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Abstract—This paper deals with the nonlinear observer-based 

synchronization problem for coupled chaotic systems. At the 

outset, complete synchronization conditions of coupled chaotic 

systems for known master and slave systems parameters, is 

provided. The active control law developed is based on the use of 

aggregation techniques for error dynamics stability study and the 

arrow form matrix for systems description. Then, by the design of 

an adequate nonlinear state observer, a new synchronization 

scheme is formulated for two identical chaotic systems. As a final 

point, the proposed observer-based synchronization between two 

nearly identical chaotic systems with unknown parameters is 

carried out. Numerical simulations are presented to assess the 

performance and the efficiency of the proposed contributions.  

Index Terms—Aggregation techniques, Arrow form matrix, 

Chaotic systems, Synchronization, Nonlinear observer, Unknown 

parameters.  

I. INTRODUCTION 

The synchronization phenomenon is an interesting and well-

known property of chaotic systems. Since its introduction by 

Pecora and Carrol in 1990 [1], chaos synchronization has 

attracted increasing interest in both theory and applications 

[2-4], as far as several fields are concerned. As a matter of 

fact, the synchronization of chaotic systems has been 

successfully applied in secure communication and image 

encryption, information processing, life science [5-12], and 

so on. Recently, chaos synchronization has been studied 

from various angles and a variety of different 

synchronization phenomena have been discovered, such as 

generalized synchronization [13-14], phase synchronization 

[15], lag synchronization [16], anti-synchronization [17], 

hybrid synchronization [18-20], observer-based 

synchronization [21-23], etc. 

The chaos-based encryption has suggested a new and 

efficient way to deal with the intractable problem of fast and 

highly secure information encryption.  

Indeed, chaotic systems have many important properties, 

such as the sensitive dependence on initial conditions and 

system parameters, pseudorandom property, no periodicity 

and topological transitivity, etc. In such a way, most 

properties meet some requirements, such as diffusion and 

mixing, in the sense of cryptography. Consequently, chaotic 

cryptosystems have more useful and practical applications 

[24-25]. 

The layout of this paper is as follows: synchronization 

behaviour of two identical Chen systems is, firstly, studied. 

Then, the proposed approach dealing with the nonlinear 

state observer design viewpoints, relatively to the coupled 

drive-response Chen chaotic systems, is developed. Finally, 

the problem of synchronization between two chaotic 

systems with unknown parameters is investigated. 
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II. PROBLEM STATEMENT 

Throughout the present paper, the use of the aggregation 

techniques [26-27] associated to the arrow form matrix [28-

30], is, firstly, applied to synchronize two identical Chen 

systems [31]. Then, a new systematic design procedure to 

synchronize a class of autonomous chaotic systems, thanks 

to the nonlinear state observer design viewpoints, is 

proposed. Ultimately, by adopting the same strategies 

leading to synchronize the two identical chaotic systems 

when all system parameters are known, the possible range of 

variation authorized to maintain both chaotic behaviour of 

drive and response systems and their complete 

synchronization, in the particular case where system 

parameters are unknown, is considered.  

III. NEW FEEDBACK CONTROL LAW 

SYNCHRONIZING TWO IDENTICAL COUPLED 

CHAOTIC CHEN SYSTEMS 

The stability study of the dynamical error system is 

considered, in this part, in order to synchronize two identical 

chaotic Chen systems [3]. 

A. Error System Description 

The studied chaotic Chen system is described by the 

following nonlinear differential equations [17]: 
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1 2
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It is crucial to denote that the Chen system (1) exhibits a 

chaotic attractor for the following parameter values: 

35 3,      and 28.   

Consider a master Chen system given by: 
 

 

1 2 1

2 3 1 2

3 1 2 3

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

m m m

m m m m

m m m m

x t x t x t

x t x t x t x t

x t x t x t x t



  



 

   

 







                 (3) 

which drives a slave Chen system described by: 
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1 2( ),  , ,
i

u t i   are the appropriate control functions to be 

determined. 
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S

e t  

 
1 2 3

( ) ( ) ( ) ( ) ,
T

S S S S
e t e t e t e t  be such that: 

1 2 3( ) ( ) ( )   , ,
Si mi si

e t x t x t i                                       (5) 

and leading to the error dynamics equations below: 
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which can be rewritten in the following form: 
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                                                                                            (7)    

with: 
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                                                                      (8) 

The synchronization of the coupled master-slave Chen 

chaotic dynamical system needs the stabilization of the error 

system (6), which can be achieved when the following 

nonlinear active feedback control laws: 

3
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are applied;   1 2(.) (.) ,  ,
ij

K k i    and 1 2 3, , ,j   the 

instantaneous control gain matrix.  

