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Abstract— Soil moisture estimation is important for land 

surface modeling and climate modeling, with soil moisture being 

employed as a critical parameter. Although, the derivation of soil 

moisture from passive microwave remote sensing has been 

theoretically and practically proven to be possible, its spatial 

resolution  however tends to be coarse-grained, at a range of about 

20-40 km. As this does not satisfy the requirements of models 

using higher resolution grids, it is thus desirable to downscale soil 

moisture to finer resolutions of between 1 to 5 km. Neural network 

ensembles are known to be able to effectively improve the 

overgeneralization that arises from the combination of a set of 

neural network classifiers with a diverse range of error 

distributions. In this paper, a neural network ensemble method 

was explored to downscale soil moisture content from 20km to 

2km resolution. The dataset used in this experiment was captured 

using low resolution L-band passive microwave observations from 

regional air-borne measurements in the study of Goulburn River 

catchment in Australia. The results have shown that by using a 

neural network ensemble, an average accuracy of 2.33% can be 

obtained for the downscaled soil moisture at a 2km resolution. 

 

Index Terms— downscaling, ensemble neural network, 

radiometer, soil moisture.  

I. INTRODUCTION 

Soil moisture estimation plays an important role in 

hydrological cycles and land-surface interaction.  The 

importance of soil moisture across of variety of scientific 

areas has been documented in various studies.  Examples of 

these areas include: weather forecast [1-3], rainfall-runoff 

transformation model [4-6], soil evaporation and plant 

transpiration [7-9].  Despite its importance in various areas, 

the conventional point measurement of this variable is 

difficult to achieve regular, reliable and at regional scale.   

Remote sensing, on the other hand, provides a potential 

technique to access this variable at various scales.  In 

particular, passive microwave has been the most successful of 

remote sensing approaches for soil moisture estimation, due 

to its ability to penetrate cloud, its direct relationship between 

soil moisture through soil’s dielectric constant, and a reduced 

sensitivity to land surface roughness and vegetation cover 

[10].   

 Artificial neural networks (ANN) have been widely used in 

water resources and hydrology applications as they are robust 

to noisy data and have been suited for approximating 

multivariate non-linear relations among variables.  

The Neural network ensemble method is a meta-learning 

paradigm where multiple neural networks are jointly used to 

solve a problem [11].  In the earlier work, the authors had 
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used Backpropagation Neural Network for soil moisture 

retrieval [10, 12, 13] and for downscaling of soil moisture 

[14].  In this paper, the neural network ensemble method is 

used to downscale soil moisture from 20km to 2km from the 

low resolution L-band passive microwave observations.  

II. DATA 

The study area of NAFE’05 is the Goulburn River 

catchment, a sub-humid to temperate area located in 

south-eastern Australia, approximately 300km north-west of 

the city of Sydney [15].  This catchment has two intensively 

monitored sub-catchments, the Krui River (562 km
2
) and 

Merriwa River (651 km
2
) in the northern half of the 

catchment.     

 

 
Figure 1. Overview of NAFE’05 focus farms within 

Krui and Merriwa areas 

A. Regional Airborne Data  

Regional airborne measurements had been made using a 

two-seater motor glider equipped with the Polarimetric 

L-band Multibeam Radiometer (PLMR) which allows very 

high resolution passive microwave (~50 m) observations to be 

made at 1 km nominal resolution over the entire study area on 

November 7
th

, 14
th

 and 21
st
 2005.  The radiometer was flown 

in ‘pushbroom’ configuration, yielding six across track 

observations from each aircraft location: brightness 

temperature (Tb) at H- and V-polarization at incidence angles 

±7º, ±21.5º and ±38.5º.  The beamwidth is 17° resulting in an 

overall 90° field of view.   
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Figure 2. Normalized H-polarized brightness 

temperature for (a) November 7th, (b) November 14th , 

and (c) November 21st at 1 km resolution.  The 

boundaries for the focus farms are shown in beige while 

the boundary for the study area is shown in red. 

 

A full pixel overlap between adjacent flight lines was 

guaranteed in order to avoid data gaps and ensure full 

coverage of the entire area.  The PLMR data used in this study 

was georeferenced at H- and V-polarizations and calibrated 

internally against cold and warm loads [16]. 
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Figure 3.  L-MED retrieved soil moisture from regional 

airborne observations (1km) on a. 7th Nov, b. 14th Nov 

and c. 21st Nov 2005.  The boundaries of the focus farms 

and the whole study area are shown in solid lines. 

