
International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378, Volume-1 Issue-7, May 2013

 74
Retrieval Number: G0309051713/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Abstract- Software can be tested either manually or

automatically. The two approaches are complementary:

automated testing can perform a large number of test in little time,

whereas manual testing uses the knowledge of the testing engineer

to target testing to the part of the system that are assumed to be

more error-prone. Auto test is a testing tool that provide a “best of

both worlds” strategy :it integrates developers test cases into an

automated process of systematic contract –driven testing. Test

automation has become more and more popular as the market

demand for more complex software, involving higher risks and

using the same or fewer resources in development, has increased.

A number of research paper discuss the problem faced in the test

automation process ,such as the complexity of automation ,poor

choice of tools,and the effort spent to automate. This paper

proposes a test automation viability analysis method of a test case

based on mathematical procedures which intend to increase the

chance of finding outlay efficiency test automation process.

Index Terms— Test automation ,outlay efficiency, Viability,

Method.

I. INTRODUCTION

An automated testing strategy tries to remove the tediousness

of the process by relying on a software tool that generates test

cases from the program’s specification (black box) or its

actual text. Recent advantage in technology have more

complex and riskier application, which in turn generates a

need to improve software quality. To this end, together with

the need to find bugs faster at minimum cost, many

organizations have invested part of their project budgets in

software test automation. Test automation has thus become

more and more popular in recent years and has been a

constantly increasing activity in the existing software

industry.

The idea of having a computer run test instead of running

them manually has led many organization to attempt test

automation without a clear understanding of all that is

involved . On the one hand, test automation can bring several

advantages: it is a way of getting more done with less time and

fewer resources; the tests can be rerun many times without

overheads too much effort, which makes it easier to find bugs

earlier and fix them more cheaply; the results appear more

reliable. On the other hand, to make a successful test

automation process, a large investment of time and expertise

is required, without which the process could be destroys.

As a result, many attempts at test automation have failed to

achieve real or lasting benefits [1].

Manuscript received on May, 2013.

Saket Vihari, M.Tech(CSE), Amity School of Engineering and

Technologu, Amity University, NOIDA, Uttar Pradesn, India.

Arun Prakash Agrawal, Asst. Prof., Amity School of Engineering and

Technologu, Amity University, NOIDA, Uttar Pradesn, India.

The first idea of many company that want to have their

software tests automated is tottery to automate all the tests in

order to have them being executed quickly in the minimum

amount of time. However, it is always good to keep in mind

that the investment needed to automate the testing process is

very high, and sometimes the outlay efficiency of automating

everything can be too low.

The goal of this paper is to offer a feasibility analysis method,

to help testers decide which tests can be automated cost

efficiency. An example of how to use the method is also

presented to demonstrate how the proposed feasibility

analysis method work.

II. TEST AUTOMATION

Manual testing is performed by a human sitting in front of a

computer carefully executing the test steps. Automation

Testing means using an automation tool to execute your test

case suite. The automation software can also enter test data

into the System Under Test , compare expected and

actual results and generate detailed test reports.Test

Automation demands considerable investments of money and

resources. Successive development cycles will require

execution of same test suite repeatedly. Using a test

automation tool it’s possible to record this test suite and

re-play it as required. Once the test suite is automated, no

human intervention is required . This improved ROI of Test

Automation .Goal of Automation is to reduce number of test

cases to be run manually and not eliminate manual testing all

together.

Automated testing is important due to following reasons:

 Manual Testing of all work flows, all fields , all negative

scenarios is time and cost consuming.

 It is difficult to test for multi lingual sites manually

 Automation does not require Human intervention. You can

run automated test unattended (overnight).

 Automation increases speed of test execution.

 Automation helps increase Test Coverage.

 Manual Testing can become boring and hence error prone.

III. PRE-ANALYSIS

In the last few years, automation has become one of the main

investments in organizations in order to improve their

software quality. At Borland, for example, after a significant

investment in automation, only 20% of software bugs were

found by automated est cases. Borland claims that manual

tests were “more variable and more directed at new features

and specific areas of change where bugs were more likely to

be found” [2].

