
International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378, Volume-1 Issue-7, May 2013

 59

Retrieval Number: G0321051713/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication



Abstract— This article describes an Improved technique for the

sub sequence discovery algorithm used for natural language

processing in question answering system for matching user text

input in natural language processing against an existing

knowledge base, consisting of semantically described words or

phrases. Most common methods & techniques of natural

language processing are overviewed and their main problems are

outlined. A sequence matching with subsequence analysis

algorithm is analyzed and improvements are done which deals

with the problems of exact matching,change in custom spelling

errors as well as the improvement in the performance metric of the

similarity matching.Popular approaches that solve this problem

include stemming, lemmatization and various distance

functions,sequence matching techniques are analysed to get the

better possible technique for solving the problems with higher

accuracy. Then the major components of the similarity measure

are defined and the computation of concurrence and dispersion

measure is presented. Results of the algorithms performance on a

test set are then analysed.

Index Terms—About four key words or phrases in

alphabetical order, separated by commas.

I. INTRODUCTION

 In recent years Information retrieval becomes most essential

task of retrieving the data.ie extracting the data from existing

knowledge base. In natural language processing information

can be stored in any form and in any language format, the user

and researchers are always in hunt of searching and extracting

the data or information, which can be used as a resource for

enhancing and predicting the future work. For such task

researches and users can use Question-answering systems. In

Question-Answering system the information to be extracted is

provide in the form of query & is searched against the existing

knowledge base. For extracting the related knowledge

information search algorithms are used in such systems.

These algorithms employ different techniques and

methodologies to match the users input query against the

knowledge base. The techniques may vary according to the

applications and the nature of task. The query can be a set

finite or infinite collection word or text. The term to searched

in the form of query can be in various morphological

variation. Popular approaches that are used and are most

successful are stemming, lemmatization and various distance

functions. In this article we have proposed some

improvements in the existing sub sequence discovery

algorithm suggested by marko Freme and Milan Ojstersk[1].

Manuscript received May, 2013.

Abhishek.D.Pathak, Computer science & engineering, Nagpur/YCCE/

MGI,Nagpur,India.

S.J.Karale, Asst professor, Computer Technology, Nagpur/YCCE/

MGI,Nagpur,India.

In first phase we have analyzed the popular approaches used

in natural language processing for the similarity matching,

then the problems are outlined, then improvements are done

for overcoming those problems and lastly its performance is

analyzed.

II. SUB SEQUENCE DISCOVERY

As suggested by Marko Freme & Milan Ojstersk[1], Sub

sequence discovery algorithm is used to find the text matching

from the knowledge base based on similarity matching. This

algorithm does not require set of rules for preprocessing of

words. This algorithm uses sub sequence from the word or

phrase from the query to find out the most similar matching

from the knowledge base.

III. STEMMING

Stemming is a preprocessing step in information retrieval

system before indexing and searching. It basically converts

morphed words into its root word i.e. stemming gets

converted into its root word stem. For reducing the word form

from its morphed form it uses the set of rules without

considering parts of speech tagging and context of word. The

queries fired are segmented and each segment of word is then

stemmed and used for searching the document. Helpful Hints

IV. LEMMATIZATION

In heavily inflected languages the use of lemmatization is

preferred. It offers a fast and accurate way of matching user

input to morphed instances of a headword but requires exact

dictionaries, which have to be build by language experts. A

major problem in the process of lemmatization is

disambiguation, which occurs when a word or phrase can be

transformed into two or headwords. It is most widely being

solved with the usage of tree taggers which require large

training corpuses and use probability to determine the most

suitable headword, which we call a lemma. Building such

large collections is very time consuming and requires the aid

of language experts. A very large portion of misses in

Lemmatization, when being use on heavily inflected

languages, is produced from unknown words, such as names,

surnames and geographical locations. Those are mostly

excluded from dictionaries and tagged corpuses, which makes

them nigh on impossible to convert to a lemma. Input error

(misspelling) intolerance during lemmatization or tree

tagging is in most cases also unaddressed.

