
International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378, Volume-1 Issue-8, June 2013

59

Retrieval Number: H0356061813/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Abstract—System-on-a-Chip (SoC) design has become more

and more complex because Intellectual Property (IP) core with

different functions are integrated within a single chip. Each IPs

have completed design and verification but the integration of all

IPs may not work together. The bus-based architecture has

become the major integration methodology for implementing a

SoC. The main issue is to ensure that the IP works correctly after

integrating to the corresponding bus architecture. Advanced

extensible interface 4 (AXI4) is an on chip bus architecture

introduced by ARM to interact with its peripherals. A

synthesizable AXI4 protocol checker which contains a set of rules

to check on-chip communication properties accuracy is proposed

to ensure proper SoC integration. A prototype of AXI4 Master and

AXI Slave is also designed to generate the AXI4 signals. The

protocol checker will continuously monitor the signals from AXI4

Master and AXI4 Slave to check whether any rule is broken or not.

The proposed AXI4 protocol checker will check both the Write

Channel and Read Channel transactions. As the AXI4 checker is

synthesizable it can be used in FPGA (Field Programmable Gate

Array) and Emulation where functional checks are difficult to

detect and pin point. The AXI4 Master, AXI Slave and AXI4

protocol checker have been modeled using Verilog and

implemented on Digilent Basys2 Spartan 3E FPGA board.

Index Terms— System on a Chip, AXI4 protocol, Intellectual

Property cor, Write Channel, Read channel..

I. INTRODUCTION

Process technologies are shrinking and design sizes are

increasing during recent years. This has led to highly

complex integrated circuits (ICs). Hence manufacturers are

integrating large number of components on a single chip.

System-on-a-chip (SoC) [1] designs have evolved to address

the ever increasing complexity of different applications. A

System- on – a Chip (SoC) contains a wide variety of

elements like random logic, memory, CPU and analog

circuitry. In order to increase productivity, SoC design make

use of intellectual property cores (IP). IP blocks are

predesigned components that are used in larger design. When

IP core with different functions, which have completed

design and verification are integrated within a single chip all

IPs may not work together. The important problems faced are

violation of bus protocol or transaction error.

The major integrated methodology for implementing SoC is

bus based architecture. The on-chip communication

specification provides a standard interface that facilitates IPs

integration and easily communicates with each IPs in a SoC.

Some of the popular bus-based communication architecture

standards are IBM CoreConnect [2], OpenCores Wishbone

[3], ARM Microcontroller Bus Architecture (AMBA)

versions 2.0 and 3.0 [4], STMicroelectronics STBus, Sonics

SMARRT Interconnect, and Altera Avalon.

Manuscript received June, 2013.

Veena Abraham, Department of Electronic and Communication, Sree

Buddha College of Engineering, Kerala.

 Soumen Basak, Chief Technology Officer, DSipher Design Solutions
Pvt. Ltd, Bangalore.

 Sabi S, Department of Electronic and Communication, Sree Buddha

College of Engineering, Kerala..

AMBA one of the leading on-chip bus standard used in high

performance SoC design was developed by ARM in 1996.

The three buses specified within the AMBA bus are: ASB

(Advanced System Bus) [4] , APB (Advanced Peripheral Bus

and AHB (Advanced High-performance Bus) . ARM

introduced the 3rd generation in 2003 which included

Advanced eXtensible Interface (AXI) and the Advanced

Trace Bus (ATB). AMBA 3.0 AXI supports [5]

channel-based specification, with five separate channels.

The 4th generation was introduced in 2010 which included

AMBA 4 AXI4 [6], AXI4-Lite, and AXI4-Stream Protocol.

AXI4 which is the latest revision of the AXI3 protocol have

addressed several known issues in AXI3.

Hyun-min Kyung et al proposed a Performance Analysis

Unit (PAU) for monitoring the AMBA AXI bus system [7]

and the usage of the PAU with the H.264 decoding

application. Micro architectures with Netwok Interface [8]

which were compatible with the AMBA AXI protocol was

proposed by Masoud Daneshtalab et al.

