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Abstract- This paper focuses primarily with homomorphic 

hashing and the quality of peer-to-peer content distribution. 

Some systems using simple block-by-block downloading can 

verify blocks with traditional cryptographic signatures and 

hashes, but these techniques do not apply well to more elegant 

systems that use rate less erasure codes for efficient multicast 

transfers. This paper presents a practical scheme, based on 

homomorphic hashing, that enables a downloader to perform on-

the-fly verification of erasure-encoded blocks. Peer-to-peer 

content distribution networks can suffer from malicious 

participants that intentionally corrupt content. Traditional 

systems verify blocks with traditional cryptographic signatures 

and hashes. However, these techniques do not apply well to more 

elegant schemes that use network coding techniques for efficient 

content distribution. Problems that occur with these techniques 

are that peers have no way of knowing which block was bad if a 

piece they download fails hash check, and if they’re streaming 

data they can’t display it until a full piece is downloaded for hash 

verification purposes. Also there is a huge waste of bandwidth 

when a piece does not pass hash check, in fact, the peer must 

discard all the blocks (even all the correct ones) and then re-

download all the blocks within the piece. It is better to discard 

only bad blocks, and re-download only them which will save 

bandwidth. Identifying such bogus blocks is difficult and requires 

the use of homomorphic hashing functions. This paper deals with 

reducing the bogus blocks by implementing homomorphic hashes 

on the blocks and using Luby Transform Codes on peer to peer 

networks. 

Keywords- Homomorphic Hashing, Peer-to-peer (P2P), Luby 

Transform Codes (LT codes), Erasure Codes, File security 

I. INTRODUCTION 

A Peer-to-Peer network is a distributed application 

architecture that subdivides the workload among all 

participating peers. The peers, also called nodes of the 

overlay network, are equally privileged, and each one shares 

a fraction of its resources with others, without a central 

coordination. This type of architecture is suitable for much 

kind of applications: file sharing, video-on-demand [5], live-

streaming and distributed computing are few examples. 

Nowadays peer-to-peer (P2P) applications generate a 

substantial fraction of the total Internet traffic. The reasons 

for this widespread diffusion are not difficult to understand. 

From the perspective of the end user, P2P applications make 

possible to retrieve a large amount of multimedia contents, 

and in turn to share media with other people.  
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Most important, the benefit of using a P2P overlay with 

respect to the classical client/server paradigm is to shift the 

load from a central server to peers, with many advantages: 

saving server bandwidth, providing the service to more users 

with the same resources utilization, obtaining a more robust 

system due the error-resilient features of a distributed 

overlay. On the other side, a P2P overlay exploits the 

Internet infrastructure (core and access networks) and 

generates a huge amount of traffic. This represents a 

problem especially in situations with untrusted users, such 

as peer to peer networks. There doesn't seem to be a 

practical way to verify if a peer is sending you valid blocks 

until you decode the file. Using Fountain Codes [4], a clever 

probabilistic algorithm that allows us to break a large file up 

into a virtually infinite number of small chunks, such that 

you can collect any subset of those chunks - as long as you 

collect a few more than the volume of the original file - and 

be able to reconstruct the original file. We propose a method 

using Homomorphic Hashing [3] a construction that's 

simple in principle and one that you can compute the hash of 

a composite block from the hashes of the individual blocks. 

With a construction like this, we could distribute a list of 

individual hashes to users, and they could use those to verify 

incoming blocks as they arrive. 

II. THEORETICAL ANALYSIS 

1. Homomorphic Hash 

Homomorphic Hashing [3] is a novel construction that lets 

recipients verify the integrity of check blocks immediately, 

before consuming large amounts of bandwidth or polluting 

their download caches. A file F is compressed down to a 

smaller hash value, H(F), with which the receiver can verify 

the integrity of any possible check block. Receivers then 

need only obtain a file’s hash value to avoid being duped 

during a transfer. The function H is based on a discrete-log 

based, collision-resistant, homomorphic hash function, 

which allows receivers to compose hash values in much the 

same way that encoders compose message blocks. Unlike 

more obvious constructions, hash function is independent of 

encoding rate and is therefore compatible with rateless 

erasure codes [10]. It is fast to compute, efficiently verified 

using probabilistic batch verification, and has provable 

security under the discrete-log assumption. The 

implementation results suggest scheme is practical for real-

world use. Homomorphic hashes are reasonably-sized and 

independent of the encoding rate and they enable receivers 

to authenticate check blocks on the fly. The proposed two 

possible authentication protocols based on a homomorphic 

collision-resistant hash function (CRHF) are: 

a. Global hashing model: In the global hashing model, there 

is a single way to map F to 

H(F) by using global 

parameters. As such, one-time 



 

File Security using Homomorphic Hashing in Peer to Peer Networks 

40 Retrieval Number: K08070921114/2014©BEIESP 

Published By: 

Blue Eyes Intelligence Engineering 
& Sciences Publication  

hash generation is slow but well-defined.  

b. Per-publisher hashing model: In the per-publisher hashing 

model, each publisher chooses his own hash parameters, and 

different publishers will generate different hashes for the 

same file. 

