
International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378, Volume-2 Issue-11, September 2014

39 Retrieval Number: K08070921114/2014©BEIESP

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

File Security using Homomorphic Hashing in Peer

to Peer Networks

Nirmit Desai, Chitesh Tewani, Karl Elavia, Omkar Gawde, Kiran Joshi

Abstract- This paper focuses primarily with homomorphic

hashing and the quality of peer-to-peer content distribution.

Some systems using simple block-by-block downloading can

verify blocks with traditional cryptographic signatures and

hashes, but these techniques do not apply well to more elegant

systems that use rate less erasure codes for efficient multicast

transfers. This paper presents a practical scheme, based on

homomorphic hashing, that enables a downloader to perform on-

the-fly verification of erasure-encoded blocks. Peer-to-peer

content distribution networks can suffer from malicious

participants that intentionally corrupt content. Traditional

systems verify blocks with traditional cryptographic signatures

and hashes. However, these techniques do not apply well to more

elegant schemes that use network coding techniques for efficient

content distribution. Problems that occur with these techniques

are that peers have no way of knowing which block was bad if a

piece they download fails hash check, and if they’re streaming

data they can’t display it until a full piece is downloaded for hash

verification purposes. Also there is a huge waste of bandwidth

when a piece does not pass hash check, in fact, the peer must

discard all the blocks (even all the correct ones) and then re-

download all the blocks within the piece. It is better to discard

only bad blocks, and re-download only them which will save

bandwidth. Identifying such bogus blocks is difficult and requires

the use of homomorphic hashing functions. This paper deals with

reducing the bogus blocks by implementing homomorphic hashes

on the blocks and using Luby Transform Codes on peer to peer

networks.

Keywords- Homomorphic Hashing, Peer-to-peer (P2P), Luby

Transform Codes (LT codes), Erasure Codes, File security

I. INTRODUCTION

A Peer-to-Peer network is a distributed application

architecture that subdivides the workload among all

participating peers. The peers, also called nodes of the

overlay network, are equally privileged, and each one shares

a fraction of its resources with others, without a central

coordination. This type of architecture is suitable for much

kind of applications: file sharing, video-on-demand [5], live-

streaming and distributed computing are few examples.

Nowadays peer-to-peer (P2P) applications generate a

substantial fraction of the total Internet traffic. The reasons

for this widespread diffusion are not difficult to understand.

From the perspective of the end user, P2P applications make

possible to retrieve a large amount of multimedia contents,

and in turn to share media with other people.

Manuscript Received on September 22, 2014.

Nirmit Desai, B.Tech Student, Computer Science & Information

Technology Department, VJTI, Mumbai, India.

Chitesh Tewani, B.Tech Student, Computer Science & Information

Technology Department, VJTI, Mumbai, India.

Karl Elavia, B.Tech Student, Computer Science & Information

Technology Department, VJTI, Mumbai, India.

Omkar Gawde, B.Tech Student, Computer Science & Information

Technology Department, VJTI, Mumbai, India.

Kiran Joshi, Assistant Professor, Computer Science & Information

Technology Department, VJTI, Mumbai, India.

Most important, the benefit of using a P2P overlay with

respect to the classical client/server paradigm is to shift the

load from a central server to peers, with many advantages:

saving server bandwidth, providing the service to more users

with the same resources utilization, obtaining a more robust

system due the error-resilient features of a distributed

overlay. On the other side, a P2P overlay exploits the

Internet infrastructure (core and access networks) and

generates a huge amount of traffic. This represents a

problem especially in situations with untrusted users, such

as peer to peer networks. There doesn't seem to be a

practical way to verify if a peer is sending you valid blocks

until you decode the file. Using Fountain Codes [4], a clever

probabilistic algorithm that allows us to break a large file up

into a virtually infinite number of small chunks, such that

you can collect any subset of those chunks - as long as you

collect a few more than the volume of the original file - and

be able to reconstruct the original file. We propose a method

using Homomorphic Hashing [3] a construction that's

simple in principle and one that you can compute the hash of

a composite block from the hashes of the individual blocks.