Many verification works based on formal verification

techniques exist. Device under test (DUT) is modeled as

finite-state transition and its properties are written by using

computation tree logic (CTL). A dynamic SDRAM [9] access

scheduler (DSAS) is introduced as part of memory controller

which will record the early access request in request buffer

and when new request comes, it will compare the bank

address and row address with the access records. DSAS

works as a slave device on the bus. Different verification

tools were used to verify DUT’s behaviors. A bus interface

design technique, called Efficient Bus Interface (EBI) [10]

was introduced, to reduce the communication delay between

the Intellectual Property (IP) core and the memory connected

through AMBA3 AXI bus for mobile systems. NoC [11]

research over the past decade has aided the development of a

number of techniques that are relevant to the future of

on-chip interconnects. Although formal verification can

verify DUT’s behaviors thoroughly, there are still

unpredictable bug in the chip level which need to be verified.

 To check PCI bus protocol Kanna Shimizu et al. [12]

proposed an early rule-based monitor. A high-level

specification style was proposed by Oliveira and Alan J. Hu

[13] that could generate a hardware monitor. An extremely

easy way to generate monitors for common interface idioms

was provided. M. S. Jahanpour et al. proposed an

interface-monitor-based methodology [14] to watch the

interface between a block and the rest of the system.

When several IPs are integrated the approach of checking

DUT cycle by cycle to make sure the DUT obeys all the rules

during simulation, is very efficient. The monitored-based

approach often cannot find errors in simulation environment

since many errors may occur in real-time.

Design of AXI4 Protocol Checker for SoC Integration

Veena Abraham, Soumen Basak, Sabi S

Design of AXI4 Protocol Checker for SoC Integration

60
Retrieval Number: H0356061813/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

HPChecker is an efficient AMBA AHB on-chip bus

protocol checker [15]. For high performance SoC

requirements, the AMBA AXI on-chip bus protocol is

defined that targets at high-performance, high frequency

system design and includes a number of features that make it

suitable for a high-speed submicron interconnects. The AXI

protocol checker [16] consists of configuration register,

protocol checker and error reference table.

This paper is organized as follows. Section II gives an

introduction to AXI4 Protocol. Section III presents proposed

prototype of AXI4 Master, AXI4 Slave and the AXI4

checker. The results will be discussed in Section IV followed

by conclusion in section V.

II. AMBA AXI4 ARCHITECTURE

The AMBA AXI4 protocol [6] has a number of features

which make it suitable for high-performance, high-frequency

system designs and high-speed submicron interconnect. The

important features of the AXI protocol are: it has separate

address/control and data phases, unaligned data transfers

using byte strobes are supported, only start address is being

issued for burst-based transactions, separate read and write

data channels and out-of-order transaction can be completed.

AMBA AXI4 system consists of master, slave and bus.

Each of the master and slave are identified by their own four

bit ID tags. The system consists of five channels namely write

address channel, write data channel, write response channel,

read data channel and read address channel. The AXI4 also

includes the following features: burst lengths up to 256 beats

are supported, removal of WID and locked transactions,

AWCACHE and ARCACHE signaling are updated, multiple

region interfaces are supported and optional Quality of

Service (QoS) and User signalling.submit your final version,

after your paper has been accepted, prepare it in two-column

format, including figures and tables.

A. Architecture of Read and Write Channel

 Read transaction uses the read address and read data

channels. Write transaction uses the write address, write data,

and write response channels. Burst-based transaction has

address and control information on the address channel, for

both read and write, which describes the nature of the data to

be transferred. The data is transferred from slave to the

master in a read data channel. In write transactions all the

data flows from the master to the slave. On the completion of

the write transaction reponse signal is send to the master

through an additional write response channel.

B. AXI4 Signals

The AXI4 signals [6] can be categorized as global signals,

write address channel signals, write data channel signals,

write response channel signals, read address channel signals

and read data channel signals. Table I gives a list of AXI4

signals. Global signals are ACLK and ARESETn. All signals

are sampled on the rising edge of the global clock signal

ACLK.

TABLE I. AXI4 SIGNALS

Write

Address

Channel

AWVALID, AWREADY, AWID[3:0], AWADDR[31:0]

AWLEN[7:0],AWSIZE[2:0],AWBURST[1:0],AWCACHE

[3:0], AWPROT[2:0] and AWLOCK].

Write

Data

Channel

WVALID, WREADY, WDATA[31:0], WSTRB[3:0] and

WLAST.

