third index is 

based on concatenation of the first two digits in the postcode 

plus the NYSIIS encoding of the surname values. 

hosp_block_def=[[(‘surname’,’soundex’,3,’reverse’)],[(‘giv

enname’,’truncate’,2),(‘postcode’,’direct’)],[(‘postcode’,’tru

ncate’,2),(‘surname’,’nysiis’)],] 

hospital_index=BlockingIndex(name=’HospIndex’, 

dataset=tmpdata, block_def=hosp_block_def) 

2.2 SORTING INDEXING 

The sorting index extends the 

idea of the classical blocking 

index in that the values of the 
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blocks (e.g. the Soundex encodings of surnames) are sorted 

alphabetically and then a sliding window is moved over 

these sorted blocks. When a sorting index is initialized, one 

argument needs to be given is: 

Windowing method: A positive integer that gives the size of 

the sliding window. For example, let's assume there are six 

blocks in our index (shown are the blocking variable values 

and the corresponding record numbers in the blocks), and 

we have a sliding window size of 3:  

 

 a123: [4,12,89,99]  

 a129: [6,32,54,84,91]  

 a245: [1,39]  

 a689: [3,17,21,35,49,76,87,93]  

 a911: [2,42,66]  

 b111: [8]  

 While with the blocking index only the records 

within one block are compared with the records in the 

corresponding block of the second data set, with the sorting 

index and window size 3 larger blocks are formed by 

combining three consecutive blocks together:  

[a123,a129,a245]: [1,4,6,12,32,39,54,84,89,91,99]  

[a129,a245,a689]:[1,3,6,17,21,32,35,39,49,54,76,84,87,91,9

3]  

[a245,a689,a911]: [1,2,3,17,21,35,39,42,49,66,76,87,93]  

[a689,a911,b111]: [2,3,8,17,21,35,42,49,66,76,87,93]  

 The idea behind this is, that neighboring blocks 

might contain records with similar values in the blocking 

variables due to errors in the original values. Note that if the 

window size is set to then the sorting index becomes 

equivalent to the blocking index. 

2.3. BIGRAM INDEXING 

The aim of this technique is to index the database(s) such 

that records that have a similar, not just the same, BKV will 

be inserted into the same block. The basic idea is to create 

variations for each BKV using bigram, and to insert record 

identifiers into more than one block. This index implements 

a data structure based on bigrams and allows for fuzzy 

blocking. The basic idea is that after an index has been built, 

the values of the blocking variables will be converted into a 

list of bigrams, which is sorted alphabetically (and duplicate 

bigrams are removed), and sub-lists will be built using a 

user provided threshold (a number between 0.0 and 1.0) of 

all possible combinations. These resulting bigram sub-lists 

will be inserted into an inverted index, i.e. record numbers 

in the blocks will be inserted into dictionaries for each 

bigram sub-list. Such an inverted index will then be used to 

retrieve the blocks. 

A blocking key value ’baxter’ will result in a 

bigram list (’ba’,’ax’,’xt’,’te’,’er’). With a threshold of 0.8 

the following sub-lists of length 4 (calculated as the length 

of the bigram list times the threshold: 5×0.8) will be inserted 

into the inverted index: 

 (’ax’,’xt’,’te’,’er’) 

 (’ba’,’xt’,’te’,’er’) 

 (’ba’,’ax’,’te’,’er’) 

 (’ba’,’ax’,’xt’,’er’) 

 (’ba’,’ax’,’xt’,’te’) 

 All record numbers which contain the 

blocking key value ’baxter’ will be inserted into five blocks, 

thus increasing the number of record pair comparisons 

compared to standard blocking. The number of sub-lists 

created for a blocking key value both depends on the length 

of the value and the threshold. The lower the threshold the 

shorter the sub-lists, but also the more sub-lists there will be 

per blocking key value, resulting in more (smaller blocks) in 

the inverted index. 

III.RECORD COMPARATOR 

A Record Comparator is constructed using a list of field 

comparators. Once field comparison functions have been 

initialized, then they can be inserted into a 

field_comparisons list which is then given to a record 

comparator. When comparing records in a linkage or 

deduplication process, each field comparator in a 

field_comparisons list will calculate a weight, and all 

weights for a record pair will be stored in a weight vector. 