With a construction like this, we could distribute a list of

individual hashes to users, and they could use those to verify

incoming blocks as they arrive.

II. THEORETICAL ANALYSIS

1. Homomorphic Hash

Homomorphic Hashing [3] is a novel construction that lets

recipients verify the integrity of check blocks immediately,

before consuming large amounts of bandwidth or polluting

their download caches. A file F is compressed down to a

smaller hash value, H(F), with which the receiver can verify

the integrity of any possible check block. Receivers then

need only obtain a file’s hash value to avoid being duped

during a transfer. The function H is based on a discrete-log

based, collision-resistant, homomorphic hash function,

which allows receivers to compose hash values in much the

same way that encoders compose message blocks. Unlike

more obvious constructions, hash function is independent of

encoding rate and is therefore compatible with rateless

erasure codes [10]. It is fast to compute, efficiently verified

using probabilistic batch verification, and has provable

security under the discrete-log assumption. The

implementation results suggest scheme is practical for real-

world use. Homomorphic hashes are reasonably-sized and

independent of the encoding rate and they enable receivers

to authenticate check blocks on the fly. The proposed two

possible authentication protocols based on a homomorphic

collision-resistant hash function (CRHF) are:

a. Global hashing model: In the global hashing model, there

is a single way to map F to

H(F) by using global

parameters. As such, one-time

File Security using Homomorphic Hashing in Peer to Peer Networks

40 Retrieval Number: K08070921114/2014©BEIESP

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

hash generation is slow but well-defined.

b. Per-publisher hashing model: In the per-publisher hashing

model, each publisher chooses his own hash parameters, and

different publishers will generate different hashes for the

same file.

2. Luby Transform Codes

 The quality of peer-to-peer content distribution can suffer

when malicious participants intentionally corrupt content.

Some systems using simple block-by-block downloading

can verify blocks with traditional cryptographic signatures

and hashes, but these techniques do not apply well to more

elegant systems that use rateless erasure codes for efficient

multicast transfers. Peer-to-peer content distribution

networks (P2P-CDNs) are trafficking larger and larger files,

but end-users have not witnessed meaningful increases in

their available bandwidth, nor have individual nodes

become more reliable. As a result, the transfer times of files

in these networks often exceed the average uptime of source

nodes, and receivers frequently experience download

truncations. Multicast transmission of popular files might

drastically reduce the total bandwidth consumed; however,

traditional multicast systems would fare poorly in such

unstable networks. Developments in practical erasure codes

[12] and rateless erasure codes [13], [14] point to elegant

solutions for both problems. Erasure codes of rate r (where 0

< r < 1) map a file of n message blocks onto a larger set of

n=r check blocks. Using such a scheme, a sender simply

transmits a random sequence of these check blocks. A

receiver can decode the original file with high probability

once he has amassed a random collection of slightly more

than n unique check blocks. In rateless codes, block

duplication is much less of a problem: encoders need not

pre-specify a value for r and can instead map a file’s blocks

to a set of check blocks whose size is exponential in n. A

file F is compressed down to a smaller hash value H(F),

with which the receiver can verify the integrity of any

possible check block. Receivers then need only obtain a

file’s hash value to avoid being duped during a transfer. The

function H is based on a discrete-log-based collision-

resistant, homomorphic hash function, which allows

receivers to compose hash values in much the same way that

encoders compose message blocks. It is independent of

encoding rate and is therefore compatible with rateless

erasure codes. It is fast to compute, efficiently verified using

probabilistic batch verification, and has provable security

under the discrete-log assumption. Furthermore, our

implementation results suggest this scheme is practical for

real-world use. Typically, a file F is divided into n

uniformly sized blocks, known as message blocks (or

alternatively, input symbols). Erasure encoding schemes add

redundancy to the original n message blocks, so that

receivers can recover from packet drops without explicit

packet retransmissions.