Write

Response

Channel

BVALID, BREADY, BID[3:0] and BRESP[1:0].

Read

Address

Channel

ARVALID, ARREADY, ARID [3:0], ARADDR[31:0],
ARLEN[7:0], ARSIZE[2:0], ARBURST[1:0], ARLOCK,

ARCACHE[3:0] and ARPROT[2:0].

Read

Data

Channel

RVALID, RREADY, RDATA[31:0], RLAST, RID[1:0] and

RRESP[1:0]

C. AXI4 Protocol Transactions

AXI protocol transactions [6] are based on VALID and

READY handshake mechanism. The VALID/READY

handshake is used by all five channels of AXI to transfer data,

address and control information. When data or control

information is available the source generates the VALID

signal. When the destination accepts the data or control

information it generates the READY signal. Transfer occurs

only when both the VALID and READY signals are HIGH.

III. PROPOSED MODEL OF AXI4 MASTER, AXI4

SLAVE AND AXI4 CHECKER

The proposed AMBA AXI4 architecture consists of a

model of AXI4 Master and AXI4 Slave. The communication

between one master and one slave is carried out in the thesis.

A set of rules have been implemented in the AXI4 Checker.

Fig. 1 shows the proposed AXI4 architecture. The important

blocks of the architecture are Transaction Generator, Clock

and Reset Generator, AXI4 Master, AXI4 Slave and AXI4

Checker . Clock and Reset Generator generates the clock and

reset signal.

Fig. 1. AXI4 Architecture

A. Transaction Generator

Transaction generator generates random transactions. The

Transaction Generator contains Write Data Channel Task,

Write Address Channel Task and Read Address Channel

Task. Identification ID, control information and address are

randomly generated by Write Address Channel Task and

Read Address Channel Task respectively.WDATA is

randomly generated by means of Write Data Channel Task.
A synthesizable transaction generator is also developed to

demonstrate the working in

FPGA.

International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378, Volume-1 Issue-8, June 2013

61

Retrieval Number: H0356061813/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

B. The AXI4 Master

The AXI Master component is FSM based. The different

components in AXI4 Master is shown in Fig. 2. It takes input

from ‘Transaction Generator’ and initiates it on the AXI bus.

FIFO for storing Write Address, ID and Control Information.

 Write Address Channel FSM

Read Address Channel FSM

Write Data Channel FSM

Read Data Channel FSM

WDATA counter for WLAST generation

Fig. 2. AXI4 Master

1) FIFO For Storing ID and Control Information of

Write Channel: As Write Address and Write Data channel are

independent a FIFO is used for storing ID and control

information for Write Address Channel. The write data must

come in the same order as the correponding write addresses.

Write transfer are tracked in the following way. AWVALID

and AWREADY both being high indicates address and

control signals for that AWID should be stored in the FIFO.

WVALID and WREADY both being high i ndicates a valid

data beat for that ID has been transferred. WVALID ,

WREADY and WLAST being high indicates last data beat

for that AWID has been transferred and corresponding

AWID can be removed from the FIFO. BVALID and

BREADY both being high indicates a valid write response

for an ID which terminates that write access. Write address or

write data may come earlier or simultaneously.

Example of FIFO Storing AWID is shown in Fig.3. When

AWVALID and AWREADY is high AWID 7,1 and 3 are

stored in FIFO respectively. When the last data beat of

AWID 7 comes it is removed from the FIFO.

Fig. 3. Example of FIFO Storing AWID

2) FSM of Master Read Address Channel:

 FSM of Master Read Address Channel shown in Fig. 4

asserts ARVALID high and initiates the ARID, ARADDR

and control information like ARLEN, ARSIZE, ARBURST

etc on the AXI bus. The triggering inputs are ARREADY

from Slave and “xfr” which is user defined input from

‘transaction generator’ indicating a read transfer. In the FSM

“control” indicates read control signal values, “x” stands for

don’t care and “val” indicates random values from

‘transaction generator for Read Address Channel.