Additional information stored with a weight vector is the 

unique record identifiers for the two records in the pair 

compared. The weight vectors will then be used to compute 

the matching status of the record pair in the classifier. The 

Record Comparator is initialized using references to two 

data sets to be linked (which can be the same in case of a 

deduplication task), and a list of field comparison functions. 

The comparison techniques used are 

5.1 EXACT STRING COMPARISON 

This field comparator function compares the two fields (or 

field lists) given to it as strings and returns theagreement 

weight if they are the same and the disagreement weight if 

they differ. 

5.2 TRUNCATED STRING COMPARISON 

This field comparison function allows the comparison of 

strings that can be truncated at a certain position using the 

argument max_string_length. Only the first 

max_string_length characters in both strings are compared. 

Similar to the exact string comparison function, this field 

comparator compares the two fields (or field lists) given to it 

as strings and returns the agreement weight if the truncated 

strings are the same and the disagreement weight if they 

differ. 

5.3 APPROXIMATE STRING COMPARISON 

Approximate string comparison is an important feature for 

successful weight calculation when comparing strings from 

names and addresses. Instead of simply having an agreement 

or disagreement weight returned, approximate string 

comparators allow for partial agreement if strings are not 

exactly but almost the same, which can be due to 

typographical and other errors. 

Various algorithms for approximate string comparisons have 

been developed, in both the statistical record linkage and in 

the computer science and natural language processing 

communities. All string comparison functions implemented 

return a value between   (two strings are completely 

different) and   (two strings are the same). The approximate 

string comparison method has to be selected with the 

compare_method argument. The following methods are 

currently implemented: 

• jaro 

The Jaro string comparator is commonly used in record 

linkage software. It computes the number of common 

characters in two strings, the lengths of both strings, and the 

number of transpositions to 

compute a similarity measure 

between   and . 
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• winkler 

The Winkler comparator is based on the Jaro comparator but 

takes into account the fact that typographical errors occur 

more often towards the end of words, and thus gives an 

increased value to characters in agreement at the beginning 

of the strings. The partial agreement weight is therefore 

increased if the beginning of two strings is the same. 

• bigram 

Bigrams are the two-character substrings in a string, for 

example 'peter' contains the bigrams 'pe', 'et', 'te' and 'er'. In 

the Bigram string comparator, the number of common 

bigrams in the two strings is counted and divided by the 

average number of bigrams in the two strings, to calculate a 

similarity measure between 0.0 and 1.0. 

• editdist 

The Edit distance algorithm (also known as the Levenshtein 

distance) counts the minimum number of deletions, 

transpositions and insertions that have to be made to 

transform one string into the other. This number is then 

divided by the length of the longer string to get a similarity 

measure between 0.0 and 1.0. 

• seqmatch 

This approximate string comparator is implemented in the 

Python standard library difflib. It is based on an algorithm 

developed by Ratcliff and Obershelp in the 1980s, and uses 

pattern matching to compute a similarity measure between 

0.0 and 1.0.  

5.4 ENCODED STRING COMPARISON 

Phonetic name encoding is traditionally used to create 

blocking variables in the record linkage process, but it can 

also be used to compare strings. The encoded string 

comparison function compares the two fields (or field lists) 

given to it as encoded strings, and returns the agreement 

weight if both strings are encoded the same way, otherwise 

the disagreement weight is returned. 

5.5 KEYING DIFFERENCE COMPARISON 

This field comparator compares the two fields (or field lists) 

given to it as strings character-wise, with a maximum 

number of different characters that can be tolerated. This 

number has to be set with the argument max_key_diff. If the 

number of different characters is larger than zero but equal 

to or smaller than max_key_diff the partial agreement 

weight is calculated. If the number of key differences is 

larger than max_key_diff then the disagreement weight is 

returned. This field comparator can also be used to compare 

numerical fields, such as date of birth, telephone numbers, 

etc. 

5.6 NUMERIC COMPARISON WITH PERCENTAGE 

TOLERANCE 

This field comparator is for numeric fields, where a given 

maximal percentage difference can be tolerated. This 

percentage has to be set by the argument max_perc_diff as a 

value between   and  . The default value is  , i.e. no 

difference is tolerated. The agreement weight is returned if 

the numbers are the same and the disagreement weight if the 

percentage difference is larger than the max_perc_diff 

value. If the percentage difference between the two values is 

larger than   but equal to or smaller than max_perc_diff the 

partial agreement weight is calculated. 

