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Abstract—We propose a unified mechanism for generating a 

small cosmological constant through cascade transition in the 

history of the Universe in the context of de Broglie-Bohm 

quantum theory. In our previous work we studied the possible 

effects of trans-Planckian physics on the Bohm quantum 

trajectories of massless minimally coupled scalar field in de Sitter 

space. The result showed that for the Corley-Jacobson type 

dispersion relation with sextic correction, there exists a transition 

in the evolution of the quantum trajectory from well before 

horizon exit to well after horizon exit, providing a possible 

mechanism for generating a small cosmological constant. In this 

paper we obtain similar transitional behaviour for the 

Corley-Jacobson type dispersion relation with quartic correction. 

We find that if we compare the trans-Planckian effects on the 

Bohm quantum trajectories due to quartic and sextic corrections, 

the latter is much smaller than the former. We calculate explicitly 

the finite vacuum energy density due to fluctuations of the 

inflaton field and show how the cosmological constant reduces 

during the slow-roll inflation at the grand unification phase 

transition. Similar reduction mechanisms at the electroweak, 

quark-hadron and current accelerating phase transitions are also 

suggested to yield the current small value of the cosmological 

constant. 

 
Keywords—cosmological constant, de Broglie-Bohm theoty, 

Schrödinger picture, trans-Planckian physics.  

I. INTRODUCTION 

     In the inflationary cosmology, the density perturbations 

which seed the present structures of our observed Universe 

[1] arise from the quantum fluctuations of scalar field about 

the standard Bunch-Davies (BD) vacuum state [2]. However, 

during inflation there is ambiguity in the notion of a vacuum 

state in quantum theory [3], and the choice of initial quantum 

vacuum state affects the predictions of inflation [4, 5]. 

For example, a deterministic hidden-variables theory such 

as the de Broglie-Bohm pilot-wave theory [6-10] allows the 

existence of vacuum states with non-standard or 

nonequilibrium field fluctuations [11, 12], which result in 

statistical predictions that deviate from those of quantum 

theory in the context of inflationary cosmology [13, 14]. 

Recently it has been shown that the quantum-to-classical 

transition of primordial cosmological perturbations can be 

explained easily and naturally in the context of the de 

Broglie-Bohm theory [15]. 

It is also well known that the inflationary cosmology 

suffers from a serious trans-Planckian problem [16, 17], 

which is whether the predictions of standard cosmology are 

insensitive to the effects of trans-Planckian physics.  
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In fact, nonlinear dispersion relations such as the 

Corley-Jacobson (CJ) type were used to mimic the 

trans-Planckian effects on cosmological perturbations 

[16-18]. Recently these CJ type dispersion relations can be 

obtained naturally from Horava quantum gravity models 

[19-21]. Moreover, in several approaches to quantum gravity, 

the phenomenon of running spectral dimension of spacetime 

from the standard value of 4 in the infrared to a smaller value 

in the ultraviolet is associated with modified dispersion 

relations, which also include the CJ type dispersion relations 

[22, 23]. 

In our previous work [24-28] we used the lattice 

Schrödinger picture to study the free scalar field theory in de 

Sitter space, derived the wave functionals for the BD vacuum 

state and its excited states, and found the trans-Planckian 

effects on the Bohm quantum trajectories for the CJ type 

dispersion relation with sextic correction. The purpose of this 

paper is to study further the trans-Planckian effects on the 

Bohm quantum trajectories for the CJ type dispersion relation 

with quartic correction. 

