
International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378, Volume-2 Issue-3, January 2014

47

Retrieval Number: C0629012314/2014©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Abstract— The time and space partitioning in real-time

Avionics systems, has been widely embraced by the industry. We

present the design of real-time file system (RTFS), a file system

that complies with the emerging standard for a file system. RTFS

provides real-time accesses to data stored on a variety of mass

storage device. In addition to an interface complying with

emerging standard, RTFS provides an application interface that

complies with a subset of the POSIX standard. Task partitions

communicate their file operation requests to RTFS via queuing

ports; such ports are also used to deliver the responses from RTFS

to the task partitions. The temporal behavior of RTFS is

predictable and the response times for file operations are

bounded. The design of RTFS handles a mix of hard and soft

real-time File access requests. RTFS implements metadata

journaling using on-board non-volatile memory devices to provide

fast file updates and fast file system recovery on faults. Finally,

RTFS includes facilities to support network-centric operations

and a set of design and maintenance tools. This paper overviews

the design of RTFS and describes the realization of the many

unique features of RTFS.

Keywords- Real Time File System, Portable Operating System

interface, Real Time Operating System(PSOS), Storage Area

Network, Flash memory.

I. INTRODUCTION

Online mass storage facilities that provide real-time

performance are becoming an essential component of

emerging avionics systems. Such a trend is driven by the need

to acquire and process large amounts of data and by the

general need to decouple the producers and consumers of the

information to be processed. This trend is also consistent

with the broad goal to provide a service oriented architecture

implicit with network-centric and autonomic operations

across subsystem components. There is a further trend in the

avionics industry to use partitioning in time and space,

to economically architect these complex, software

intensive avionics systems with coexisting safety and security

critical modules with modules that are feature rich but are

economically and technically infeasible to assure. These

systems are expected to have a variety of storage access

requirements ranging from guaranteed hard real-time access

to flight and mission-critical data along with soft or

non-real-time access to other types of stored data sets.

In this paper, we present the functional characteristics and the

design overview of a file system (FS) that complies with the

time and space partitioning with the additional goals to

concurrently support the conflicting requirements of

maximizing storage access bandwidth while guaranteeing

both hard real-time accesses and fairly sharing the FS and the

underlying storage media for soft and non-real-time accesses.

Manuscript received January 15, 2014.

S. Jalaja, VGN Laxshmi Nagar, Chennai, India

R. Sivaranjani, VGN Laxshmi Nagar, Chennai, India

V. Tamil Mullai, VGN Laxshmi Nagar, Chennai, India

One of the key characteristics for adoption in high assurance

avionics systems is that the file system is a user level

partition. Our design incorporates a variety of features for

guaranteeing real-time responses for I/O requests that specify

deadlines. These include the use of (a) deadline- driven

scheduling that factors in the impact of disk seeking on the

overall response times, (b) request preemption within the file

system, (c) the pre- allocation of disk storage based on a

specified file dimension, (d) the pre-allocation of disk buffers

and (e) a non-volatile memory device, ubiquitous in most

avionics platforms, for implementing asynchronous writes to

the disk and for implementing a journal that can be used to

quickly recover the file system on crashes. To implement the

implicit time partitioning, we use a multi- threaded

implementation that enforces several quotas on resources,

requests and I/O bandwidth allocation for each partition.

To implement fair sharing of the file system for non- critical

and non-hard real-time I/O requests, we use a two-level

scheduling algorithm based on laxity. Several additional

design features are incorporated to improve overall

performance, predictability and system scalability. Users of

the file system access its services through library functions

that pass along the file operation requests and the parameters

from a user partition to the file server. Two such libraries are

provided: one that provides a subset of the POSIX FS

standard and another that provides a set of primitives. The

libraries also provides an optional set of extended APIs

(application programming interface) that allow users to

specify time bounds and other parameters to guarantee hard

real-time access to files. An associated set of design and

maintenance tools are also being developed to aid in

“what-if” analysis, configuration specification and file

system recovery. Planned features for our file system include

the support for a variety of peripheral devices, support for

Storage Area Networks (SANs) and remote file access.

II. BACKGROUND AND DESIGN GOALS

The avionics industry has embraced a new standard for the

real-time operating systems used in implementing

safety-critical and certifiable flight control systems. This

dictates the use of a system of (computing) tasks that has the

following characteristic.

 (a) Tasks are grouped into partitions, where each partition

comprises of a set of tasks.

 (b) The set of partitions that have to be executed in a

repetitive fashion is described as a schedule that

specifies the order in which the various partitions

need to execute

 Each partition is allocated a fixed time quantum

for its execution. As soon as the time quantum

assigned to partition Pj is over, the executing task

T is interrupted and

the execution of tasks in

the next partition Pj+1

Real Time System Partition for Multithreading

Applications

S. Jalaja, R. Sivaranjani,V. Tamil Mullai

Real Time System Partition for Multithreading Applications

48 Retrieval Number: C0629012314/2014©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

is initiated. During the next time quantum for Pj,

the execution of tasks in Pj resumes with the

interrupted task T.

(d) Partitions interact with each other in a controlled

fashion. Data exchanges between partitions are

controlled and take place via queuing ports set up among

the partitions. Each partition has its private address

space. Thus, partitions are effectively isolated in space

and interact with each other only in a limited manner

using the queuing ports.