2. Luby Transform Codes 

 The quality of peer-to-peer content distribution can suffer 

when malicious participants intentionally corrupt content. 

Some systems using simple block-by-block downloading 

can verify blocks with traditional cryptographic signatures 

and hashes, but these techniques do not apply well to more 

elegant systems that use rateless erasure codes for efficient 

multicast transfers. Peer-to-peer content distribution 

networks (P2P-CDNs) are trafficking larger and larger files, 

but end-users have not witnessed meaningful increases in 

their available bandwidth, nor have individual nodes 

become more reliable. As a result, the transfer times of files 

in these networks often exceed the average uptime of source 

nodes, and receivers frequently experience download 

truncations. Multicast transmission of popular files might 

drastically reduce the total bandwidth consumed; however, 

traditional multicast systems would fare poorly in such 

unstable networks. Developments in practical erasure codes 

[12] and rateless erasure codes [13], [14] point to elegant 

solutions for both problems. Erasure codes of rate r (where 0 

< r < 1) map a file of n message blocks onto a larger set of 

n=r check blocks. Using such a scheme, a sender simply 

transmits a random sequence of these check blocks. A 

receiver can decode the original file with high probability 

once he has amassed a random collection of slightly more 

than n unique check blocks. In rateless codes, block 

duplication is much less of a problem: encoders need not 

pre-specify a value for r and can instead map a file’s blocks 

to a set of check blocks whose size is exponential in n. A 

file F is compressed down to a smaller hash value H(F), 

with which the receiver can verify the integrity of any 

possible check block. Receivers then need only obtain a 

file’s hash value to avoid being duped during a transfer. The 

function H is based on a discrete-log-based collision-

resistant, homomorphic hash function, which allows 

receivers to compose hash values in much the same way that 

encoders compose message blocks. It is independent of 

encoding rate and is therefore compatible with rateless 

erasure codes. It is fast to compute, efficiently verified using 

probabilistic batch verification, and has provable security 

under the discrete-log assumption. Furthermore, our 

implementation results suggest this scheme is practical for 

real-world use. Typically, a file F is divided into n 

uniformly sized blocks, known as message blocks (or 

alternatively, input symbols). Erasure encoding schemes add 

redundancy to the original n message blocks, so that 

receivers can recover from packet drops without explicit 

packet retransmissions. 

 

Fig. 1: Online Encoding of a Five-Block File, bi are 

Message Blocks, a1 is an Auxiliary Block, and ci are 

Heck Blocks 

Edges represent addition (via XOR).  

For example, c4 = b2 +b3 + b5, 

a1 = b3 + b4, and c7 = a1 + b5. 

Researchers have proposed a class of erasure codes with 

sub-quadratic decoding times such as Tornado Codes [17], 

LT Codes [13], RaptorCodes [16] and Online Codes [14]. 

These schemes output check blocks (or alternatively, output 

symbols) that are simple summations of message blocks. 

That is, if the file F is composed of message blocks b1 

through bn, the check block c1 might be computed as b1+b2. 

The specifics of these linear relationships vary with the 

scheme. For multicast and other applications that benefit 

from lower encoding rates, LT, codes are preferable [18]. 

They feature rateless encoders that can generate an 

enormous sequence of check blocks with state constant in 

n.LT codes are decodable in time O(n ln(n)). 

3. Peer-to-Peer (P2P) 

Peer-to-Peer (P2P) networks have recently emerged as 

alternative to traditional Content Distribution solutions to 

deliver large files. Such P2P networks [7] [8] [9] create a 

fully distributed architecture where commodity PCs are used 

to form a cooperative network and share their resources 

(storage, CPU, bandwidth). By capitalizing the bandwidth of 

end systems, P2P cooperative architectures offer great 

potential for providing a cost-effective distribution of 

software updates, critical patches, videos, and other large 

files to thousands of simultaneous users both Internet-wide 

and in private networks. 

 

Fig. 2: Peer-to-Peer Model 

 

. 
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Step 1: In figure 2, a scenario is diagrammed where the user 

on Peer 1 clicks a button, for example, a "Search" button, in 

the GUI interface. The interface somehow decides to send a 

"Query" message to another peer, in this case, Peer 2.  

Step 2: The main loop of Peer 2 detects the incoming 

connection request. 

Step 3: Peer 2 starts up a separate thread to handle the actual 

data of the request (A thread is a task that a program runs 

simultaneously, or pseudo-simultaneously, with other 

running tasks. The purpose of using threads here is to allow 

a peer to handle multiple incoming connections 

simultaneous.) 