The paper is organized as follows. In Section 2, the 

pilot-wave theory of a generically coupled scalar field in de 

Sitter space is briefly reviewed in the lattice Schrödinger 

picture, and the de Broglie quantum trajectories for scalar 

field are given. In Section 3, we obtain the time evolution of 

vacuum state wave functional of massless minimally coupled 

scalar field during slow-roll inflation under the effects of 

trans-Planck physics. In Section 4, we apply the result of 

Section 3 to obtain the Bohm quantum trajectories through 

Bohm’s dynamics. In Section 5, using the result of Section 4, 

we calculate the finite vacuum energy density and use the 

backreaction constraint to address the cosmological constant 

problem. Finally, the discussion and conclusion are presented 

in Section 6 and Section 7 respectively. Throughout this paper 

we will set  =c=1. 

II. PILOT-WAVE SCALAR FIELD IN 

SCHRÖDINGER PICTURE 

In this section, we begin by briefly reviewing how to define 

the pilot-wave theory of scalar field in de Sitter space in the 

lattice Schrödinger picture. The Lagrangian density for the 

generically coupled scalar field  is  
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where   is a real scalar field, )(V is the potential , m is the 

mass of the scalar quanta, R  is the Ricci scalar curvature,    

is the coupling parameter, and g = det g  , , =0,1,…,d. 

For a spatially flat 
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Robertson-Walker spacetime with scale factor )(ta , we have 
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In the (1+d)-dimensional de Sitter space we have 

)exp()( htta  , where aah /  is the Hubble parameter 

which is a constant.   

For d=1, in the lattice Schrödinger picture, we obtain 

from (2) the time-dependent functional Schrödinger 

equation in momentum space (for the details see [24-28]) 
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Here    Nll /sin/2   , NW / , W  is the 

overall comoving spatial size of lattice, lll i 21   , 

lll ippp 21  , lp  is the conjugate momentum for l , and 

the subscripts 1and 2 denote the real and imaginary parts 

respectively. 

For each real mode rl , we have 

rlrlrl
t

iH 
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 , r=1,2,                                                 (7) 
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Note that (8) arises from the field quantization of the 

Hamiltonian (5) through the functional Schrödinger 

representation rlrl  ˆ , rlrl ip  /ˆ , where 

operators rl̂  and rlp̂  satisfy the equal time commutation  

relations   iprlrl ˆ,̂ . It governs the time evolution of the  

state wave functional rl of the Hamiltonian operator rlH  

in the  rl  representation [28]. In terms of  the conformal 

time   defined by 

 adtd / ,   111 exp   ahhth ,   
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the normalized vacuum and its excited states are  
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Here 
rl  is defined by   rlrl Hh  

)1(
//2 , 

)()( rlnrl
H   is the nth-order Hermite polynomial, 

)(
)1(

 lH  is the Hankel function of the first kind of order 

 ,   222 /4/1 hRm   , and the prime in (12) 

denotes the derivative with respect to l . The complete 

wave functionals can be written as 

  
rl

rlnrln tt
rl

),(, )(][  , where ),,(][ ji nnn   

means that mode i  is in the in  excited state, mode j  is in 

the jn  excited state, etc. For 0rln , the ground state wave 

functional corresponds to the BD vacuum. For d=3, we have 

  222 /4/9 hRm   , 
212hR   and the mode 

index l  in l  carries labels )3,2,1 ,( ili  which will be 

suppressed below. 

For d=3, we get from equations (3)-(8) in the continuum 

limit ( kl  )  
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which implies the continuity equation 
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and the de Broglie velocity field 
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where   iexp . For a single mode rk , we have 

 rkrkrk i exp  with 
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and the de Broglie velocity field  
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Here   is interpreted as a physical field in field 

configuration space, guiding the 

evolution of rk  through (13) 
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and (17). Substituting (12) into (17) and using   gives  
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which yields the quantum trajectory 
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where   hakkz //   is the ratio of physical wave 

number akk phys /  to the inverse of Hubble radius, and 

C  is an integration constant. 