Then, it comes: 
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                     (10)                                                        

Therefore, the controlled dynamical error system can be 

described by: 
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e t A e t                                                            (11) 
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So, the nonlinear matrix elements (.),
ijc

a  

  1 2 3(.) (.) ,  , , , ,
ijc c

A a i j    depend on control gains, 

slave and master state variables. 

Now, in order to study the stability of (10), our task is 

restricted to choose the control gains, in one hand, to 

simplify the complexity of the dynamical error system, and 

to make efficient the following proposed stability method, in 

the other hand.  

B. Proposed Sufficient Stability Conditions 

When the considered system (10) is stabilized by the state 

feedback control law ,u  the error will converge to zero as 

;t    then, the systems (3) and (4) will be globally 

synchronized. 

Taking into account the importance of arrow form choice for 

instantaneous characteristic matrices, to obtain useful 

sufficient stability conditions for nonlinear systems, as 

shown in [28-30], let design a suitable state feedback 

controller of system (4), so that the closed-loop system (11) 

being described by the following nonlinear differential 

equations form: 
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which leads to an instantaneous characteristic matrix under 

the arrow form, such that non zero elements are located in 

its main diagonal, its first row and its first column.  

The application of the aggregation techniques [26-27], for 

the stability study, associated to the arrow form matrix, for 

the system description, leads to the following theorem.  

Theorem. The error system, described by (6) is stabilized by 

the nonlinear state feedback control law defined by (9), if 

the matrix (.),
c

A  given by (12), is under the arrow form 

(13) and such that: 

i. the nonlinear elements are isolated in either one   row or 

one column of the matrix (.),
c

A  

ii. the diagonal elements, (.),
ii

c
a  of the matrix (.)

c
A  are 

such that : 

    0 2 3(.)  ,
iic

a i                                                          (14) 

iii. there exist 0,   for which: 

     
11 1 1

3
1

2

(.) (.) (.) (.)
i i iic c c c
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a a a a 
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                         (15)  

Proof. The overvaluing 

system  (.) ,
c

M A  
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associated to the vectorial norm  
1 2 3

( )
T

p z z z z , 

 
1 2 3

T

z z z z , is defined, in this case, by the 

following system of differential equations: 
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z t M A z t                                                      (16) 

such that the elements (.)
ij
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c
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from the ones of the matrix (.)
c

A  by substituting the off-

diagonal elements by their absolute values, such that: 
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The system (6) is then stabilized by (9), if the matrix 

 (.)
c

M A  is the opposite of an M   matrix [27], or if, by 

application of the aggregation techniques [26], the sufficient 

stability conditions, for 0,   are formulated in the 

subsequent manner: 
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The following development of the first member of the last 

inequality (18): 
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                                                                                          (19)  

achieves easily the proof of the theorem. 

 

C. Application of the Proposed Stability Conditions to 

Synchronize the Coupled Master-Slave Chen Chaotic 

System 

The concept of chaos synchronization emerged much later, 

not until the gradual realization of the usefulness of chaos 

by scientists and engineers. Synchrony is the simplest effect 

of coupled identical systems: two identical systems display 

the same dynamical pattern in their common phase space 

[4]. For that reason, the developed state feedback control 

technique is applied, in this subsection, to achieve chaos 

synchronization of two identical Chen systems. 

In fact, the characterization of the closed-loop system (11) 

by an arrow form matrix is easily checked by choosing the 

correction parameters 
13

(.)k  and 
22

(.)k  such that: 
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                                                            (20) 

To satisfy the assumption (i) as well as the constraints (14) 

of the above-mentioned theorem, the two gain parameters 

12
k  and 

23
k  are chosen linear, such that: 
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                                                                 (21) 

Then, it remains only to fulfil the condition (15), expressed 

in this case as follows: 
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to guarantee the asymptotic stability of the dynamical error 

system (10). 