Lemmatizing deals with the complex process of first

understanding the context, then determining the POS of a

word in a sentence and then finally finding the ‘lemma’. In

fact an algorithm that converts a word to its linguistically

correct root is called a lemmatizer.

Partially Improved Subsequence Discovery

Algorithm for Sequence Matching

A. D. Pathak, S. J. Karale

Partially Improved Subsequence Discovery Algorithm for Natural Language Processing

 60
Retrieval Number: G0321051713/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

A lemma in morphology is the canonical form of a lexeme.

Lexeme, in this context, refers to the set of all the forms that

have the same meaning, and lemma refers to the particular

form that is chosen by convention to represent the lexeme. In

computational linguistics, a stem is the part of the word that

never changes even when morphologically inflected, whilst a

lemma is the base form of the verb. Lemmatizers are difficult

to implement because they are related to the semantics and the

POS of a sentence. Lemmatization usually refers to doing

things properly with the use of a vocabulary and

morphological analysis of words, normally aiming to remove

inflectional endings only and to return the lemma [1].

V. ANALYSIS OF SUBSEQUENCE DISCOVERY

ALGORITHM

For analyzing the performance of this algorithm we have

implemented this algorithm and checked its performance on

the data set of English words. As per given by Marko Freme &

Milan Ojstersk[1] the average similarity matching for this

algorithm is 86.4 % and since this algorithm is error tolerable

and does not require additional rules it is better for the

question answering system for semantic analysis. But they

have also suggested some enhancements in the working of this

algorithm. Such as if lemma is missed then the degree of

similarity of this algorithm degrades , if there is change in

order of spelling then also its similarity matching degrades as

well as the algorithm is not implemented on phrases.

VI. AIM

As mentioned above the limitations of the sub sequence

discovery algorithm we plan to improve the similarity

matching by improving and removing the limitations of the

sub sequence discovery algorithm. Our approach basically

concentrates on the implementation of the algorithm on

phrases and change in the order of words of characters

VII. OUR APPROACH

In this approach we have first done same thing as it is already

done in sub sequence discovery algorithm. Firstly we have

also used the Longest common subsequence i.e. LCS

algorithm for finding out the sub sequences, while finding the

sequence we also checked the sequence of order of characters.

after getting the sequences of proper order, we then applied

the threshold value to filtered out the only those sequences

those satisfies the threshold criteria. so at last we get only that

output which is most relevant with query , with this also have

maintained sequence order in words as well as phrases.

1) As the sequence value < or equal to the threshold value

then we remove that sequence form the candidate list and

go for the next sequence.

2) As the sequence value becomes equal to the threshold

value then that sequence is extracted for the similarity

matching.

VIII. EXPERIMENTAL RESULTS

We made the collection of more than three thousand words

and five hundred phrases of English language of average

length of 20 letters in word set and average of three words in

each phrase i.e. at least of 25 characters and it is then used as

the source file as a base for finding out the text to be searched.

In our Analysis we have also done the analysis on spelling

errors, In case of spelling errors the algorithm generates the

correct prime form from the data set.

We have done the analysis of the algorithm on two criteria

 Occurrence

 Order

We have listed out some example for query to get the analysis

of algorithm

Sr no

Query

Similarity

Avg

%
1 Abomi 3/3 100%

2 Evaluation of 2/2 100%

As mentioned in the above table we have taken two samples

one for word and the other for the phrase and in both the

example the lemmas are missed but their similarity matching

is up to the 100 % as well as the ordering measuring is also

100%. As in the question answering system we fire the query.

We have done the same type of analysis atleast on more than

50 examples and we found that in some places where n some

words if the part of lemma in the query is present then our

similarity matching varies between 50% to 75%, but their also

our ordering measure is of 100%. So on the basis of those 50

examples our degree of similarity matching goes up to 93.09

% and in phrases we have done the analysis on the varying

factor of threshold as mentioned below.