III. EFFECTS OF TRANS-PLANCKIAN PHYSICS ON VACUUM 

WAVE FUNCTIONAL 

To  study further the effects of trans-Planckian physics on 

the evolution of vacuum state, we use the CJ type dispersion 

relations 
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where M  is a cutoff scale, s  is an integer, and sb  is an 

arbitrary coefficient [16-18]. In what follows, we focus on the 

CJ type dispersion relation (20) with 1s  and 01 b  , and 

consider the massless minimally coupled ( 2/3 ) scalar 

field in the slow-roll inflation. Then using ahkkz /  , 
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functional of (21) becomes 

 


rk

rkkk aBA ))(
2

1
exp()(

21

)0()0(  ,             (22) 

where )()0( kA  and )(kB  satisfy 









  constdBiA kk  )(

2

1
exp)()0( ,                (23) 

0
4

9
)1(

)()(
)(

2

2222






























 zk

B

d

dB
iB kk

k

.    

(24) 

In region I where Makk phys  / , i.e. hMz / , the 

dispersion relation can be approximated by )/(2 ak  

222 zk  , and the corresponding wave functional for the 

initial BD vacuum state is [28]  
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where the prime in (26) denotes the derivative with respect to 

2/2z . 

On the other hand, in region II where 

Makk phys  / , i.e. hMz / , linear relation recovers 

22 k , and the corresponding wave functional for the 

non-BD vacuum state is [28] 
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Here we choose cc zz 4/1)2cot(  , so that 
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small for cz >>1 to avoid an unacceptably large backreaction 

on the background geometry. Then we have 
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IV. BOHM QUANTUM TRAJECTORY 

In Section 2, we defined the pilot-wave scalar field theory 

through de Broglie’s first-order dynamics (13) and (17). 

Using the result about the evolution of vacuum state in Sec. 3, 

we can further define it through Bohm’s second-order 

dynamics (21) and (39): 
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where (0)  is given by (22)-(24) and (0)  is given by the 

continuum limit of (11) for 0rln . Note that Bohm’s 

dynamics in general yields more possible quantum 

trajectories than de Broglie’s dynamics does [27], and this 

distinction between Bohm’s and de Broglie’s dynamics was 

also emphasized recently by Valentini [29]. This is what we 

expect, because Bohm regarded (39) as the law of motion, 

with the de Broglie guidance equation (17) added as a 

constraint on the initial momenta. 

In region I, the classical potential V  in (40) becomes 

  
rk

rkhhzV
2I2242 4/9

2

1
 ,                              (42) 

and from (41), (25) and (26) the quantum potential Q  

becomes 

 



















rk

rk

H

h

H

h
Q

2
)1(

4/3

2I

4
)1(

4/3

2
/2/2

2





.                   (43) 

Substituting (42) and (43) in (39) and using adtd /  and 

ahkkz /   gives 

.0
16

4

9 I
4

)1(

4/32

42

I

2

I2
2 












rk
rkrk Hz

dz

d
z

dz

d
z 





        

(44) 

On the other hand, in region II, the potentials V  and Q  in 

(39) become respectively 

  
rk

rkhhzV
2II222 4/9

2

1
 ,                                     (45) 

 



















rk

md

rk

md
H

h

H

h
Q

2)1(

2/3

2II

4)1(

2/3

2
/2

2

1/2

2

1 



,    (46) 

where 
md

H
)1(

2/3  means 
)1(

2/3H  modified according to 


md

H
)1(

2/3

    
2/1

2)1(

2/321

2
)1(

2/3

2

2

2

1 Re2






 


HCCHCC .  

Then the quantum trajectory 
II

rk  satisfies 

0
4

4

9 II4)1(

2/32

2

II

2

II2
2 












rk
md

rkrk Hz
dz

d
z

dz

d
z 




. 

