
International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378, Volume-1, Issue-7, May 2013

 85

Retrieval Number: G0313051713/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Abstract— In IAAS cloud virtual machine (VM) migration

between socket and nodes has been used to avoid conflicts among

VM on system resources such as CPU and memory.

Micro-architectural resources such as caches, memory controllers

and non-uniform memory access (NUMA) affinity, have relied on

intra socket scheduling to reduce cache contention. This paper

proposes algorithm for cluster-level virtual machine scheduling

based on cache sharing on same socket and these are considered

in dynamic environment which do not require any prior

knowledge on nature of VMs.The paper would present algorithm

for the scheduler into a real cloud system (Open Stack), and the

performance of the scheduler will then be investigated on various

scientific and commercial workloads.

Keywords—architecture, NUMA, OpenStack , CPU bound,

memory bound.

I. INTRODUCTION

This paper report on scheduling virtual machines based on

performance and work load analysis for an Open Stack based

IAAS architecture. In any cloud systems based on

virtualization, virtual machines (VM) share physical

resources. Although physical resource sharing can improve

the overall utilization of existing resources, contentions on

physical existing resources often lead to significant

performance degradation. To reduce the effect of such

contentions, cloud systems employs dynamic rescheduling of

VMs with live migration techniques [3], changing the position

of running VMs between cores and socket. Such VM

migration has been used to resolve conflicts or balance load

on system resources such as CPUs, memory, and I/O

sub-systems. VM migration can be triggered by monitoring

the usages of these resources for VMs in a cloud system [4, 8].

The multi-cores architecture has enabled the sharing of

micro-architectural resources such as shared Last Level

caches and memory controllers. Contention on

micro-architectural resources has been considered as a major

reason for performance variation, as an application can be
affected by other applications on same cache even though it

receives the same share of CPU, memory, and I/O. For a

single system, there have been several prior studies to reduce

the impact of contention on shared Last level caches and

memory by carefully scheduling threads [2, 9]. The technique

is to group applications to share a cache to mitigate the overall

cache misses for a system. A cloud systems with virtualization,

provides an opportunity to enhance the scope of

contention-aware scheduling, as virtual machines can be

scheduled with live migration.

Manuscript received 0n May 2013.

Jayalakshmi N, MTECH [SE], 4th Semester, Department of Information

Science and Engineering, R V College Of Engineering,

India,Bangalore–560059,India.

Sagar B M, Associate Professor Department of Information Science and

Engineering, RV College Of Engineering ,India, Bangalore–560059,India.

This paper uses live VM migration and dynamically schedule

VMs for minimizing the contention on shared caches and

memory.

This paper proposes contention-aware VMs scheduling

technique for cache sharing. This techniques consider the

cache behaviour of VMs at runtime, and dynamically migrate

VMs between cores and sockets, if the current position of

VMs is causing shared cache conflicts or wrong NUMA

affinity. Since the techniques identify the VM behaviour

on-line and resolve conflicts with live migration from socket

or node, they do not require any prior knowledge on the nature

of VMs that has to be scheduled. The cache aware cloud

scheduling algorithm reduces the last level cache (LLC)

misses in a particular socket of cloud system. This concept

can be evaluated using selected SPECcpu 2006 applications

in various combinations.

Figure 1: Shared caches and NUMA

II. MOTIVATION

2.1 Cache Sharing

Although shared caches among cores can potentially increase

the efficiency with dynamic capacity sharing among all cores,

they also introduce contention when one of cores produces

excessive cache misses and prevents the use of cached data

from the other cores. Figure 1 shows a multi-core server

system with multiple sockets. In each socket, there will be a

shared last-level cache (LLC), and all cores accesses memory

across different sockets which have longer latencies than

those to the local socket. There have been discussed several

studies to reduce such interferences in shared caches with

partitioning Last Level cache [6, 7] or scheduling threads [5,

9]. In the all scheduling solutions [9], threads are made into

groups and mapped to different sockets, aiming to reduce the

sum of cache misses of all the shared LLCs. In the scheduling

policy in this paper for a system with two sockets, threads are

sorted based on their LLC misses, and grouped into set of two

with similar or same sum of LLC misses.

Virtual Machine Scheduling for Architectural

Shared Resources in Open Stack Based Cloud

Jayalakshmi N Sagar B M

Virtual Machine Scheduling for Architectural Shared Resources in Open Stack Based Cloud

 86
Retrieval Number: G0313051713/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Minimizing the difference between LLC misses among the

last-level caches mitigate the overall LLC misses in the

system. However, NUMA affinity is more complicated for

such cache-aware scheduling. If an application is running on

different socket from the socket in which its memory pages

reside, the cost of LLC misses will increase due to the NUMA

effect. Therefore, scheduling to minimize the overall cache

misses must also consider possible NUMA effects In

virtualized systems, commercial hypervisor provides dynamic

page migration to reduce memory access latencies for VMs,

but it does not consider cache sharing effect [1].The prior

studies use thread scheduling in a single system to reduce the

shared cache contention and negative NUMA effects. Such

intra-core and intra socket scheduling limits the opportunity

to know the best group of threads sharing an LLC within a

system. However, in a virtualized cloud system composed of a

large number of nodes, VMs can migrate across physical

system (or node) boundaries, potentially increasing the

chance to find a better grouping of VMs for shared Last Level

Caches, and support NUMA affinity.