So, 
21

 (.)k  and for 0,   one possible choice of the other 

gain parameters is given by: 
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Hence, the instantaneous control gain matrix (.)K  can be 

chosen as: 

3 1

1

2

0 0

( ) ( )
(.)

( )

s m

m

x t x t
K

x t

 

 
  

                           (24) 

This choice ensures that the synchronization between 

systems (3) and (4) is achieved. This is also confirmed by 

the exponential convergence of the synchronization quality 

defined by the error propagation on the error states: 

2 2 2

1 2 3
( ) ( ) ( ) ( )

S S S S
e t e t e t e t                                  (25) 

Fig. 1. shows the error dynamics in the uncontrolled state, 

whereas both Fig. 2. and Fig. 3. illustrate the error dynamics 

when controller is switched on.  

Obviously, the two chaotic Chen systems evolve in the same 

direction as well as the same amplitude; that’s to say, they 

are globally asymptotically synchronized by means of the 

proposed nonlinear state feedback controller. 
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Fig. 1. Error dynamics of the coupled master-slave Chen 

system when controller is deactivated 
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Fig. 2. Synchronization dynamics between the coupled 

master-slave Chen system when controller is activated 
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Fig. 3. Error dynamics of the coupled master-slave  

Chen system when controller is switched on 

IV. OBSERVER-BASED SYNCHRONIZATION FOR 

COUPLED CHAOTIC SYSTEMS 
 

A. Nonlinear Observer Design 
 

Continuous time chaotic systems are generally described by 

a set of nonlinear difference equations. It is convenient to 

separate the dynamics into linear and nonlinear parts and to 

find an appropriate observer intended to synchronize two 

coupled, drive and response, chaotic systems. 

Let us consider the class of continuous time chaotic drive 

systems expressed by the following state space 

representation: 

 ( ) ( ) ( )

( ) ( )

d d d

d d

x t Ax t f x t

y t Cx t

 
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

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                                         (26) 

where 
d

x  is the state vector, ,
n

d
x   A  a constant 

matrix,   1,  , , , ,
ij

A a i j n    (.)f  a nonlinear n  

vector function, 
d

y  the p  output vector, 
p

d
y   and C  a 

p n  constant matrix. 

Then, as a response system, let consider the proposed 

nonlinear observer candidate, designed as follows: 
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where ,
n

r
x   ,

p

r
y   are respectively the state vector 

and the output vector of the nonlinear observer-based 

response system. 

The n p  nonlinear matrix of observer gains (.)L  has to 

be chosen so that the dynamical observer-based 

synchronization error ( ),e t  defined by, 

 
1 2 3

( ) ( ) ( ) ( )
T

e t e t e t e t , between system (26) and 

system (27), being such that: 

 lim lim 0 1( ) ( ) ( )  , ,i ri di
t t

e t x t x t i n
 

               (28) 

So, in order to study the synchronization property of the two 

considered drive and response chaotic systems, the 

following error system of differential equations is taken into 

account: 

( ) ( ) ( )r de t x t x t                                                            (29)                                                          

By substituting the terms 
d

x  and 
r

x  by their values 

according to the differential equations given by (26) and 

(27), we can easily obtain the dynamical error system 

description below: 

     ( ) (.) ( ) ( ) ( )r de t A L C e t f x t f x t                  (30) 

Consequently, when this dynamical error system (30) is 

asymptotically stable, the synchronization error will 

converge to zero as time ,t    which implies that the 

observer-based response system (27) is globally 

synchronized with the drive system described by (26). 

In the particular case, where there exist an n n  

instantaneous matrix (.),F  such that: 

    ( )( ) ( ) (.)r d tf x t f x t F e                                       (31) 

we can rearrange the description (30) in the following way: 

 ( ) (.) (.) ( )e t A L C F e t                                             (32)  

Hence, in this stage, we need only to determine, 

conveniently, the nonlinear observer matrix so that the 

instantaneous characteristic matrix of the closed-loop 

system (32), by respect to (31), being under the arrow form 

[27], to assure the synchronization property between drive 

and response Chen chaotic systems (26) and (27), 

respectively. 
 

B. Application to the Case of Two Coupled Chaotic Chen 

Systems 

The proposed observer-based synchronization approach is 

considered, here, for the chaotic Chen system, described by 

(1) and (2). 