(47) 

Using   
2

2)1(

3/4 2/zH     422 8/51/4 zz   

in region I, (44) becomes approximately 

0
I

I

2

I2
2  rk

rkrk

dz

d
z

dz

d
z 


.                                     (48) 

The general solution of (48) is 

zCzCzrk

I

2

1I

1

I
)(   ,                                                (49) 

where 
I

1C  and 
I

2C  are constants to be fixed by choosing 

suitable initial conditions at an arbitrary initial time 0  for 

I

rk . Here we choose 0
I

1 C  and 0
I

2 C  so that the first 

term
1I

1

zC in (49) corresponds to (19) with 
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  12)1(

3/4 )/2(2/  zzH  . On the other hand, in 

region II, 
md

H
)1(

2/3  becomes  

 
2

II

2

2
II

1

)1(

2/3

)1(

2/3 CCHH
md

 

 





















22

2
II

2

II

1
1

2
)2sin(

1

1
)2cos(2

z

z
z

z

z
zCC   

(50)  

which reduces to 
)1(

2/3H  for 1 czz  (well before 

horizon exit) by using (33). Hence, 
II

rk  satisfies 

0
4

4

9 II
4

)1(

2/32

2

II

2

II2
2 












rk
rkrk Hz

dz

d
z

dz

d
z 




. 

(51) 

The general asymptotic series solution of (51) is [27] 









  422/1II

1

II

8

1

2

1
1)( zzzCzrk  









  422/1II

2
24

1

2

3
1 zzzC .                          (52) 

For ,1 czz  (52) reduces to 

2/1II

2

2/1II

1

II
)( zCzCzrk   .                                     (53) 

Substituting (49) and (53) into the matching conditions at cz  

for 
I

rk  and 
II

rk  

CC ZrkZrk

III
  , 

CC Z
rk

Z
rk

dz

d

dz

d
III


 ,                   (54) 

we obtain 

2/1I

1

II

1
2

3 
 czCC ,  

2/3I

1

II

2
2

1 
 czCC .                   (55) 

From (53) and (55) we see that as z  decreases from cz  to 1, 

2/1II

1

zC  becomes the dominant term, i.e. 

2/1II

1

II
)(  zCzrk .                                                         (56) 

Furthermore, for 1z  (well after horizon exit), (50) 

reduces to 
)1(

2/3H  by using (37) and 1cz , and the 

general power series solution of (51) is [27] 









  422/3II

1

II

8

1

2

1
1ˆ)( zzzCzrk  









 422/3II

2
280

1

10

1
1ˆ zzzC .                          (57) 

For 1z , (57) reduces to 
2/3II

1

II ˆ)(  zCzrk ,                                                         (58) 

which corresponds to (19) with 1z . Here we have 
II

1

II

1
ˆ CC  . (See the argument in the discussion in Section 5 

of [28].) Requiring 
II

rk to be continuous at 1z , we have 

from (55), (56) and (58) 

2/1I

1

II

1

II

1
2

3ˆ 
 czCCC .                                                (59) 

Since for d=3 rk  contains a factor 
2/3a  which is 

proportional to 
2/3z , we use a field redefinition 

rkrk au 2/3  and 
1)/(  zhka  to rewrite (49) and 

(58) as 

2/1I

1

2/3

I
zC

h

k
urk











 ,

2/1I

1

2/3

II

2

3 











 crk zC

h

k
u .  (60) 

Thus we see from (60) that for fixed k  and 1cz , as z  

decreases from 1 czz  to 1z , the scalar field 

decreases from one large value to a much smaller constant 

which is a factor cz2/3  less than the field value at czz  , 

i.e., there exists a transition in the time evolution of the 

quantum trajectory of scalar field. We also note that if we 

consider only the CJ type dispersion relation with sextic 

correction, then (60) is replaced by [28]  

I

1

2/3

I
C

h

k
urk











 ,  

I

1

2/3

II 2
C

h

k

z
u

c

rk











 ,                 (61) 

where hbMkz cc

4/1

2/  . Hence as z  decreases 

from 1 czz  to 1z , the scalar field decreases 

from one large constant  to a much smaller constant which is a 

factor cz/2  less than the field value at czz  . Comparing 

(60) with (61) for scalar field values, we find that for 

21 bb  , 1 cc zz , as z  decreases from 

1 cc zzz  to 1z , the former is almost larger 

than the latter by a factor 
2/12/1

cc zz   during the evolution 

of the quantum trajectories. Thus if we compare the 

trans-Planckian effects of both quartic and sextic corrections 

on the quantum trajectories, the latter is much smaller than the 

former.  