Fig. 4. FSM of Master Read Address Channel

3) FSM of Master Read Address Channel: FSM of

Master Read Data Channel shown in Fig. 5 asserts RREADY

signal high. The triggering inputs are RVALID and RLAST

from Slave and “busy” which is internal signal to denote

master is not ready to receive data. The different states in the

FSM are IDLE_RD, READY, BEAT_IDLE and

BEAT_READY. As AXI is burst based if ARLEN is greater

than zero more beats need to be transferred and it moves on to

the BEAT_IDLE and BEAT_READY states.

Fig. 5. FSM of Master Read Data Channel

4) WLAST Generation and Other FSM’s: FSM of Master

Write Address Channel is similar to the FSM of Master Read

Address Channel but the triggering inputs are AWREADY

from Slave and “xfw” which is input from ‘transaction

generator’ indicating a write transfer. In the VALID state

valid write address and control information is available. FSM

of Master Write Data Channel asserts WVALID high and

initiates random data to WDATA. The triggering input is

busy signal which indicates whether Master is busy or not. A

WDATA counter designed is incremented each time a Write

Data transaction occurs and is compared with the current

AWLEN for WLAST generation.

C.

Design of AXI4 Protocol Checker for SoC Integration

62
Retrieval Number: H0356061813/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

D. The AXI4 Slave

The AXI4 slave component interacts with AXI4 Master to

mimic AXI transactions and is FSM based. Parameterized

memory space is implemented in the Slave for storage of

data. Different components in AXI4 Slave is shown in Fig.6

FIFO for storing Write Address, ID and

Control Information.

Intelligent Stack for storing Read Address,

ID and Control Information.

Parameterised memory space for data storage

FIFO for Fixed Burst

Type

RAM for INCR and

WRAP Burst Type

Write Address calculation

Read Address calculation

RDATA counter for RLAST generation

Write Response FSM

Fig. 6. AXI4 Slave

1) Intelligent Stack For Storing ID and Control

Information of Read Channel: An intelligent stack is used for

storing ID and control information for Read Address Channel

as the Read Data and Read Address channel are independent.

For Read Data Channel data beats with one ID can come in

between data beats of other ID . Hence for Read channel an

Intelligent stack is used instead of a FIFO. Read transfer are

tracked in the following way. Both ARVALID and

ARREADY being high indicates address and control signals

for that ID should be stored. RVALID and RREADY both

being high indicates a valid data beat for that id is transfered.

RVALID , RREADY and RLAST being high indicates last

data beat for that id and it should be removed from the stack.

Read data cannot precede read address.

The working of the intelligent stack is different from

ordinary stack. Example of Intelligent Stack storing ARID is

shown Fig. 7. When ARVALID and ARREADY is high

ARID 7,1 and 3 are stored in Intelligent Stack respectively.

For Read Data Channel corresponding to each data beat RID

also appears on the AXI bus. When last data of RID 1 comes,

ARID 1 is removed from stack.

Fig. 7. Example of Intelligent Stack storing ARID

2) FSM for Write Response Channel: FSM for write

response channel is shown in Fig. 8 Here the triggering input

is WLAST signal which indicates last data of the write burst

has been transferred. When the FSM is in WR_V_VALID1

state BAVLID is asserted and BID is equal to AWID

corresponding to the last data beat transferred.

3) Parameterized Memory Space and Address

Calculation: Parameterized memory space is implemented in

the Slave for storage of data. WDATA is stored in fixed

address when AWBURST is FIXED type and stored in RAM

when burst type is INCR or WRAP. Only the intial address of

the read and write transaction gets transferred in the first

cycle and all the address calculation are done by the AXI4

Slave.

Fig. 8. FSM for Write Response Channel

1) RLAST Generation and Other Blocks: RLAST is
generated by means of a counter which is continuosly being
compared with AWLEN. As Read data cannot precede read
address the generation of RVALID signal depends on
ARVALID. Generation of AWREADY and ARREADY
depends on whether FIFO and Intelligent Stack is full or
not. FIFO for Storing ID and Control Information of Write
Channel is explained in Section B.

E. The AXI4 Checker

 The AXI4 Checker consists of internal data structure and

protocol checker. Protocol checks are done using internal

data structures and different module inputs. Different

components of the Protocol checker are shown in Fig. 9.

FIFO for storing Write Address, ID and

Control Information.