A System of Humanizing Test Automation

Outlay Efficiency

Saket Vihari, Arun Prakash Agrawal

A System of Humanizing Test Automation Outlay Efficiency

 75

Retrieval Number: G0309051713/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Even with the current low level of practical success of test

automation, it is strange to see how large the attraction is to it

[3].

According to the International Institute of Software Testing,

only15% of all test automation initiatives succeed [4]. Before

starting the automation process, two analyses need to be

carried out. First, it is necessary to check which tests are

technically possible to be automated. Second, it is necessary

to verify if the tests identified in the first analysis are viable to

be automated. A test can be automated if, with all available

technology, it could give the same result as if it were executed

manually. Considering a test automatable does not mean we

should automate it. There are various reasons why a test case

should not be automated without a careful previous analysis in

order to have a successful automation project. “Making good

decisions about what to automate can be critical to successful

test automation” [5].This is the goal of this paper. A

mathematically generated decision tree is being proposed to

carry out a viability analysis in order to know if a single test is

or is not a candidate for automation. The analysis is based on

nine topics that will be detailed one by one in the next section,

to expose their importance. After this, the feasibility analysis

method will be explained and an example of how to put it into

practice will be described.

Implementation Frequency

One of the important points to reach through the Feasibilty

analysis is concerned with how many times a specific test case

is going to be executed. If a test case is going to be executed

only once, the automation of this test case may be completely

useless. A good practice is to compare the effort spent to

automate and the effort spent to execute the test manually to

see how many executions it takes to achieve gains by carrying

out the automation process. If the number of executions is less

than the number that found, automation might not be a good

option.

Making of Reusable Code

When a test case is automated, it is supposed to give some

contribution to the framework used to automate it. Even a

very complex test case can be a good candidate for

automation, if it contributes with important new features to

the framework/library, that is, when the code used in that

specific test case will be reused in other test cases. This point

becomes even more important when the execution frequency

of the test case under analysis is low since, at first glance, the

effort might not be rewarded. However, if the code is

reusable, even if the test case itself is not executed frequently,

the tester will benefit greatly when the code produced is used

in the future.

Test Importance

The number of bugs the test case is supposed to find is another

point to be considered. The aim of any test case is to find

bugs, but some test cases have a lot more relevance than

others, since they can test critical functionalities or even

functionalities that will be used more often than others. For

example, in the context of a bank web site, the tests involving

a login page would be much less relevant than the tests related

to account transactions. However, they might achieve the

same relevance because the frequency of a login operation is

higher than that of account transactions.

Automation Effort

The effort spent to automate a single test case must be

considered carefully before starting the actual process. The

total effort spent on the whole automation process can annul

almost all of the automation process’ advantages [6]. There

are only a few reasons to keep thinking of automation for a

test case that takes too much effort to be automated, such as:

the test lifetime and frequency of execution, and the

reusability of the piece of code that this test case produces to

develop other test cases. These factors must be well analyzed.

Resources

It is important to know the cost to deploy the test case. A test

case may need some brand new technology or

high-performance hardware to be automatable, and it may

cause high or extra costs to the company. One should consider

which is more profitable or provides the least losses: buying

more equipment or taking on more people for your team.

Another important point to be considered is about how many

people in your team are necessary to execute a single test case.

Furthermore, when there is a cycle of test cases to be

executed, one might need to know how many members must

be allocated to perform the whole test cycle. If these tests are

automated, only one person is required to perform this action.

Manual Complexity

In many applications, the training costs to make testers

available to run a single test case is too high when compared

to having this test automated. Test cases that require a lot of

special knowledge appear as very good candidates for

automation since not anyone could test it manually while, with

an automated test, any tester is

able to carry it out [1]. Considering another perspective, some

test cases imply directly in revealing confidential information

to everybody that will possibly execute them. The information

that can be learned with the execution of a test case may be

important somehow to the knowledge of the test team. If the

complexity of manual execution becomes an issue in any

other way, automation will be a good answer.