V. BACKREACTION AND SMALL 

COSMOLOGICAL CONSTANT 

Note that the vacuum energy density due to the fluctuations of 

the inflaton field with maxkk   is given by [1] 

4

2

4

(max)2

4

0

2 8

1

8

1

2

1 max

Mk
k

dk

a

k
phys

k

vac


 







  ,       

(62) 

where M  is the momentum cutoff. Because having a non 

standard dispersion relation is equivalent to considering 

non-vacuum quantum states for the perturbations [30], the 

finite energy density due to the inflaton particles after the 

subtraction of zero-point energy is given by [31, 32]       

k

dk

a

k
n

k

kvac

4

0

2

max

2

1
 











 ,                                 (63) 
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where  kn  is the occupation number of the modes with 

the momentum k , which is equal to 
2

II

2C in our formulation 

(see Section 3). Then, for the case of 1s  and 01 b , 

using czC 4/1
II

2   in (37), we have 
2

16/1 ck zn  . 

From (62), (63) and hbMzc

2/1

1/ , we obtain  

22

2

1

22

4

)1(
128128

hM
b

z

M

c

svac


 


.                         (64) 

Thus, we see that there is no backreaction problem if the 

energy density due to fluctuations of the inflaton field is 

smaller than that due to the inflaton potential, i.e. 

)(
128

22

2

1

)1(



 VhM

b
svac 


.                                 (65) 

Within the slow-roll approximation, substituting 

 8/3)( 22
hMV Pl  ( PlM  

191022.1  GeV is the 

Planck mass) in (65) leads to )/(48 22

1 MMb Pl . For 

PlMM ~ , the constraint on the parameter 
1b  is 

2

1 101.5 b . 

On the other hand, for the case of 2s  and 02 b , we 

have czC 2/1
II

2  , 
2

4/1 ck zn  , and 

4

2

2

42

4

)2(
3232

h
b

z

M

c

svac


 


,                                   (66) 

where hbMzc

4/1

2/  and the additional factor 
2

cz  in the 

denominator comes from comparing (60) with (61) for scalar 

field values. There is no backreaction problem if 

)(
32

4

2

2

)2(



 Vh

b
svac 


.                                         (67) 

Using  8/3)( 22
hMV Pl in (67) leads to 

)/(12 22

2 hMb Pl . For 
191022.1 PlM GeV and 

1510~h GeV (the Hubble constant during inflation which is 

close to the grand unification scale), the constraint on the 

parameter 2b  is about 
9

2 106.5 b . Therefore, if we 

consider standard linear dispersion relation with both quartic 

and sextic corrections, then the energy density due to 

fluctuations of the inflaton field can be rewritten as 

)()()()0()( )2()1()0( hhhhh svacsvacsvacvacvac     

4

4

22

20 hchMcc  ,                                                  (68) 

where 0)0( chvac   is the flat space contribution (62) 

before the beginning of inflation, 
4

2)0(
960

29
hsvac





  is 

the BD vacuum energy density of the massless minimally 

coupled inflaton field with standard linear dispersion relation 

[3], and 
2

12 128/ bc  ,   2

24 960/2930  bc . For 

PlMM ~ >> h , 1~1b , and  1~2b , we have 
3

2 10~ c  

and (68) becomes  

 )( 22

20 hMcchvac  .                                               (69) 

Since a constant scalar field corresponds to a cosmological 

constant  , the transition of scalar field could be interpreted 

as a transition of the Universe from a large   to a small  , 

thus providing a possible mechanism for generating a small 

  in the Bohmian approach to inflationary cosmology. From 
24 8/)0(  Mhvac  , (60) and (61), we expect that 

while z  decreases from 1 czz  to 1z  , the 

cosmological constant 
2

/)(8 Plvac Mh  decreases as 

     

  24 //1 PlMM    222

28 hMMc Pl 

  24

4 // PlMhc  .                                                           (70)   

Such a reduction happens during the early inflationary era 

when the Hubble parameter is close to the grand unification 

scale 
1510~h GeV. 