To normalize the data to ±38.5º: The daily average  over 

land target is first computed for each beam.  Next, a correction 

factor is then computed by taking the ratio between the 

averages of each beam to the average of the reference beam.  

All the data for each beam on each day are then corrected 

using this correction factor as in: 

               

    















ref

i
i

N
i

Tb

Tb
TbTb

                  (1)                                       

where iTb  is the individual Tb   acquisition to be 

normalized,  N
iTb is the normalized value, iTb and refTb  are 

the daily average Tb   of the 

beam to be normalized and the 

beam taken as reference 
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respectively.  The normalized Tb  is gridded into a reference 

grid with uniform resolution.  With averaging several 

individual Tb  acquisitions into one Tb  value for each cell, 

anomalies in individual readings are eliminated and the signal 

noise is reduced.  Figure 2 shows the aggregated normalized 

brightness temperature for H-polarized data on Nov 7th, 14th 

and 21st. 

B. 1-km Soil Moisture Data 

The 1 km soil moisture product was produced and validated 

using L-MEB (L-band Microwave Emission of the 

Biosphere) model applying the brightness temperature 

observations made with the PLMR radiometer (at incidence 

angle of ±38.5º) across the NAFE’05 study area.  The soil 

moisture maps derived from the 1 km airborne data have two 

major advantages with respect to ground point measurements 

which make them desirable for the objective of 

ground-truthing coarse-scale soil moisture retrieval: (i) they 

have larger extent, covering the entire study area and 

therefore characterize the soil moisture variability within all 

the coarse-scale pixel, and (ii) each soil moisture observation 

represents an integrated value over a 1km area, therefore 

overcoming the limitation of point data which only provide 

information for the domain sensed by ground probe (a few 

centimeters) at specific location.  The retrieved soil moisture 

shows interesting spatio-temporal dynamics which reflects 

the rainfall regime experienced by the area during the field 

experiment.  Wet condition on November 7th was due to the 

heavy rain heavy rainstorms that showered the study area at 

the beginning of the experiment (20mm over October 30th 

and 31st), followed by more intense rainfall on November 5th 

(21mm). The period between November 5th and 23rd was 

characterized by little or no rainfall and accordingly drier soil 

moisture conditions were retrieved for November 14th and 

21
st
. 

C. MODIS Data  

The MODIS data used in the downscaling algorithms are 

composed of MODIS/Aqua Surface Reflectance Daily L2G 

Global 250 m and MODIS/Aqua Land Surface Temperature 

and Emissivity Daily L3 Global 1 km products.  The MODIS 

NDVI (Normal Difference Vegetation Index) was calculated 

using Band 1 and Band 2 of the MODIS/Aqua Surface 

Reflectance L2G Global 250 m product.  The MODIS/Aqua 

data were selected since there is no significant discrepancies 

between the NDVI values derived from Terra and Aqua 

satellites of MODIS [17] and all the data during the regional 

observations were available from this satellite image.   

III. ALGORITHM DESCRIPTION 

In this paper, the method proposed by [18] is utilized using 

the ANN model with modification.  According to [18], the 

relationship between the downscaled soil moisture  , and  

the SMOS scaled soil moisture,  SMOS  is a linear 

relationship:  

                        MODISCSMOS SMP 
                  (2) 

where, C : characteristic volume fraction, and  

                      MODIS

MODIS
MODISSMP


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


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1
                     (3) 

with,  

MODIS : MODIS-derived soil evaporative efficiency, and 

MODIS :difference between MODIS-derived soil 

evaporative efficiency and its integrated value at the SMOS 

scale (   ddd  ). 

MODIS  can be written as: 

                      
minmax
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TT

TT MODIS
MODIS




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where,  

  

maxT : soil temperature at minimum soil moisture  

minT : soil temperature at maximum soil moisture  

MODIST :soil skin temperature derived from MODIS data at 

the time of interest  

By assuming that maxT and minT are mostly uniform within 

the SMOS pixel and the integral   dddT   is 

approximately equal to the areal average of  MODIST   

(designated as SMOST  ),   can be computed as: 

      minTT

TT
SMP

MODIS

MODISSMOS
MODIS




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      (5) 

In order for the ANN to learn the downscaling relationship 

in equation (5), the ANN considers the following three values 

as input:  SMOS ,  C  and MODISSMP  in order to map the 

desired soil moisture  .  The value of SMOS   is obtained by 

aggregating the soil moisture value at the desired resolution 

from the 1 km L-band derived soil moisture values and the 

values of  MODISSMP  are then calculated from the MODIS. 