Intelligent Stack for storing Read Address, ID

and Control Information

Protocol Checks for Write Address Channel

Protocol Checks for Read Address Channel

Protocol Checks for Write Data Channel

Protocol Checks for Read Data Channel

Protocol Checks for Write Response Channel

Fig. 9. AXI4 Checker

 The AXI4 protocol specification has been studied and a

list of rules has been defined for Read Address Channel, Read

Data Channel, Write Address Channel, Write Data Channel

and Write Response Channel.Table II shows some of the

protocol checks included in the checker. All the checks

implemented are not specified in Table II instead the

different types of checks are shown.Corresponding to each of

the checks a flag is defined which will be high if the check

fails. Also message will be displayed which gives the check

name, severity of error, a description of the error, which part

of specification [6] is violated and the time at which the check

fails. Additionally an error flag and warning flag is defined

which will be high if an error

or check occurs.

International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378, Volume-1 Issue-8, June 2013

63

Retrieval Number: H0356061813/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

 A Check number indicator which indicates the check

number as shown in Table II is also defined.

TABLE II. LIST OF DIFFERENT TYPES OF AXI4

PROTOCOL CHECKS

Spec.

Section

[6]

Chk

. No
Check Name Functionality Severity

3.1 1 AXI4_arid_stable
Read Address

Channel
Error

13.1.2 2
AXI4_arlen

_limitation1

 Read Address

Channel
Error

3.1.4 3 AXI4_arready_default
Read Address

Channel
Warning

13.1.2 6
AXI4_arlen

_limitation2

Read Address

Channel
Error

3.1.5 E AXI4_rready_default
Read Data

Channel
Warning

13.1.2 11
AXI4_awlen

_limitation1

 Write Address

Channel
Error

4.3 16 AXI4_awsize
Write Address

Channel
Error

3.1 1C AXI4_wdata _stable
Write Data

Channel
Error

3.1.3 1F AXI4_bready_default
Write Response

channel
Warning

IV. RESULTS AND DISCUSSION

 A prototype of AXI4 Master and AXI4 Slave and AXI4

checker has been designed using Verilog. Simulation and

testing has been carried out by means of test cases, using

Icarus Verilog and the waveforms were viewed using

GTKWave. The different modules have been synthesized

using Xilinx ISE, implemented on Spartan 3E FPGA [17]

and also waveforms were verified using ISIM. For

interfacing the PC with FPGA, Adept application [18] has

been used.

A. Simulated Output Using Test Cases

 During the design phase the different types of checks have

been checked, by purposely creating the errors to show that

the AXI4 checker can catch these errors.Simulated result

obtained using two test cases will be discussed. Simulation

results of both Read and Write channel signals generated by

AXI4 Master and AXI4 Slave which are error free is shown

in Fig. 10. Snapshot of the contents of RAM and FIFO at the

Slave side are shown in Fig. 11, where the data is stored.

Fig. 10. Simulated output of Error Free Read and Write

channels

 Considering the first write and read transaction from Fig.

10 and Fig. 11 we can see that WDATA is first written to

RAM[8]. The Write address and Read address channel

information are stored in FIFO and Intellegent stack

respectively. From FIFO AWLEN[0]=8’h02 and

AWBURST[0]=2’b01, WLAST is generated after three data

beats are transferred. Proper address calculation are done and

WDATA is stored in RAM[12] and RAM[16]. Also BID=8

which is equivalent to AWID[0] showing that the transaction

is successfull. From stack ARID[0]=4’h8, ARLEN[0]=8’h02

and ARBURST[0]=2’b01. RID=8 for the first three data

transfer and RDATA is read from addresses RAM[8],

RAM[12] and RAM[16] and RLAST is also generated at

proper time. The other transactions are also successful.

Fig. 11. Snapshot of contents of RAM and FIFO at

slave side.

Errors are purposely introduced in the second test case to

show how the checker catches the error. Simulated output

and display messages when different error occurs is shown in

Fig. 12 and Fig. 13. The check number indicator signal

AXI_error shows check number 0E, 11, 16 and 06

corresponding to the checks AXI4_rready_default , AXI4_

awlen_limitation1, AXI4_awsize and AXI4_arlen

_limitation2 respectively.

Fig. 12. Simulated output showing different checks.

Corresponding flags of the checks are also high. The error

indicator flag and warning indicator flag becomes high when

an error or warning occurs.