Because current astronomical observations [33] indicate 

that the present value of vacuum energy density and 

cosmological constant are 
0

vac 47105.2~   GeV
4

 and 

840 102.4~  GeV
2

, we propose that such a small 

current value of   in principle could be generated through a 

series of similar reductions from cascade transition 

(electroweak phase transition, quark-hadron phase transition, 

etc.) in the history of the Universe. That is, barring the 

inflation era associated with the grand unification scale, there 

are three additional little (or tepid) inflation eras in a series of 

phase transitions (see [34, 35] for the little inflation at the 

cosmological QCD phase transition). Thus, during the 

inflation at the electroweak phase transition, the Hubble 

parameter is close to the electroweak scale 
210~h GeV, 

and   reduces further as   24 //1 PlMM    

   222

28 hMMc Pl
     24

4 // PlMhc  , where 

4

4

4 hcM   ; during the inflation at the quark-hadron 

phase transition ,  the Hubble parameter is close to the QCD 

scale 200~h  MeV, and   reduces further as 

  24 //1 PlMM     222

28 hMMc Pl
 

  24

4 // PlMhc  , where 
4

4

4 hcM  ; during the 

inflation at the current accelerating phase transition, the 

Hubble parameter is close to the dark energy scale 
3102.2~ h eV,   reduces further as 

  24 //1 PlMM     222

28 hMMc Pl
   

  24

4 // PlMhc  , where 
4

4

4 hcM  . Requiring 

  24

4 // PlMhc  84102.4~   GeV
2

leads to 

84~4c  or 
4

2 107.2~ b  
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VI. DISCUSSION 

Since we view the cosmological constant from the point of 

view of vacuum energy density in the context of the de 

Broglie-Bohm pilot-wave theory, we would like to elaborate 

on some important points of our proposal in this section. 

    (i) Note that the quantum potential Q  plays an important 

role in the evolution of the quantum trajectory of the inflaton 

field. From (39) and (51), we see that for 1 czz  and 

the mode 
II

rk , the quantum force   II
4

)1(

2/3

224 rkHh 


 

arising from the quantum potential Q  through   

II

rkQ   approximately cancels theclassical force 

  II222 4/9 rkhhz   arising from the classical potential 

V  through 
II

rkV  , while for 1z  the quantum 

force becomes negligible with respect to the classical force. 

Therefore, as z  decreases from cz  to 0, there is a 

quantum-to-classical transition. In this context, we can 

neglect the quantum zero-point contributions in the 

calculation of the vacuum energy density such as (68). 

    (ii) The vacuum energy density also receives contributions 

from condensates associated with spontaneous symmetry 

breaking in the Standard Model. The parameter 4c  in (70) is 

positive if 97.0~30/292 b , which is a condition quite 

easy to hold from the analysis of backreaction constraint on 

the parameter 2b  in Section 5. Thus, for 04 c , the 

electroweak condensate gives positive 

4~ cvac 8

4

4 10~  ch GeV
4

 in our proposed picture, 

whereas the electroweak condensate gives negative 

~vac 8102.1  GeV
4

in the Standard Model [36]. 

Similarly, the QCD condensate gives positive 

4~ cvac 4

4

4 )200(~  ch MeV
4

 in our proposed 

picture, whereas the QCD condensate gives negative 

~vac 4)200( MeV
4

in the Standard Model. 