Threshold (%) Concurrence % Ordering measure

100 82.30769231

100

83
68.89416677

100

70
60.65833333

100

50
37.23333333

100

28
10.95833333

100

21
10.08333333

100

We have implemented all the three algorithms for matching

user text input with datasets ,sub sequence discovery

algorithm is not implemented on data set of phrase, the aim of

our project is to find out the better approach for sequence

matching technique .

We have tested the algorithm on word set of 23000 and on

512 phrases so we found that in case of improved SSD

algorithm our performance metric gets increased by 7.35 %.

Both the algorithms i.e. Sub sequence discovery algorithm &

Improved sub sequence discovery algorithm are error

tolerable & does not require the support additional rules and

dictionary, as well as the algorithm provides the support for

flexible sequence order.

IX. CONCLUSION

In this work we present a set of algorithms that aim to

integrate information derived from different knowledge

sources in order to enhance the results obtained by Question

Answering system. The experiments are promising, showing

that the Improved Sub sequence discovery algorithm can

exploit the increasing amount of collectively authored, highly

heterogeneous, online semantic data, in order to obtain more

accurate answers to questions, with respect to a scenario.

International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378, Volume-1 Issue-7, May 2013

 61

Retrieval Number: G0321051713/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

As per shown in table we have shown the results of 10 data

sets containing of words & phrases. So for Improved sub

sequence discovery algorithm the average similarity is

increased up to 93.09% & ordering measure is achieved up to

100%, which is better as compared to the previous sub

sequence discovery algorithm.

The enhancements suggested by Marko Freme & Milan

Ojsteršeko are covered in the improved algorithm. We have

tested our algorithm with custom spelling errors. We have

also tested our algorithm by changing the order of phrases & it

performed well we have also tested our algorithm with

various length & order. we have also tested our algorithm on

different parameter.

Fig 1 performance of improved algorithm

As per the analysis of all the three algorithm i.e. Sub sequence

discovery ,Improved sub sequence discovery & stemmer

algorithm we found that our Improved algorithm is

performing better which is better for the semantic web &

search engines.

In the Improved version if the similarity matching is greater

than the threshold value then it provides synsets from Word

set and the user should select one sense of the synsets offered.

X. FUTURE SCOPES

The success of a query evaluation depends on a good mapping

between the names of relations used in the user’s query and

names of relations used in the knowledge base. The success of

a query evaluation depends on a good mapping between the

names of relations used in the user’s query and names of

relations used in the knowledge base. we propose building a

special case of suffix trees best suited for subsequence

discovery. Such trees would reduce the time complexity of

single sequence comparison against a sequence collection and

would allow the development of special algorithm designed to

find the most similar match. In course of this work we also

plan to evaluate most commonly found subsequences and

equip them with statistics and semantics. We plan to extract

phrases out of openly available thesauruses such as

EuroVoc[6] and add them to our test set. We also plan to

insert custom spelling errors and change the word order in

phrases to make the test set more representative. With the help

of such a test set we plan to improve our algorithms

effectiveness by trying out different algorithm parameter

values. We also want to test different ways of determining the

best sequence match. In our work we simply chose the

sequence with the highest similarity measure, but we think

that other factors can have a large effect on the most relevant

sequence found[1].The algorithm that we have enhanced is

better for the question Answering system. Finally, as future

work we will explore that how automatically this improved

algorithm will generate accurate answers according to the

users need. We have also decide to implement this algorithm

for Question Answering system.

REFERENCES

1. Marko Ferme, Milan Ojsteršeko “Sequence matching with

subsequence analysis”, ISBN: 978-960-474-250-9. Advances in

Communications, Computers, Systems, Circuits and Devices.