Fig. 1: Online Encoding of a Five-Block File, bi are

Message Blocks, a1 is an Auxiliary Block, and ci are

Heck Blocks

Edges represent addition (via XOR).

For example, c4 = b2 +b3 + b5,

a1 = b3 + b4, and c7 = a1 + b5.

Researchers have proposed a class of erasure codes with

sub-quadratic decoding times such as Tornado Codes [17],

LT Codes [13], RaptorCodes [16] and Online Codes [14].

These schemes output check blocks (or alternatively, output

symbols) that are simple summations of message blocks.

That is, if the file F is composed of message blocks b1

through bn, the check block c1 might be computed as b1+b2.

The specifics of these linear relationships vary with the

scheme. For multicast and other applications that benefit

from lower encoding rates, LT, codes are preferable [18].

They feature rateless encoders that can generate an

enormous sequence of check blocks with state constant in

n.LT codes are decodable in time O(n ln(n)).

3. Peer-to-Peer (P2P)

Peer-to-Peer (P2P) networks have recently emerged as

alternative to traditional Content Distribution solutions to

deliver large files. Such P2P networks [7] [8] [9] create a

fully distributed architecture where commodity PCs are used

to form a cooperative network and share their resources

(storage, CPU, bandwidth). By capitalizing the bandwidth of

end systems, P2P cooperative architectures offer great

potential for providing a cost-effective distribution of

software updates, critical patches, videos, and other large

files to thousands of simultaneous users both Internet-wide

and in private networks.

Fig. 2: Peer-to-Peer Model

.

International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378, Volume-2 Issue-11, September 2014

41 Retrieval Number: K08070921114/2014©BEIESP

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Step 1: In figure 2, a scenario is diagrammed where the user

on Peer 1 clicks a button, for example, a "Search" button, in

the GUI interface. The interface somehow decides to send a

"Query" message to another peer, in this case, Peer 2.

Step 2: The main loop of Peer 2 detects the incoming

connection request.

Step 3: Peer 2 starts up a separate thread to handle the actual

data of the request (A thread is a task that a program runs

simultaneously, or pseudo-simultaneously, with other

running tasks. The purpose of using threads here is to allow

a peer to handle multiple incoming connections

simultaneous.)

Step 4: Assuming, message type "c" refers to a "Query"

message, Peer 1 sends the actual message once it has gotten

a connection to Peer 2.

Step 5: The "handle peer" task (thread) of Peer 2 receives

the message, sends an acknowledgment back to Peer 1,

closes the connection, and then calls an appropriate

function/method to handle the message based on its type.

Step 6: After processing the message, the "msg c handler"

function decides that it needs to send a "Query Response"

message back to Peer 1, so it attempts to connect.

Step 7: Peer 1's main loop, listening for such connections,

accepts the connection and starts its separate handler thread

to receive the actual message data from Peer 2 (step 8).

Having received the message, Peer 1 does what Peer 2 did in

step 5, and the process continues.

III. IMPLEMENTATION METHODOLOGY

Fig. 3: Implementation Flowchart

Our implementation of secure file transfer using

homomorphic hashing in peer-to-peer follows the approach

outlined in Fig 3

A. LT Encoding

The encoding process begins by dividing the un-coded

message into n blocks of roughly equal length. Encoded

packets are then produced with the help of a pseudorandom

number generator.

1. The degree d, 1 ≤ d ≤ n, of the next packet is chosen at

random.

2. Exactly d blocks from the message are randomly chosen.

3. If Mi is the i
th

 block of the message, the data portion of the

next packet is computed as

 (1)

where {i1, i2, …, id} are the randomly chosen indices for

the d blocks included in this packet for equation (1).

4. A prefix is appended to the encoded packet, defining

how many blocks n are in the message, how many

blocks d have been exclusive-ored into the data portion

of this packet, and the list of indices {i1, i2, …, id}.