Design of AXI4 Protocol Checker for SoC Integration

64
Retrieval Number: H0356061813/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Fig. 13. Snapshot of Error Messages

B. Experimental Setup

 The AXI4 Master, AXI4 Slave and AXI4 checker have

been synthesized using Xilinx ISE and implemented on

Digilent Basys2 board built around Xilinx Spartan-3E 100

FPGA. For the FPGA setup a synthesizable transaction

generator has been designed to drive the AXI4 Master.

Simulated output with FPGA setup using ISIM is shown in

Fig.14. Adept application has been used to interface the PC

with Digilent’s Spartan 3E FPGA [17] board. Fig. 15 shows

the snapshot after successfully burning the program to board

by means of Adept [18] and Fig. 16 shows the FPGA setup.

Fig. 14. Simulated Results with FPGA setup

Fig. 15. Snapshot of succecssful burning to board using

Adept

 LED’s one and two represents the warning flag and error

flag. The check number corresponding to the error captured is

displayed on the LCD screen and also on five LED’s. Check

number 2 corresponding to check AXI4_arlen _limitation1 is

being displayed in Fig.16. If more than one error or warning

occurs at the same time then only the check number

corresponding to smaller one will be displayed on FPGA, but

display messages appear on the console. Once we rectify it

and again burn it to FPGA others can be detected.

Fig. 16. Snapshot of FPGA setup

 The final Device utilization summary is shown in Table III

and timing summary is shown in Table IV .

TABLE III. DEVICE UTILIZATION SUMMARY

Selected Device 3s100ecp132-5

Number of Slices 465 out of 960 48%

Number of Slice Flip Flops 391 out of 1920 20%

Number of 4 input LUTs 860 out of 1920 44%

Number of IOs 23

Number of bonded IOBs 23 out of 83 27%

Number of GCLKs 2 out of 24 8%

TABLE IV. TIMING SUMMARY

Minimum period 9.511 ns

Maximum combinational path delay 11.289 ns

Total REAL time to Xst completion 636.00 secs

Total CPU time to Xst completion 636.51 secs

V. CONCLUSION

 AMBA AXI4 is a plug and play protocol developed by

ARM which defines bus specification and a technology

independent methodology for designing, implementing and

testing customized highly-integrated embedded interfaces. In

the thesis the AXI protocol has been studied thoroughly and a

list of protocol checks for read and write channel have been

defined. The defined rules have been implemented in the

checker. A model of AXI4 Master and AXI4 Slave has been

designed to generate the read and write transactions. The

AXI4 protocol checker continuously monitor the signals

from AXI4 Master and AXI4 slave and flags messages

(errors, warnings or information) based on protocol checks

implemented inside it. The AXI4 Master, AXI4 slave and

AXI4 protocol checker has been modeled using Verilog,

synthesized using Xilinx ISE and implemented on Spartan

3E FPGA . Different test cases have been used to check the

functionality and by observing the display messages and

simulated waveforms errors can be rectified. Constrained

random verification technique is also used in addition to

directed test cases which has made the testing more thorough.

As the checker is synthesizable it can be easily converted to

system Verilog assertions and used with Formal verification

flow. The proposed AXI4 checker can be used to ensure

proper SoC integration.

ACKNOWLEDGMENT

 The author would like to thank KELTRON,

Thiruvananthapuram for the technical support provided and

also acknowledge the help of Ms. Betty John(Deputy General

Manager, KELTRON,

Kerala).

International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378, Volume-1 Issue-8, June 2013

65

Retrieval Number: H0356061813/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

REFERENCES

1. S. Pasricha, N. Dutt, On-Chip Communication Architectures: System on
Chip Interconnect, Morgan Kaufmann, 2008.

2. IBM, Core connect bus architecture. IBM Microelectronics. Available

at http://www.ibm.com
3. Wishbone system-on-chip (soc) interconnection architecture for

portable IP cores. Available at http://www.opencores.org

4. ARM, “AMBA Specification (Rev 2.0)”. [Online] Available:
http://www.arm.com

5. A. Shrivastava, G.S Tomarand A.K. Singh, “Performance Comparison

of AMBA Bus-Based System-On-Chip Communication Protocol”, in
Proc. Int. Conf. Communication Systems and Network Technologies

(CSNT), June 2011, pp. 449- 44.