The MODISsurfT ,  , SMOST , maxT   and  minT  values are 

estimated from the MODIS/Aqua Land Surface Temperature 

and Emissivity Daily L3 Global 1 km data while the 

minNDVI   and maxNDVI   are derived from Band 1 and Band 

2 of MODIS/Aqua Surface Reflectance Daily L2G Global 

250m.  The value of C   is dependent on the value of wind 

speed, a value unavailable spatially for NAFE’05 data used 

for this study.  In this study, ANN is used to learn the 

relationship between  , SMOS  and MODISSMP  without 

taking into consideration the value of C  and produces a 

functional relationship map between these three variables 

through the learning process during ANN training.   

 
a. 14 Nov 2005 
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b. 21 Nov 2005 

 
 

 

 
 

Note: Blank cells are the cells where either the LST or 

the NDVI data is not available. 

 

Figure 4. Difference between the actual and predicted 

soil moisture for the two dates used for testing the trained 

ensemble neural network. 

The proposed ensemble neural networks model consists of a 

number of back-propagation neural network models that are 

trained using the same data from one single date to downscale 

the soil moisture from 20km to 2km resolution. Each neural 

network unit will focus on downscaling a particular area of 

2km x2km area on the 20km resolution map area. Among the 

three days of when the data were taken, a single day was used 

for training the neural network models. The trained neural 

network models is used to downscale the soil moisture for the 

other two days. The ensemble neural network is constructed 

in two steps: 

i. Design the individual neural networks. 

This is done by training the neural networks on different 

training sets to generate a group of networks which are error 

uncorrelated directly. In order to obtain the different training 

sets, 11 sub-grid of 20km×20km were used.  To develop a 

particular neural network model, a sub-section of 2 × 2 pixels 

for data on 7
th

 Nov 2005 for each sub-grid were used to train 

the network.  The neural network with lowest RMSE was used 

to estimate soil moisture for each pixel in the 2 × 2 pixels on 

14
th

 and 21
st 

Nov 2005.   

ii. Combining the output. 

 Each of the ANN models was used to focus on predicting 

soil moisture at a particular location within the 20 × 20 km 

region.  The results of these ANN models were combined by 

simple averaging the RMSE obtained from all ANN models 

for the whole 20 × 20 km region.   

 

IV. RESULTS 

The trained ensemble neural network were tested on two 

new dates. For the first date, the average Root Mean Square 

(RMSE) error was 2.41%v/v for date 1 (14 Nov 2005) and for 

the second date (21 Nov 2005), it was 2.24%v/v. From Figure 

4, it can be seen the neural network ensemble model managed 

to predict the soil moisture accurately at a fine-grained 

resolution of 2km in downscaling from 20km to 2km. A 

strong correlation of around 0.9 was obtained for both dates 

(Figure 5). As some of the LST and NDVI which were used as 

the input for the neural network ensemble were missing, some 

of the soil moisture values for the cells within the 20km 

sub-grid could not thus be predicted. The encouraging results 

have shown that neural network ensembles could be used for 

effectively generating data driven model for downscaling of 

soil moisture data from 20km to 2km. Moreover the results 

have also shown that, in the consolidation of data from 

multiple neural network models has enabled the assimilation 

of spatial heterogeneity characteristics from the models. 

 

 
 

 

 

Figure 5.  Correlation between actual and predicted soil 

moisture downscaled from 20km to 2km for the two 

testing dates. 
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V. CONCLUSION 

Separately trained neural networks were combined to form 

a single unified prediction of soil moisture aggregation and 

the results of the experiments have been very encouraging. 

The ability of the neural network ensemble method in 

producing results that does not fluctuate much for predicting 

the downscaled soil moisture at two different dates has been 

extremely promising. However, the practicality of such a 

method in real-life situation needs to be further verified using 

the SMOS data which was launched in November 2009. 
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