Let consider a drive Chen system given by: 
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and: 

1

1

2

2

3

0 1 0

0 0 1

( )
( )

( )
( )
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d

d

d

d

d

x t
y t

x t
y t

x t



 
     
       

  

                                 (34) 

for which, a similar response Chen system is described as 

follows: 

1 1

2 2 1 3

3 3 1 2

11 12

1 1

21 22

2 2

31 32

0 0
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0 0

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

(.) (.)
( ) ( )

(.) (.)
( ) ( )

(.) (.)

r r

r r r r

r r r r

d r

d r

x t x t

x t x t x t x t

x t x t x t x t

l l
y t y t

l l
y t y t

l l

 

  





   








       
       
       
              

 
  
    

  

  

                                                                                         (35) 

and: 
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1

1

2

2

3

0 1 0

0 0 1

( )
( )

( )
( )

( )

r

r

r

r

r

x t
y t

x t
y t

x t



 
     
       

  

                                 (36) 

In this case, it is obvious that the dynamic error system can 

be written in the following compact state space description: 

( ) (.) ( )
e

e t A e t                                                                (37) 

with: 

(.) (.) (.)eA A L C F                                                     (38)  

11 12

3 21 1 22

2 1 31 32

(.) (.)

(.) (.)

(.) (.)

(.) ( ) ( )

( ) ( )

e r d

r d

l l

A x t l x t l

x t x t l l

 

  



  

     

  

 
 
 
  

   (39)  

and: 

3 1

2 1

0 0 0

0

0

(.) ( ) ( )

( ) ( )

r d

r d

F x t x t

x t x t

  

 
 
 
  

                            (40) 

First of all, and by respect to the stabilisability conditions 

announced in the above-mentioned theorem, relatively to the 

instantaneous matrix (.)
e

A  instead of (.),
c

A  the dynamic 

error system (37) must be characterized by an instantaneous 

arrow form matrix (.),
e

A  that is to say, the main 

requirements, concerning the choice of the instantaneous 

observer gains 
22

(.)l  and 
31

(.),l  are given by: 

22 1

31 1

(.) ( )

(.) ( )

d

d

l x t

l x t

 







                                                             (41) 

Furthermore, by adopting the previous choices of 
22

(.)l  and 

31
(.),l  the remaining parameters 

11 12 21
,  ,  l l l  and 

32
l  are 

chosen linear in order to isolate all the nonlinearities in the 

first column of (.).
e

A    

Indeed, the two last diagonal elements of the characteristic 

matrix (.)
e

A  have to fulfil the inequalities (14), namely: 

21

32

0

0

l

l





 

  





                                                                  (42) 

For this purpose, and by taking into account the fact that 

0,   one possible solution is expressed by: 

21

32

2

0

l

l









                                                                         (43) 

Finally, it is relevant to denote that to satisfy the observer-

based synchronization property of the two coupled drive and 

response chaotic Chen systems, it is necessary to tune the 

remaining design observer gains parameters in the system 

(37-40), explicitly characterized by (39), such that the 

following stability condition is true: 

    

 

1

11 3

1

2 12

0

( )

( )

r

r

l x t

x t l

   








   
  

 

  
   

  

    (44) 

From various possible solutions, let consider (.)L  defined 

by: 

1

1

0

2

0

(.) ( )

( )

d

d

L x t

x t



 

 
 
 
  

                                              (45) 

Through the illustration of both drive and response states 

evolutions, without observer gains, Fig. 4., it is noticeable 

that these states are not yet synchronized and grow with 

time chaotically, with different amplitudes. 
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Fig. 4. Error dynamics between the drive and the 

response Chen systems when observer gains are switched 

off 
 

Therefore, with the adequately designed observer-based 

response system, we clearly show that under mild 

conditions, the response Chen system (35) and (36) traces 

the dynamics of the drive Chen system (33) and (34) as they 

achieve synchronous states shown in Fig. 5, in which, both 

systems oscillate in a synchronized manner within a shorter 

time, with an exponentially decaying of the synchronization 

quality defined by the error propagation on the dynamical 

error states, expressed by 
2 2 2

1 2 3
( ) ( ) ( ) ( ) ,e t e t e t e t    

and presented in Fig. 6., below. Thus, the required 

synchronization has been provided thanks to our judiciously 

designed nonlinear observer. 
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Fig. 5. Observer-based synchronization between  

the two coupled drive and response chaotic Chen 

systems 
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Fig. 6. Exponential convergence of the error dynamics  

thanks to the adequate observer-based response  chaotic 

Chen system 

Hence, the observer-based proposed method arises two main 

advantages. First, due to a suitable choice of nonlinear 

observer gains, the synchronization is achieved within a 

short time. Second, our scheme covers chaotic systems that 

comprise nonlinearities that are non Lipschitzian with 

respect to the state, which is rather requested by many 

synchronizing schemes in literature. 