Step 4: Assuming, message type "c" refers to a "Query" 

message, Peer 1 sends the actual message once it has gotten 

a connection to Peer 2.  

Step 5: The "handle peer" task (thread) of Peer 2 receives 

the message, sends an acknowledgment back to Peer 1, 

closes the connection, and then calls an appropriate 

function/method to handle the message based on its type. 

Step 6: After processing the message, the "msg c handler" 

function decides that it needs to send a "Query Response" 

message back to Peer 1, so it attempts to connect. 

Step 7: Peer 1's main loop, listening for such connections, 

accepts the connection and starts its separate handler thread 

to receive the actual message data from Peer 2 (step 8).  

Having received the message, Peer 1 does what Peer 2 did in 

step 5, and the process continues. 

III. IMPLEMENTATION METHODOLOGY 

 

Fig. 3: Implementation Flowchart 

Our implementation of secure file transfer using 

homomorphic hashing in peer-to-peer follows the approach 

outlined in Fig 3 

A. LT Encoding 

The encoding process begins by dividing the un-coded 

message into n blocks of roughly equal length. Encoded 

packets are then produced with the help of a pseudorandom 

number generator.   

1. The degree d, 1 ≤ d ≤ n, of the next packet is chosen at 

random. 

2. Exactly d blocks from the message are randomly chosen. 

3. If Mi is the i
th

 block of the message, the data portion of the 

next packet is computed as 

                                             (1) 

where {i1, i2, …, id} are the randomly chosen indices for 

the d blocks included in this packet for equation (1). 

4. A prefix is appended to the encoded packet, defining 

how many blocks n are in the message, how many 

blocks d have been exclusive-ored into the data portion 

of this packet, and the list of indices {i1, i2, …, id}. 

5. Finally, some form of error-detecting code (perhaps as 

simple as a cyclic redundancy check) is applied to the 

packet, and the packet is transmitted. This process 

continues until the receiver signals that the message has 

been received and successfully decoded. 

B. LT Decoding 

The decoding process uses the "exclusive or" operation to 

retrieve the encoded message. 

1. If the current packet isn't clean, or if it replicates a 

packet that has already been processed, the current 

packet is discarded. 

2. If the current cleanly received packet is of degree d > 1, 

it is first processed against all the fully decoded blocks 

in the message queuing area (as described more fully in 

the next step), then stored in a buffer area if its reduced 

degree is greater than 1. 

3. When a new, clean packet of degree d = 1 (block Mi) is 

received (or the degree of the current packet is reduced 

to 1 by the preceding step), it is moved to the message 

queuing area, and then matched against all the packets 

of degree d > 1 residing in the buffer. It is exclusive-

ored into the data portion of any buffered packet that 

was encoded using Mi, the degree of that matching 

packet is decremented, and the list of indices for that 

packet is adjusted to reflect the application of Mi. 

4. When this process unlocks a block of degree d = 2 in 

the buffer, that block is reduced to degree 1 and is in its 

turn moved to the message queuing area, and then 

processed against the packets remaining in the buffer. 

5. When all n blocks of the message have been moved to 

the message queuing area, the receiver signals the 

transmitter that the message has been successfully 

decoded. 

This decoding procedure works because       for any 

bit string A. After d − 1 distinct blocks have been exclusive-

ored into a packet of degree d, the original un-encoded 

content of the unmatched block is all that remains, as 

proved in equation 2. In 

symbols we have 
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Fig. 4: Example of LT Encoding and Decoding 

An example of LT encoding and decoding would work on 

an image as shown in Fig. 4. The steps are as follows: 

Step1:  Data (A) 

Step2:  Split into k = 6 parts (B) 

Step3: One drop is generated by XORing parts 1, 2 and 

3 (C) 

Step4: Another drop is generated by XORing part 1, 5 and 

6(D) 

Step5: Drop generation can be repeated over and over again, 

until necessary 

Step6:  Decode (E) 

C. Homomorphic Hashing 

The two possible authentication protocols based on a 

homomorphic collision-resistant hash function (CRHF) are:  

1. Global Homomorphic Hashing 

In global homomorphic hashing [3], all nodes on the 

network must agree on hash parameters so that any two 

nodes independently hashing the same file F should 

arrive at exactly the same hash. To achieve this goal, all 

nodes must agree on security parameters λp   and λq. 

Then, a trusted party globally generates a set of hash 

parameters G = (p, q, g), where p and q are two large 

random primes such that      ,        and q | (p − 1). 

The hash parameter g is a 1 × m row-vector, composed 

of random elements of Zp, all order q.  