Automation Tool

The automation tool must be very carefully chosen before the

test automation process begins. The tester must know it

deeply to be able to differentiate an SUT (software under test)

bug from an automation tool bug. Having reusable functions

or class libraries is essential to obtaining a good automation

process. Complex functions that might not have the necessary

trustworthiness because of an automation tool’s dependencies

must be well considered before being created. This seems like

simple advice, but it’s a very difficult issue to solve: wrong

results reported by the tool. The code must be as reusable and

portable as possible for the whole suite of platforms to test.

 Interface

Changes in the environment where the tests are being run

might cause a lot of rework on the test automation framework,

or even on the existing scripts, which were made for a specific

environment. One of the biggest challenges to using

automated test suites is keeping them functional as the

product interface changes.

International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378, Volume-1 Issue-7, May 2013

 76
Retrieval Number: G0309051713/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

What if a test case is implemented and performed a number of

times, but its requirements change and the test case needs to

be performed in another environment? In fact, before

deciding to automate a test case it is necessary to know how

static the environment is. If the environment changes, it is

important to be prepared for it.

Building a test case that can be ported to as many

environments as possible, or which predicts low costs to be re

implemented to another environment, is very good practice.

Implementation Effort

The effort spent while a test is being run is a variable to be

considered in our automation viability analysis method. It is

good when a test case execution effort can be compared in its

manual and automated execution [5]. If an automated test runs

faster than running it manually, things would be relatively

simple, but unfortunately this does not occur every time.

Sometimes, the automatic execution of the test is slower than

the manual execution of the same test case. However, this is

no reason to give up automating some test cases. Considering

a manual test that runs faster than the automated one, one

might decide not to use automation, but even in this case an

automated test can be performed better than its manual

equivalent. This test case can probably be performed with

other tests engaged, so a lot of tests can be run in a test cycle at

once. If the automated method is chosen, the test can run all

night.

IV. FEASIBILITY ANALYSIS METHOD

On The basis of topic discussed in the previous section , some

question were proposed whose answer will be analysed and

judged properly to get an indicator of the outlay efficiency of

each test case ,as illustrated in following table:

Table 1: Question For Each point

[1] Ide

ntifi

er

[2] Topics [3] Related Questions

[4] 1 [5] Frequency [6] Ow many times is this test

supposed to be executed?

[7] 2 [8] Reusable

[9] Code

[10] Can this test or part of it be

reused in other test?

[11] 3 [12] Importance [13] How would you describe

the importance of this test

case

[14] 4 [15] Automatio

n

[16] Effort

[17] Does this test take a lot of

effort to be displayed ?

[18] 5 [19] Resources

[20]

[21] How many member of

your team should be

allocated or how

expensive is the

equipment needed during

this test”manual

Execution?

[22] 6 [23] Manual

Complexit

y

[24] Is this test Difficult to be

implemented manually?

Does it have any

embedded confidential

information?

[25] 7 [26] Automatio

n Tool

[27] How would you describe

the reliability of the

automation tool to be used

?

[28] 8 [29] Interface [30] How much interfacable is

this test?

[31] 9 [32] Implement

ation Effort

[33] Does this requires a lot of

effort to be implemented

Manually

The questions presented in Table 1 were answered for 500

previously automated test cases to serve as input for the

Decision Tree Learning Algorithm [8]. This set of test cases

involves two different levels of testing (system and

integration) and three different types of test (GUI,

performance and stress). Figure 1. The process of generating

and validating the tree is automatic. After receiving 500

entries to generate the tree, it was validated with 200 different

entries. The validation was done using test cases in integration

and system levels. The results obtained were Compared with

the manual results, which gave us an average assertion of

85.5%, as shown in Table 3. Since a good assertion

percentage result was obtained, the tree was eligible for use in

the automation viability analysis method. Table 2 presents the

classification of the 500 test cases, showing how many test

cases were used from each level and from each type of test.

The Decision Tree Learning Algorithm was implemented and

the inputs generated beforehand were supplied. The system

learns with the entries that are offered to it and suggests a

model to be used.