2. INES ČEH, MILAN OJSTERŠEK “Developing a Question Answering

System for the Slovene Language”, WSEAS TRANSACTIONS on

INFORMATION SCIENCE and APPLICATIONS, Issue 9, Volume 6,

September 2009,ISSN: 1790-0832.

3. Deepa gupta, Rahul kumar yadav, Nidhi sajan, “ Improving

Unsupervised Stemming by using Partial Lemmatization Coupled with

Data-based Heuristics for Hindi” International Journal of Computer

Applications (0975 – 8887) Volume 38– No.8, January 2012 .

4. Maria Vargas-Vera, Enrico Motta and John Domingue “AQUA: An

Ontology-Driven Question Answering System”, AAAI Technical

Report SS-03-07.

5. Information Retrieval: Data Structures & Algorithms, edited by William

B. Frakes and Ricardo Baeza-Yates.

6. M. Popovic, P. Willett, "The effectiveness of stemming for natural

language access to Slovene textual data", Journal of the American

Society for Information Science, 43(5), 384–390, 1992.

7. Anjali Ganesh Jivani,” A Comparative Study of Stemming Algorithms”

Int. J. Comp. Tech. Appl., Vol 2 (6), 1930-1938.

8. ” A survey sequence matching & alignment algorithm” by By Jennifer

Johnstone.

9. “A Guided Tour to Approximate String Matching by GONZALO

NAVARRO, ACM Computing Surveys, Vol. 33, No. 1, March 2001,

pp.31–88.

10. [A Fast Generic Sequence Matching Algorithm, David R. Musser Gor

V. Nishanov Computer Science Department Rensselaer Polytechnic

Institute, Troy, NY 12180 fmusser,gorikg@cs.rpi.edu February 2,

2001.

11. Borut Gorenjak, Marko Ferme, Milan Ojsteršek, “A Question

Answering System on Domain Specific Knowledge with Semantic Web

Support” INTERNATIONAL JOURNAL OF COMPUTERS Issue 2,

Volume 5, 2011.

12. Yajing Zhao,Jing Dong ,senior Member ,IEEE ,and Tu Peng “Ontology

classification for Semantic-Web based software Engineering” IEEE

Transactions on services computing ,vol 2 no 4 October-December

2009.

13. ”Text searching algorithm,volume-1,forward string matching” Borivoj

Melichar ,Jan houlab, Tomas Polchar,November 2005.

14. ”Udi Manber, Sun Wu. "Fast text searching with errors." Technical

Report TR-91-11. Department of Computer Science, University of

Arizona, Tucson, June 1991.

15. Udi Manber, Sun Wu. "Fast text search allowing errors."

Communications of the ACM, 35(10): pp. 83–91, October 1992,

doi:10.1145/135239.135244.

16. A comparison of four pair-wise sequence alignment methods” Nadia

Essoussi1 and Sondes Fayech1, published online December 28, 2007.

17. ”Solving Sequence Alignment Problem Using Pipeline Approach” by

Pankaj Agarwal1 and S. A. M. Rizvi2, BVICAM’s International Journal

of Information Technology. BIJIT – 2009 Vol. 1 No. 2 ISSN 0973 –

5658.

18. “Method of Fuzzy Matching Feature Extraction and Clustering

Genome Data”by Nagamma Patil 1+, Durga Toshniwal 1 and

Kumkum Garg 2, IPCSIT vol. 30 (2012) © (2012) IACSIT Press,

Singapore.

19. S. Pohorec, M. Verlič, M. Zorman, Domain specific information

retrieval system, Proceedings of the 13th WSEAS international

conference on computers (part of the 13th WSEAS CSCC

multiconference), July 2009, pp. 502-508.

http://en.wikipedia.org/wiki/University_of_Arizona
http://en.wikipedia.org/wiki/University_of_Arizona
http://en.wikipedia.org/wiki/Communications_of_the_ACM
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1145%2F135239.135244