In particular, no node should know i, j, xi, xj such that  

     
     

 

  
                            (3) 

 as one that had this knowledge could easily compute 

hash collisions. The generators might therefore be 

generated according to the algorithm PickGroup given in 

Figure 5. The input  (λp , λq , m, s)  to  the  PickGroup  

algorithm  serves  as a heuristic proof of authenticity for the 

output parameters,           G = (p, q, g).   

Algorithm PickGroup(λp, λq  , m, s) 

Seed PRNG G with s. 

  do 

     q ← qGen(λq ) 

      p ← pGen(q, λp ) 

while p = 0 done 

for i = 1 to m do  

      do 

                        x ← G(p − 1) + 1 

                        gi  ← x  (mod p) 

                    while gi  = 1 done  

                 done 

               return (p, q, g) 

 

Algorithm qGen(λq ) 

              do 

     q ← G(2λq ) 

              while q is not prime done  

              return q 

 

Algorithm pGen(q, λp )  

               for i = 1 to 4λp   do  

                    X ← G(2λp ) 

                     c ← X  (mod 2q) 

                     p ← X − c + 1      // Note p ≡ 1 (mod 2q) 

                if p is prime then return p 

                done 

                return 0 

Fig. 5: Pick Group Algorithm 
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1. File Representation 

From [3], let   be the block size and let         

1.Consider a file F as an m × n matrix, whose cells are all 

elements of Zq. Selection of m guarantees that each element 

is less than      , and therefore less than the prime q. Now, 

the j
th

 column of F simply corresponds to the j
th

 message 

block of the file F, which we write     

                       . Thus: 

 

                

         
   

         

               (4)       

We add two blocks by adding their corresponding column- 

vectors. That is, to combine the ith and jth blocks of the 

file, we simply compute: 

                                                  (5) 

2. Precoding 

The precoding stage produces auxiliary blocks that are 

summations of message blocks, and that the resulting 

composite file has the original n message blocks, and the 

additional n δ k auxiliary blocks as given in [3]. The 

precoder now proceeds as usual, but uses addition over Zq 

instead of the XOR operator. 

3. Encoding  

Like precoding, encoding is unchanged save for the addition 

operation. For each check block, the encoder picks an n’-

dimensional bit vector x and compute     . The output 

      describes the check block. 

4. Hash Generation 

To hash a file, a publisher uses a CRHF, secure under the 

discrete-log assumption. This hash function is a generalized 

form of the Pederson commitment scheme [19] (and from 

Chaum et al. [20]), and it is similar to that used in various 

incremental hashing schemes. Recall that a CRHF is 

informally defined as a function for which finding any two 

inputs that yield the same output is difficult.  

For an arbitrary message block bj, define its hash with 

respect to G from [3] [4]: 

           
    
              (6) 

 

Define the hash of file F as a 1X n row-vector whose 

elements are the hashes of its constituent blocks using 

equation 6: 

                                    (7) 

5. Hash Verification 

 If a downloader knows (G, HG (F)), he can first compute the 

hash values for the (n δ k) auxiliary blocks. 

The precoding matrix Y is a deterministic function of the 

file size n and the pre-established encoding parameters δ and 

k. Thus, the receiver computes Y and obtains the hash over 

the composite file as: 

        
                                          (8) 

The hash of the auxiliary blocks is the last (n δ k) cells in 

this row vector. To verify whether a given check block 

     satisfies  

     , a receiver verifies that: 

     

                
   

                            (9) 

hG functions here as a homomorphic hash function.  

For any two blocks bi and bj, 

  

                                   (10) 

6. Decoding  

XOR is conveniently its own inverse, so implementations of 

standard Online Codes need not distinguish between 

addition and subtraction. In our case, we simply use 

subtraction over q to reduce check blocks as necessary. 

B. Per-Publisher Homomorphic Hashing 

The per-publisher hashing scheme is an optimization of the 

global hashing scheme just described. In the per-publisher 

hashing scheme, a given publisher picks group parameters G 

so that a logarithmic relation among the generators g is 

known. The publisher picks q and p as in global hashing 

scheme, but generates g by picking a random        of 

order q, generating a random vector r whose elements are in 

Zq and then computing g = g
r
. 

                                   (11) 

Given the parameters g and r, the publisher can compute file 

hashes with many fewer modular exponentiations. The 

publisher computes the product rF first using equation 11, 

and then performs only one modular exponentiation per file 

block to obtain the full file hash. 

IV. CONCLUSION 

Current peer-to-peer content distribution networks, such as 

the widely popular file-sharing systems, suffer from 

unverified downloads. A participant may download an entire 

file, increasingly in the hundreds of megabytes, before 

determining that the file is corrupted or mislabeled. Current 

downloading techniques can use simple cryptographic 

primitives such as signatures and hash trees to authenticate 

data. However, these approaches are not efficient for low 

encoding rates, and are not possible for rateless codes. 
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