2.2 Performance Implication in Clouds

This section quantitatively intended to show the performance

implication of cache sharing and NUMA affinity in a small

scale cloud system. This implication uses a 4-node cluster

with 8 cores in two sockets for each node. The details of the

experiments are shown in Section 4.1. Table 1 presents the

performance of a combination of workload from 4 application

types on the cluster, with 8 VM instances for each

combination of application type. For the cache sharing case,

the best case is to map VMs to cores so that the sum of LLC

misses of all the sockets in the cloud system is reduced. The

worst case is the mapping VMs with the highest difference

between the largest and smallest per-socket LLC misses in the

cloud system. milc and GemsFDTD could increase their

performance by sharing caches with other less

memory-intensive workloads. Similarly, hmmer and namd

have no improvements in performance, since these

benchmarks do not require high capacity for LLCs.

Figure 3: Memory-aware Cloud Scheduler

In a large scale cloud system, the heterogeneity of VM cache

behavior’s across different nodes, is expected to increase, as

various customers will share the cloud. Exploiting such

heterogeneity of cache behavior’s and memory-aware cloud

scheduling can potentially improve the efficiency of shared

cache and NUMA affinity, avoiding the worst case

scheduling.

III. MEMORY-AWARE CLOUD SCHEDULING

 For memory-aware scheduling, the cloud scheduler collects

the cache behavior of each VM from computing nodes, and

migrates VMs if such migration can potentially reduce the

overall cache misses and the average memory access latencies

by NUMA affinity in the cloud system. Figure 3 explains the

overall architecture of the memory-aware cloud scheduler. In

each computing node, a monitor checks LLC misses with

hardware performance monitoring counters, and periodically

sends the per-VM LLC miss and NUMA affinity information

to the cloud scheduler. Based on the VM status information

from all the nodes, the cloud scheduler makes global

scheduling decisions.

This paper presents scheduling policy for cache-aware

scheduler which considers only the contentions on shared

caches, ignoring the NUMA effect. This policy will group

VMs to minimize the overall LLC misses in the entire cloud

system, even if the grouping can violate NUMA affinity. One

of the advantages of the proposed memory-aware scheduler is

that they use only the information of VMs measured

dynamically, without previous knowledge on behavior of the

VMs. The memory-aware cloud schedulers initially place

VMs on computing nodes, only considering CPU and

memory availability for each node. However, they

dynamically identify the cache behavior of the VMs, and

re-locate them to improve the memory behavior.

Algorithm 1: Pseudo code for Cache-aware scheduler

PList =< pm1, ..., pmn > // LLC misses of all compute nodes

VList =< vm1, ..., vmk > // LLC misses of VMs in a node

/* Step1: local phase */

for each node i in 1 ... n do

// gather Last Level Cache misses for all VMs in node i

pmi (gather (i)

VList (sort (pmi)

// distribute the VMs such that sockets with even LLC misses

distribute (VList)

end for

/* Step2: global phase */

// find nodes in entire cloud with the largest and smallest LLC

misses

maxNode(findMaxNode (PList)

minNode(findMinNode (PList)

// find VMs with largest and smallest Last Level Cache

misses from two nodes

maxVM (findMaxVM (maxNode)

minVM (findMinVM (minNode)

if maxNodeLLC −minNodeLLC > threshold then

swap (maxVM, minVM)

end if

Cache-Aware Scheduler: The cache-aware scheduler

relocates VMs to minimize the overall Last Level Cache

misses in the cloud system. It employs both local and global

scheduling phases. In local phase, VMs in each node are

grouped and scheduled to shared cache (sockets) in the node.

Since VM migrations across physical nodes consume network

bandwidth and computational capability, we attempt to

minimize such VM migration by optimizing VM scheduling

within a node first. In the global phase, the cloud scheduler

attempts to re-distribute VMs to have even LLC misses in all

the nodes in the cloud system.