The model suggested with the 500 inputs generated was the

decision tree illustrated in Figure 1. The process of generating

and validating the tree is automatic. After receiving 500

entries to generate the tree, it was validated with 200 different

entries. The validation was done using test cases in integration

and system levels. The results obtained were compared with

the manual results, which gave us an average assertion of

85.5%, as shown in Table 3. Since a good assertion

percentage result was obtained, the tree was eligible for use in

the automation viability analysis method

Table2: Number Of test Cases by test level and test types

Test level / Test type System test Integration test

Performance 60 50

GUI 220 70

stress 60 40

A System of Humanizing Test Automation Outlay Efficiency

 77

Retrieval Number: G0309051713/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Fig 1: Decision tree for feasibility analysis

The tree represents the ways that can be followed by

answering the questions presented in Table 1. The numbers in

the grey circles are the Identifiers for the questions that they

are related to. The ‘Y’ and ‘N’ represent the end of the tree

and mean ‘Yes’ or ‘No’, respectively. They are the indicators

of outlay efficiency.

Table 3: validation results

Test Level Number of

Test cases

Used

Assertion

Number

Assertion

Percentage

System 150 127 85%

Integration 50 43 86%

Total 200 170 85.5%

All the proposed questions have a discrete number of

answers: ‘High’, ‘Medium’ or ‘Low’, which are represented

in the tree by the letters ‘H’, ‘M’ and ‘L’. Note that, depending

on the answer of each specific question, the tree takes you

different ways. Going through the tree from the top to the end

via the answered questions, an indicator of ‘Yes’ or ‘No’ will

be obtained, showing if a test case is viable or not for

automation. It is important to notice that not all the questions

need to be answered for a test case. For example: if the answer

given to the question number 2 is ‘H’, question number 3 will

never be answered. Also, it is worth clarifying that there is no

correct answer for these questions. However, the more you

know about the tests being analyzed, the better the chances

will be for success.

V. USING THE METHOD

To better understand the Decision Tree and how it works, we

provide an example. First, a scenario was created as shown in

Table 4. This presents the test case generated for the scenario

described before.

Table 4: example- Online Trading

[34] Scenario: In online trading on the internate , the user

should be able to perform a large amount of

transaction such as money transfer, product selling

and purchasing, payments among others .

Table 5: Test Case

Test case Description : Verify if an amount of money is

debited from an account “A” and Credited to an account

“B” when a user tries to transfer money from A to B

Steps Action Expected Result

1 Client successfully log

into the system to

account A

A list with all

available transaction

is shown

2 Client chooses to

perform a payment

The field related to

agency and account

number and the

values to be

transferred are

prompted to the user

3 Client fills in field to

payment the money to

account B

If the information is

valid , the password

will be requested. If

the information is not

valid ,user will be

prompted with an

error message and

will be asked to try

again.

4 Client types his password

and confirm the

operation

The previously typed

amount is debited

from Account A and

credited to account B

Starting with the first question on the tree, “How many times is

this test supposed to be executed?”, if this operation has few

executions, the answer is ‘Low’. This answer takes you to the

right side of the tree, leading to the second question, “Can this

test or parts of it be reused in other tests?” Let’s suppose that

the code used to automate this test has little chance of being

reused. Thus, the answer to Question 2 is ‘Low’. Now the

Decision Tree takes us to the left side of the tree, to the next

question, “How would you describe the importance of this test

case?” Making a transaction on a bank website is an important

task to be tested, so the answer is ‘High’. The left side is taken,

which leads to the last question, “How would you describe the

reliability of the automation tool to be used?” As the test has

very high relevance, the tool to be used must be quite reliable

to ensure that this test is in fact being well executed. Therefore,

the answer to this question is ‘High’. The summary of the

results reached with this example is presented in table 6.

Table 6: Answer for the example

[35] Identifier [36] Question [37] Answer

[38] 1 [39] How many times is this

test supposed to be

executed ?

[40] Low

[41] 2 [42] Can this test or parts of it

be reused in other test ?

[43] Low

[44] 3 [45] How would you describe

the importance of this

test case ?