6. CLASSIFICATION 

The last step in a record linkage process - after records have 

been compared and weight vectors have been calculated - is 

the classification of record pairs into links, non-links, or if 

this decision should be done by a human review, possible 

links. Two classifiers used are Fellegi & Sunter classifier 

and a Flexible classifier. 

6.1 FELLEGI AND SUNTER CLASSIFIER 

The classical Fellegi and Sunter classifier simply sums all 

the weights in a weight vector, and then uses two thresholds 

to classify a record pair into one of the three classes links, 

non-links or possible links. 

6.2 FLEXIBLE CLASSIFIER 

This flexible classifier allows different methods to be used 

to calculate the final matching weight for a weight vector. 

Similar to the Fellegi and Sunter classifier, two thresholds 

are used to classify a record pair into one of the three classes 

links, non-links or possible links. The results of a 

classification are stored in a data structure. Instead of simply 

summing all weights in a weight vector, this flexible 

classifier allows a flexible definition of the final weight 

calculation by defining tuples containing a function and 

elements of the weight vector upon which the function is 

applied. The final weight is then calculated using another 

function that needs to be defined by the user. 

IV. EXPERIMENTAL EVALUATION: 

In previous works indexing techniques are alone used to 

record linkage and deduplication. In this paper, indexing 

techniques along with classification and comparators are 

used. All these are implemented in FEBRL framework. 

Datasets used are real data and artificially generated data. 

Because in real datasets it is difficult to identify the 

deviations in results.So artificial datasets are also used. 

Artificial data are generated using febrl framework. This 

generator first creates original recordsbased on frequency 

tables that contain real name andaddress values, as well as 

other personal attributes;followed by the generation of 

duplicates of these recordsbased on random modifications 

such as inserting, deleting,or substituting characters, and 

swapping, removing, inserting,splitting, or merging words. 

The types andfrequenciesof these modifications are also 

based on realcharacteristics.The true match status of all 

record pairs isknown. Theoriginal and duplicate records 

were then storedinto one fileeach to facilitate their linkage. 

Four measures are used to assess the complexity of 

theindexing step and the quality of the 

resultingcandidaterecord pairs. The total number of matched 

andnonmatched record pairs are denoted with nM and 

nN,respectively, with nM + nM = nA × nB for the linkage 

oftwo databases, and nM + nN = nA(nA – 1)/2 for 

thededuplicationof one database. The number of true 

matchedandtrue nonmatched record pairs generated by an 

indexingtechnique is denoted with sM and sN, respectively, 

withsM + sN ≤ nM + nN. 

The reduction ratio, RR = 1:0 -  

, measures thereduction of the comparison space, i.e., 

thefraction ofrecord pairs that are removed by an indexing 

technique.The higher the RR value, the less candidaterecord 

pairs arebeing generated. However, reduction ratiodoes not 

take thequality of the generated candidate recordpairs into 

account(how many are true 

matches or not). Fig. 7.1 
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shows the evaluation of the given data set. 

 

 
Fig. 7.1 Evaluation page showing the matching weight 

histogram and quality and complexity measures for a 

linkage. 

V. CONCLUSION AND FUTURE WORK 

Record linkage and deduplication are important steps in the 

pre-processing phaseof many data mining projects, andalso 

important for improving data qualitybefore data isloaded 

into data warehouses. Different record linkage 

techniqueshave been presented along with comparators and 

classifiers, which are used to separate records into match, 

non-match and possible matches. 

The indexing techniques presented in this paper are heuristic 

approaches that aim to split the records in a database (or 

databases) into (possibly overlapping) blocks such that 

matches are inserted into the same block and nonmatches 

into different blocks. While future work in the area of 

indexing for record linkage and deduplication should 

include the development of more efficient and more 

scalable new indexing techniques, the ultimate goal of such 

research will be to develop techniques that generate blocks 

such that it can be proven that 1) all comparisons between 

records within a block will have a certain 

minimumsimilarity with each other, and 2) the similarity 

betweenrecords in different blocks is below this minimum 

similarity. 
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