V. OBSERVER-BASED SYNCHRONIZATION WITH 

UNKNOWN PARAMETERS OF THE CHAOTIC 

RESPONSE SYSTEM 

At this stage, the problem of observer-based synchronization 

between two nearly identical chaotic systems with unknown 

parameters is studied.   

In practical applications, the response system parameters are 

partially or entirely unknown in advance. Therefore, it is 

necessary to investigate the synchronization problem of 

chaotic systems with unknown system parameters. 

In this section, the observer-based synchronization problem 

of chaotic systems, with unknown parameters of the chaotic 

response system, is studied. 

So, in order to drive two nearly identical chaotic systems 

with the unknown response system parameters and different 

initial conditions in synchronization, let us consider the 

drive system, designed as (33) and (34), and the response 

system is then modelled as follows: 

1 1

2 2 1 3

3 3 1 2

11 12

1 1

21 22
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31 32
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r r

r r r r

r r r r

d r
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x t x t x t x t

x t x t x t x t
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y t y t

l l
y t y t
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 

  
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   
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




       
       
       
              

 
 

 
  


 
 

       (46) 

and: 
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( )
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( )

( )

r

r

r

r

r
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

 
     
       

  

                                 (47)  

where   1 2 3(.) (.) ,  , ,
ij

L l i   and 1 2, ,j   is the 

nonlinear observer gain matrix (45), designed in Section 4. 

The drive system parameters ,     and   are known, but 

the response ones ˆˆ ,     and ˆ,  are unknown and need to be 

identified, so that the synchronization property between the 

two coupled drive and response chaotic systems is assured. 

By defining the synchronous error vector as (28), then the 

dynamical error system with unknown response system 

parameters is in the following form: 

1 1

2 2

3 2 3

0

0

0

( ) ( )

( ) ( )

( ) ( ) ( )

e t e t

e t e t

e t e t e t

 

  





  



     
     
     
          

                    (48) 

where ˆˆ ,            and ˆ     are the 

unknown error system parameters. 

In fact, since the instantaneous characteristic matrix of (48) 

is in the arrow form, so to guarantee that the property of 

synchronization between the drive system described by (33) 

and (34), and the response system described by (46) and 

(47), is maintained, the following conditions have to be 

satisfied, by respect to the sufficient conditions given in the 

proposed theorem: 

i. the two unknown parameters ̂  and ̂  are such that: 

     0

0








                                                                         (49) 

ii. there exist 0,   for which: 

        
1

     


                                    (50) 

Consequently, the unknown parameters ˆˆ ,     and ̂  are 

chosen by respect to the following inequalities: 

         ˆ ˆ ˆ ˆ ˆ

ˆ

ˆ

         

 

 

      










        (51) 

Hence, the response systems for whom the range of 

parameters variation is delimited, for ˆ ,   by the marked 

region 
S

D  shown in Fig. 7, can be in synchronism with the 

considered drive system described by (33) and (34). 

 
Fig. 7. The allowed domain of response systems 

parameters variation guaranteeing the achievement  of 

synchronization property 

 

 

 

 



International Journal of Emerging Science and Engineering (IJESE) 

ISSN: 2319–6378, Volume-1 Issue-8, June 2013  

38 
Retrieval Number: H0348061813/2013©BEIESP 
  

Published By: 
Blue Eyes Intelligence Engineering 

& Sciences Publication  

VI. CONCLUSION 

In this paper, the synchronization is achieved for two 

identical coupled chaotic systems. Under some structural 

assumptions of the drive system and based on aggregation 

techniques associated to the arrow form matrix, an observer-

based response system is designed to assure that the 

property of synchronization is successfully reached. 

Moreover, the new approach proposed for the observer-

based synchronization of two chaotic systems with different 

parameters can synchronize the two chaotic systems with 

unmatched parameters. Chen chaotic system is taken as an 

example to demonstrate the effectiveness of this proposed 

synchronization scheme. 
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