6. ARM, “AMBA AXI protocol specifications (Version 2), March 2010”,
[Online] Available: http://www.arm.com.

7. Hyun-min Kyung , Gi-ho Park , Jong Wook Kwak , Tae-jin Kim and

Sung-Bae Park, “Design and implementation of Performance Analysis
Unit (PAU) for AXI-based multi-core System on Chip (SOC)” , Elsevier

Trans. Microprocessors and Microsystems, vol. 34, pp. 102-116, March

2010.
8. M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila and H. Tenhunen,

“Memory-Efficient On-Chip Network with Adaptive Interfaces”, IEEE

Trans. Computer-Aided Design of Integrated Circuits and Systems, vol.
31, issue 1, pp. 146 -159, Jan. 2012.

9. Jun Zheng, Kang Sun , Xuezeng Pan, and Lingdi Ping “Design of a

Dynamic Memory Access Scheduler”, in Proc. IEEE 7 th Int. Conf.
ASIC, Oct. 2007, pp. 20-23.

10. Na Ra Yang, Gilsang Yoon, Jeonghwan Lee, Intae Hwang, Cheol Hong

Kim, Sung Woo Chung and Jong Myon Kim, “Improving the
System-on-a-Chip Performance for Mobile Systems by Using Efficient

Bus Interface”, in Proc. IEEE Int. Conf. Communications and Mobile

Computing, Vol 4, March 2009, pp. 606-608.
11. Bruce Mathewson “The Evolution of SOC Interconnect and How NOC

Fits Within It”, in Proc. IEEE 47 th Int. Conf . Design Automation(

DAC), June 2010, pp. 312-313.
12. Kanna, Shimizu, David L. Dill and Alan J. Hu. “A monitor-based formal

specification of PCI”, in Proc. Springer-Verlag London 3rd Int. Conf.

on Formal Methods in Computer-Aided Design, Nov. 2000, pp.
335-353.

13. Marcio T. Oliveira, Alan J. Hu, “High level specification and design:

High-Level specification and automatic generation of IP interface
monitors”, in Proc. 39th Conf. on Design automation, June 2002, pp.

129-134.

14. M. S. Jahanpour, E. Cerny, “Compositional verification of an ATM
switch module using interface recognizer/suppliers (IRS)”, in Proc.

IEEE Int. Conf. International High-Level Design, Validation, and Test

Workshop, 2000, pp. 71-76.
15. Y.-T. Lin, C.-C. Wang, and I.-J. Huang, “AMBA AHB Bus Protocol

Checker with Efficient Debugging Mechanism,” In Proceedings of the

IEEE International Symposium on Circuits and Systems(ISCAS’08),
May 2008, pp. 929-931.

16. Chien-Hung Chen, Jiun-Cheng Ju, and Ing-Jer Huang, “A
Synthesizable AXI Protocol Checker for SoC Integration”, in Proc.

IEEE Int. Conf. SoC Design (ISOCC) , Nov. 2010, pp.103-106.

17. Digilent Basys2 Board Reference Manual. [Online] Available:
http://www.digilentinc.com

18. Adept™ Application User’s Manual. [Online] Available:

http://www.digilentinc.com

AUTHORS PROFILE

Ms. Veena Abraham, is pursuing M.Tech in

Embedded System from Sree Buddha college of
Engineering, Kerala. Her areas of interest are

Embedded Systems, VLSI Design and Digital

Electronics.

Mr. Soumen, is Chief Technology Officer at

DSipher Design Solutions Pvt. Ltd, Bangalore
and also provides technical support for the VLSI

department at KELTRON. He was part of

organizations such as Motorola, Freescale and
Synopsys and specialized in next-generation

verification technologies. He is a graduate from

IIT Bombay and his main area of interest is VLSI

Design.

Mr. Sabi S, is Assistant professor at Sree Buddha

college of Engineering and has pursued M.Tech in
Microwave and TV Engineering from College of

Engineering Trivandrum. His areas of interest are

Microwave and Optical Communication, Electronic
Circuits and Digital Electronics.

http://www.arm.com/
http://www.arm.com/
http://www.digilentinc.com/
http://www.digilentinc.com/