International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378, Volume-1, Issue-7, May 2013

 87

Retrieval Number: G0313051713/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Algorithm 1 presents the cache-aware scheduling with the two

phases, ie in the local phase, VMs in each node are sorted by

LLC misses, and then grouped to make each LLC have even

misses. We use the same simple algorithm used by Zhuravlev

et al [9]. For example, for a node with two shared cache

domains, the VM with the largest number of LLC misses is

assigned to the first group, and the second VM is assigned to

the second group. Among the remaining VMs, the VM with

the smallest number of LLC misses is assigned to the first

group, and the VM with the second smallest number of LLC

misses is assigned to the second group. This continues until all

VMs are assigned to one of the two groups. In the global

phase, the scheduler finds two nodes, in the cloud system,

with the largest and smallest numbers of LLC misses. From

the two nodes, it finds two VMs with the largest and smallest

numbers of LLC misses, respectively. If their LLC miss

difference is larger than a threshold, the two VMs are

swapped by live migration. The scheduler periodically

executes the two-phase scheduling to gradually reduce the

overall LLC misses in the cloud system.

Table 1: Selected benchmarking workloads from

SPECcpu 2006

IV. EVALUATION

4.1 Methodology

We have implemented the proposed schedulers running in a

separate cloud manager node. Each computing node is

virtualized with the open source Xen hypervisor. Each node

runs a monitoring tool, which records LLC misses for VMs

and periodically sends the miss and NUMA affinity

information to the cloud scheduler. On top of the Xen

hypervisor, each node runs 8 guest VMs, which use a Ubuntu

distribution based on Linux kernel 2.6.18. In our small scale

test bed, there are 4 physical nodes with total 32 VMs. Each

physical node has 8 cores placed on two chips (sockets) and

each socket on a node has a 12MB L3 cache shared by 4

cores. In the dual-socket system, memory access latencies to

the local socket and remote sockets are different. Each VM

employs a single core and 1GB guest physical memory size.

Table 1 presents our benchmark applications. Analysis create

6 workloads by mixing applications with various memory

characteristics. Each workload has 4 different benchmarking

applications, and 32 VMs run 8 instances of each

application.

4.2 Performance Improvements

Performance can be measured in terms of LLC misses and

Inter process communication of VMs where these

benchmarks are running. When each VM is pinned to physical

core of same socket and benchmarks of various combinations

are experimented. milc with lbm pinned to same socket will

give more LLC miss rate, which is a special case to be

considered.

V. CONCLUSIONS AND FUTURE WORK

This paper proposed memory-aware cloud scheduling

technique, which do not require any prior knowledge on the

behaviours of VMs. This paper shows that VM live migration

can also be used to mitigate micro-architectural resource

contentions, and the cloud-level VM scheduler must consider

such hidden contentions.

REFERENCES

1. VMware ESX Server 2 NUMA Support. White paper. .

2. BLAGODUROV, S., ZHURAVLEV, S., MOHAMMAD, D., AND

FEDOROVA,A. A case for numa-aware contention management on

multicore processors. In Proceedings of the USENIX Annual Technical

Conference (2011).

3. CLARK, C., FRASER, K., HAND, S., HANSEN, J. G., JUL, E.,

LIMPACH, C., PRATT, I., AND WARFIELD, A. Live migration of

virtual machines. In Proceedings of the 2nd conference on Symposium

on Networked Systems Design & Implementation (2005).

4. GULATI, A., SHANMUGANATHAN, G., HOLLER, A., AND

AHMAD,I. Cloud-scale resource management: challenges and

techniques.In Proceedings of the 3rd USENIX conference on Hot topics

in cloud computing (2011).

5. MERKEL, A., STOESS, J., AND BELLOSA, F. Resource conscious

scheduling for energy efficiency on multicore processors. In

Proceedings of the 5th European conference on Computer systems

(2010).

6. QURESHI, M. K., AND PATT, Y. N. Utility-based cache partitioning:

A low-overhead, high-performance, runtime mechanism to partition

shared caches. In Proceedings of the 39th Annual

IEEE/ACMInternational Symposium onMicroarchitecture (2006).

7. SUH, G. E., DEVADAS, S., AND RUDOLPH, L. A new memory

monitoring scheme for memory-aware scheduling and partitioning. In

Proceedings of the 8th International Symposium on High-Performance

Computer Architecture (2002).

8. WOOD, T., SHENOY, P., VENKATARAMANI, A., AND YOUSIF,M.

Black-box and gray-box strategies for virtual machine migration. In

Proceedings of the 4th USENIX conference on Networked systems

design and implementation (2007).

9. ZHURAVLEV, S., BLAGODUROV, S., AND FEDOROVA, A.

Addressing shared resource contention in multicore processors via

scheduling. In Proceedings of the 15th International Conference on

Architectural support for programming languages and operating

systems (2010).

 Memory bound CPU-bound

1 GemsFDTD milc Hmmer namd

2 Omnetpp lbm Gobmk sjeng

 Memory bound CPU-bound

3 cactusADM gcc Soplex namd

 Memory bound CPU-bound

4 libquantum tonto Povray sjeng

Memory bound

5 cactusADM milc Omnetpp soplex

CPU bound

6 gobmk sjeng Namd povray