5. Finally, some form of error-detecting code (perhaps as

simple as a cyclic redundancy check) is applied to the

packet, and the packet is transmitted. This process

continues until the receiver signals that the message has

been received and successfully decoded.

B. LT Decoding

The decoding process uses the "exclusive or" operation to

retrieve the encoded message.

1. If the current packet isn't clean, or if it replicates a

packet that has already been processed, the current

packet is discarded.

2. If the current cleanly received packet is of degree d > 1,

it is first processed against all the fully decoded blocks

in the message queuing area (as described more fully in

the next step), then stored in a buffer area if its reduced

degree is greater than 1.

3. When a new, clean packet of degree d = 1 (block Mi) is

received (or the degree of the current packet is reduced

to 1 by the preceding step), it is moved to the message

queuing area, and then matched against all the packets

of degree d > 1 residing in the buffer. It is exclusive-

ored into the data portion of any buffered packet that

was encoded using Mi, the degree of that matching

packet is decremented, and the list of indices for that

packet is adjusted to reflect the application of Mi.

4. When this process unlocks a block of degree d = 2 in

the buffer, that block is reduced to degree 1 and is in its

turn moved to the message queuing area, and then

processed against the packets remaining in the buffer.

5. When all n blocks of the message have been moved to

the message queuing area, the receiver signals the

transmitter that the message has been successfully

decoded.

This decoding procedure works because for any

bit string A. After d − 1 distinct blocks have been exclusive-

ored into a packet of degree d, the original un-encoded

content of the unmatched block is all that remains, as

proved in equation 2. In

symbols we have

File Security using Homomorphic Hashing in Peer to Peer Networks

42 Retrieval Number: K08070921114/2014©BEIESP

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

 (2)

A

B

C

D

E

Fig. 4: Example of LT Encoding and Decoding

An example of LT encoding and decoding would work on

an image as shown in Fig. 4. The steps are as follows:

Step1: Data (A)

Step2: Split into k = 6 parts (B)

Step3: One drop is generated by XORing parts 1, 2 and

3 (C)

Step4: Another drop is generated by XORing part 1, 5 and

6(D)

Step5: Drop generation can be repeated over and over again,

until necessary

Step6: Decode (E)

C. Homomorphic Hashing

The two possible authentication protocols based on a

homomorphic collision-resistant hash function (CRHF) are:

1. Global Homomorphic Hashing

In global homomorphic hashing [3], all nodes on the

network must agree on hash parameters so that any two

nodes independently hashing the same file F should

arrive at exactly the same hash. To achieve this goal, all

nodes must agree on security parameters λp and λq.

Then, a trusted party globally generates a set of hash

parameters G = (p, q, g), where p and q are two large

random primes such that , and q | (p − 1).

The hash parameter g is a 1 × m row-vector, composed

of random elements of Zp, all order q.

In particular, no node should know i, j, xi, xj such that

 (3)

 as one that had this knowledge could easily compute

hash collisions. The generators might therefore be

generated according to the algorithm PickGroup given in

Figure 5. The input (λp , λq , m, s) to the PickGroup

algorithm serves as a heuristic proof of authenticity for the

output parameters, G = (p, q, g).

Algorithm PickGroup(λp, λq , m, s)

Seed PRNG G with s.

 do

 q ← qGen(λq)

 p ← pGen(q, λp)

while p = 0 done

for i = 1 to m do

 do

 x ← G(p − 1) + 1

 gi ← x (mod p)

 while gi = 1 done

 done

 return (p, q, g)

Algorithm qGen(λq)

 do

 q ← G(2λq)

 while q is not prime done

 return q

Algorithm pGen(q, λp)

 for i = 1 to 4λp do

 X ← G(2λp)

 c ← X (mod 2q)

 p ← X − c + 1 // Note p ≡ 1 (mod 2q)

 if p is prime then return p

 done

 return 0

Fig. 5: Pick Group Algorithm

International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378, Volume-2 Issue-11, September 2014