[46] High

International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378, Volume-1 Issue-7, May 2013

 78
Retrieval Number: G0309051713/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

[47] 7 [48] How would you describe

the reliability of the

automation tool to be

used ?

[49] High

By answering the questions 1, 2, 3 and 7, following the

decision tree, the user would have a positive response, which

would mark this test as a good candidate for automation. Note

that it is not necessary to answer all the questions. Depending

on the answers that are given, the tree can conduct the user to

answer only some of the questions.

VI. CONCLUSION

There are other studies that show the problems experienced in

a software test automation process, as presented in [1], [6] and

[3].The current study differs from those because it not only

points out the problems, but also proposes a new way of

dealing with these problems. It offers a method to analyze the

tests, choosing which test cases are viable for automation

before starting the automation process. Since the success rate

of the automation process is low[7], the work presented here

can increase the chances of having a outlay efficiency process.

The study of the feasibility analysis method was based on a

mathematical procedure and the experience of the team,

which increases the trustworthiness of the work done.

According to the algorithm, the decision tree proposed also

has the ability to change as more answers are provided. This

process is an evaluative way of making decisions. However,

the tree used in the method proposed was constructed using a

high number of different entries, and it was noticed that when

it reached arround 300 entries the tree looked very stable,

suffering only small changes with the last 200 entries.

For future work, more experiments can be done to increase

the trustworthiness of the tree. It can be trained with other

types of tests and also validated with other entries to analyze

other sets of results and compare them with the current ones.

To improve the tool that is being built, other studies are being

done in order to define a scale of how easily the test case can

be automated. Based on this scale, and using methods such as

neural networks, committee machines and MLP, an order in

which the test cases should be automated will be suggested,

going from the easiest to the most difficult ones. Developing

the test cases following a pre-defined order will help

automation agility since the code can be reused, contributing

to the improvement of the framework library.

REFERENCES

1. M. Fewster, “Jumping Into Automation Adventure with Your Eyes

Open”, Journal of Software Testing Professionals, March, 2002.

2. J. Bach, “Test Automation Snake Oil”, presented at 14th

International Conference on Testing Computer Software,

Washington-USA, 1999.

3. J. Kent, “Advanced approaches to Software Test Automation Part 1”,

Journal of Software Testing Professionals, June, 2001.

4. J. G. Soderborg, “Five Factors for Finding Test Automation Success”,

WEB Seminars, available in http://www.segue.com/aboutsegue/

webinars/public/sdtimes_en/index.html, April, 2005.

5. B. Pettichord, “Success with Test Automation”, presented at Quality

Week, San Francisco, May, 1996.

6. B. Marick, “When Should a Test Be Automated”, presented at Quality

Week’ 98, San Francisco, 1998.

7. L. Hayes, “Establishing a Test Automation Function”, Journal of

Software Testing Professionals, March, 2000.

8. S. Russel and P. Norvig, Artificial Intelligence, Prentice Hall; 2nd

edition (December 20, 2002), USA, December 20, 2002.

AUTHORS PROFILE

Mr. Saket Vihari is Presently working in the

National Physical laboratory(Council of

scientific and Industrial research) , Newdelhi as

a Technical staff . He has got his MSc in

Electronics From Bihar University in 2008. He

has more than four years of Experience In

different Electrical , electronics and Material

Testing Laboratory. He has persuing his M.Tech

(CSE) from Amity University Noida. Currently

His area of research is dedicated to Automation

testing of different system.

Arun Prakash Agrawal is Asst. Prof. in Amity

University,NOIDA,UP.He has ten years of

experience of teaching at graduate and

post-graduate levels. He obtained his M.Tech. in

Computer Science and Engineering from Guru

Gobind Singh Indraprastha University, Delhi.

He is also the gold medalist of his batch. He has

taught at various engineering colleges of repute.

Presently he is pursuing his Ph.D. in the area of

software engineering from Guru Gobind Singh

Indraprastha University, Delhi. He has several research papers of national

and international repute to his credit. He He is a member of IEEE computer

society, IAENG and ACM. His area of interest includes software

engineering, software testing, computer networks and mobile computing.