    (iii) In our proposed picture, we merely assume the 

existence of a symmetry breaking scale 
3102.2  eV in the 

last little inflation. The vacuum energy density associated 

with dark energy is characterized by a scale around 
3102.2  eV, which is close to the range of possible light 

neutrino masses. Some possible explanations for this relation 

include “growing neutrinos” scenario [37] and spin model 

neutrinos [38]. 

    (iv) The vacuum energy density (68) in an inflationary 

universe can be extended to a generic dynamical model [36] 

 
4

4

2

20)( HcHccHvac  ,                                    (71) 

where )(Hvac  is the running vacuum energy density in an 

expanding universe, the Hubble rate H  is the natural running 

scale in the cosmological scale, and )(Hvac  is expected to 

satisfy a general renormalization group equation of the form 

  
i

iii
vac HbHMa

Hd

Hd 422

22 )4(

1

ln

)(




                 (72) 

( iM  are the masses of participating particles). Here the 

coefficients 2c  and 4c  in (71) are related the coefficients ia  

and 
ib  in (72) as follows:  





fbi

iiMac
,

2

22
16

1


,  




fbi

ibc
,

24
32

1


,                  (73)   

where independent contributions from bosons and fermions 

with different multiplicities are assumed for the more general 

case. For the special case of a single inflaton scalar field 

(i=inflaton), from (68) and (73) we have 

)/)(8/(
22

1 ii MMba  , 30/292  bbi . In the 

slow-roll inflation, the mass of inflaton iM  is required to 

satisfy hM i  . 

 (v) Note that (62) is calculated in the comoving de Sitter 

coordinates. If we make the transformation to the static de 

Sitter coordinates, then for an observer situated at the origin, 

there is a cosmological horizon at Hubble radius h/1  which 

marks the boundary of observable universe. Thus, it is 

expected that vac  in (62) becomes 
2424 8/8/  hM  , 

where the term 
24 8/ h  arises from the lower limit of 

integration in (62). Thus, for PlMM ~ >> h , the results in 

Section 5 are unchanged essentially if we change reference 

frame.    

VII. CONCLUSION 

In the lattice Schrödinger picture, we have considered the de 

roglie-Bohm pilot-wave theory of a generically coupled free 

real scalar field in de Sitter space. To investigate the possible 

effects of trans-Planckian physics on the quantum trajectories 

of the vacuum state of scalar field, we focused on the massless 

minimally coupled scalar field, and considered the CJ type 

dispersion relation with quartic correction. 

Our previous work showed that for the CJ type dispersion 

relation with sextic correction, there exists a transition in the 

evolution of the quantum trajectory from well before horizon 

exit to well after horizon exit, providing a possible 

mechanism for generating a small cosmological constant. In 

this paper, we have found that for the CJ type dispersion 

relation with quartic correction , there exists a similar 

transition. We note that if we analyze the trans-Planckian 

effects on the quantum trajectories due to quartic and sextic 

corrections, the latter is much smaller than the former. We 

also calculate explicitly the finite vacuum energy density due 

to the fluctuations of the inflaton, and use the backreaction to 

constraint the value of parameters in the nonlinear dispersion 

relation. We have shown that during the early inflationary era 

when the Hubble parameter is close to the grand unification 

scale 
1510~h GeV, the cosmological constant   decreases 

as (70) from well before horizon exit to well after horizon 

exit. Then, using the similar reduction mechanism, we 

propose a unified mechanism for generating a small 

cosmological constant through cascade transition in the 

history of the Universe. 
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To establish that the cascade transition indeed works, it is 

necessary to have a much better understanding of the issues 

such as the specific scalar field potential models driving 

inflation at various phase transitions, the details of 

corresponding relaxation processes, and the experimental 

constraints on the parameters in nonlinear dispersion 

relations. Further work on these issues is in progress. 
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