43 Retrieval Number: K08070921114/2014©BEIESP

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

1. File Representation

From [3], let be the block size and let

1.Consider a file F as an m × n matrix, whose cells are all

elements of Zq. Selection of m guarantees that each element

is less than , and therefore less than the prime q. Now,

the j
th

 column of F simply corresponds to the j
th

 message

block of the file F, which we write

 . Thus:

 (4)

We add two blocks by adding their corresponding column-

vectors. That is, to combine the ith and jth blocks of the

file, we simply compute:

 (5)

2. Precoding

The precoding stage produces auxiliary blocks that are

summations of message blocks, and that the resulting

composite file has the original n message blocks, and the

additional n δ k auxiliary blocks as given in [3]. The

precoder now proceeds as usual, but uses addition over Zq

instead of the XOR operator.

3. Encoding

Like precoding, encoding is unchanged save for the addition

operation. For each check block, the encoder picks an n’-

dimensional bit vector x and compute . The output

 describes the check block.

4. Hash Generation

To hash a file, a publisher uses a CRHF, secure under the

discrete-log assumption. This hash function is a generalized

form of the Pederson commitment scheme [19] (and from

Chaum et al. [20]), and it is similar to that used in various

incremental hashing schemes. Recall that a CRHF is

informally defined as a function for which finding any two

inputs that yield the same output is difficult.

For an arbitrary message block bj, define its hash with

respect to G from [3] [4]:

 (6)

Define the hash of file F as a 1X n row-vector whose

elements are the hashes of its constituent blocks using

equation 6:

 (7)

5. Hash Verification

 If a downloader knows (G, HG (F)), he can first compute the

hash values for the (n δ k) auxiliary blocks.

The precoding matrix Y is a deterministic function of the

file size n and the pre-established encoding parameters δ and

k. Thus, the receiver computes Y and obtains the hash over

the composite file as:

 (8)

The hash of the auxiliary blocks is the last (n δ k) cells in

this row vector. To verify whether a given check block

 satisfies

 , a receiver verifies that:

 (9)

hG functions here as a homomorphic hash function.

For any two blocks bi and bj,

 (10)

6. Decoding

XOR is conveniently its own inverse, so implementations of

standard Online Codes need not distinguish between

addition and subtraction. In our case, we simply use

subtraction over q to reduce check blocks as necessary.

B. Per-Publisher Homomorphic Hashing

The per-publisher hashing scheme is an optimization of the

global hashing scheme just described. In the per-publisher

hashing scheme, a given publisher picks group parameters G

so that a logarithmic relation among the generators g is

known. The publisher picks q and p as in global hashing

scheme, but generates g by picking a random of

order q, generating a random vector r whose elements are in

Zq and then computing g = g
r
.

 (11)

Given the parameters g and r, the publisher can compute file

hashes with many fewer modular exponentiations. The

publisher computes the product rF first using equation 11,

and then performs only one modular exponentiation per file

block to obtain the full file hash.

IV. CONCLUSION

Current peer-to-peer content distribution networks, such as

the widely popular file-sharing systems, suffer from

unverified downloads. A participant may download an entire

file, increasingly in the hundreds of megabytes, before

determining that the file is corrupted or mislabeled. Current

downloading techniques can use simple cryptographic

primitives such as signatures and hash trees to authenticate

data. However, these approaches are not efficient for low

encoding rates, and are not possible for rateless codes.

REFERENCES

1. P2P Streaming with LT Codes: a Prototype Experimentation. Andrea

Magnetto, Rossano Gaeta, Marco Grangetto, Matteo Sereno
2. Cooperative Security for Network Coding File Distribution Christos

Gkantsidis and Pablo Rodriguez Rodriguez

3. On-the-Fly Verification of Rateless Erasure Codes for Efficient
Content Distribution”-

4. Capacity approaching codes design & Implementation “ - D.J.C

Mackay
5. An Approach for System Scalability For Video on Demand” By- V.B.

Nikam , Kiran Joshi , B.B. Meshram.

6. Analyzing and Improving BitTorrent Performance” By- Ashwin R.
Bharambe ,Cormac Herley ,Venkata N. Padmanabhan

7. An Analytic Framework for Modeling Peer to Peer Networks

Krishna K. Ramachandran and Biplab Sikdar Rensselaer Polytechnic
Institute, Troy NY 12180

8. Peer-to-Peer Research at Stanford Mayank Bawa, Brian F. Cooper,

Arturo Crespo, Neil Daswani, Prasanna Ganesan, Hector Garcia-
Molina, Sepandar Kamvar, Sergio Marti, Mario Schlosser, Qi Sun,

Patrick Vinograd, Beverly Yang

9. A Survey and Comparison of Peer-to-Peer Overlay Network Schemes
Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma and

Steven Lim

File Security using Homomorphic Hashing in Peer to Peer Networks

44 Retrieval Number: K08070921114/2014©BEIESP

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

10. L. Rizzo, “Effective erasure codes for reliable computer

communication protocols,” ACM Computer Communication Review,
vol. 27, no. 2, Apr.1997.

11. S. Saroui, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and H. M.

Levy, “An analysis of Internet content delivery systems,” in Proc. 5th
Symposium on Operating Systems Design and Implementation

(OSDI), Boston, MA, Oct. 2002.

12. M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V.
Stemann, “Practical loss-resilient codes,” in Proc. 29th Annual ACM

Symposium on Theory of Computing (STOC), El Paso, TX, May 1997.

13. M. Luby, “LT codes,” in Proc. 43rd Annual Symposium on
Foundationsof Computer Science (FOCS), Vancouver, Canada, Nov.

2002.

14. P. Maymounkov, “LT codes,” NYU, Tech. Rep. 2002-833, Nov.
2002.

15. L. Rizzo, “Effective erasure codes for reliable computer

communication protocols,” ACM Computer Communication Review,
vol. 27, no. 2, Apr.1997.

16. A. Shokrollahi, “Raptor codes,” Digital Fountain, Inc., Tech. Rep.

DF2003-06-001, June 2003.
17. J. Byers, M. Luby, and M. Mitzenmacher, “Accessing multiple mirror

sites in parallel: Using Tornado codes to speed up downloads,” in

Proc.IEEE INFOCOM ’99, New York, NY, Mar. 1999

18. P. Maymounkov and D. Mazi`eres, “Rateless codes and big

downloads,” in Proc. 2nd International Workshop on Peer-to-Peer

Systems (IPTPS), Berkeley, CA, Feb. 2003.
19. T. P. Pedersen, “Non-interactive and information-theoretic secure

verifiable secret sharing,” in Advances in Cryptology—CRYPTO ’91,
Santa Barbara, CA, Aug. 1991.

20. D. Chaum, E. van Heijst, and B. Pfitzmann, “Cryptographically

strong undeniable signatures, unconditionally secure for the signer,”
in Advancesin Cryptology—CRYPTO ’91, Santa Barbara, CA, Aug.

1991.

AUTHORS PROFILE

Nirmit Desai, Final Year B.Tech Information Technology from Veermata

Jijabai Technological Institute, Mumbai, India.

Chitesh Tewani, Final Year B.Tech Information Technology from

Veermata Jijabai Technological Institute, Mumbai, India.

Karl Elavia, Final Year B.Tech Information Technology from Veermata

Jijabai Technological Institute, Mumbai, India.

Omkar Gawde, Final Year B.Tech Information Technology from

Veermata Jijabai Technological Institute, Mumbai, India.

Kiran Joshi, Asst. Professor Veermata Jijabai Technological Institute,

Mumbai, India.