The key characteristics of an operating system support the

isolation of task partitions in time and space. Isolation in time

is achieved by permitting a task within a partition to execute

only within the time quantum assigned to the partition that

contains the task. Each partition is guaranteed its own time

slot for execution to support predictable system operation.

Isolation of task partitions in space is achieved by allocating

memory regions to partitions and controlling the interaction

among tasks within different partitions. Such isolation in time

and space makes it possible to verify the timing and safety

aspects of the avionics software, as required by the Federal

Aviation Authority (FAA) for certifying safety-critical flight

controls and avionics software.

As avionics system become more and more sophisticated, it

becomes necessary for the task software to access data from

bulk storage devices, such as disk drives, CD/DVD drives and

Flash memory. Such bulk storage devices can be used for

instance to store flight data logs in a continuous manner, to

hold flight planning information, and to hold map data. The

efficient storage and access of data on such bulk storage

devices require the use of file system software, analogous to

file systems that are found in traditional operating systems

(OS). However, unlike traditional file systems, the file

systems used in avionics, must provide the same Isolation and

timing guarantees of data access requests as is provided by the

OS.

The design goals of the FS prototype Presented in this paper

provides a variety of additional features to extend the FS to

emerging avionics needs, including fast error recovery,

network-centric operations and accommodates a variety of

mass storage devices. Specifically, the design goals of our FS

are:

Predictable Behavior: This implies that file operations must

have bounded completion time and thus permit the system

designer to make safe assumptions about the temporal

behavior of the FS.

Maintain Isolation in Space and Time: The isolation

requirement is intrinsic to any A653 compatible system. This

design goal implies that proper isolation be maintained in

time and space across tasks within the FS partition itself, as

these tasks perform file operations on behalf of tasks within

other partitions.

Hiding and Minimizing Mass Storage Access Delays:

Mass storage devices used within file systems have

significantly higher access times compared to RAM. This is

not only true for storage devices like hard disks and

CD/DVD drives but also for any Flash memory device that

may be used For bulk storage. To provide real-time

performance (and, indirectly, to implement predictable

behavior), this goal implies that as much of the delays

involved for file operations be hidden as possible.

Fast Fault Recovery: Avionics file systems are relatively

more susceptible to transient errors and faults compared to

ground based systems. Such faults can generate data I/O

errors as well as errors that impact the integrity of the file

system. This requirement implies that the FS should have

features to let it recover from such faults as rapidly as

possible.

Supporting Distributed and Network- Centric

Operations: The inevitable transition of avionics systems

from a centralized architecture to a distributed,

network-centric architecture implies that the mass storage

facilities used by the FS may have to be remotely accessed.

BLOCK DIAGRAM

Figure depicts the main system-level components relevant

to RTFS and some of the key internal components of

RTFS. A single RTFS partition is shown in this figure.

III. OVERVIEW OF THE FILE SYSTEM

Our FS, hereafter called RTFS (Real-Time File System), is

intended to operate in user space as a “partition” to support

the isolation requirements of safety and security critical

software as well as to enhance portability However, selectable

options that tailor the RTFS as a “system partition” may be

used to explore issues of performance in terms of latency and

through put. The system designer can design a schedule

where several task partitions are interspersed with one or

more RTFS partitions within a major frame. Queuing ports

(QPs) [1] are used to send file operation requests from a task

partition to a specific RTFS partition within the schedule.

The QPs are also used to deliver the results of such operations

as well as status information to the task partitions.

An interactive tool that takes into account latency. And

bandwidth requirements is provided to let the system designer

determine the number of RTFS partitions to use and their

placement with in the schedule.

RTFS provides an abstraction layer for managing persistent

storage that is structured to support the determinism and

response requirements of real-time avionics system

applications. A typical use of RTFS will be to store flight data

logs in a continuous manner and

to store and retrieve in real- time

map data to support enhanced

International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378, Volume-2 Issue-3, January 2014

49

Retrieval Number: C0629012314/2014©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

situational awareness, automated terrain avoidance, and

dynamic route planning systems. Such facilities are critical to

Free-Flight (FF) and Network Centric Operations (NCO).

The broad design goals for RTFS are to concurrently support

guaranteed real- time accesses while maximizing storage

access bandwidth and fair sharing of the FS and the

underlying storage media for non-real-time accesses.

Additionally, RTFS must meet these goals by complying with

the isolation requirements of time and space partitioning in

the A653 standard.

Tasks within “application partitions” use library functions

within an API (application programming interface) library to

request various types of services from the RTFS. Such

requests are submitted through queuing ports, as shown. QPs

are also used to deliver responses from the RTFS to the

application partitions. An application partition can use more

than one set of QPs to a specific RTFS partition if needed.

The RTFS itself is implemented by a set of threads. Our

design does not exploit or assign any native priorities of such

threads in the interest of portability. Instead, the required

scheduling and orderings of the threads within the RTFS are

explicitly implemented in the design. The RTFS implements

the necessary synchronization and scheduling structures for

the required thread scheduling. The main types of threads

used within the RTFS are as follows:

Request Queue Management Thread (RQMT): This

thread is responsible for dequeuing incoming file operation

requests from the QPs and for copying arguments to the

requests into an RTFS- internal high-level scheduling queue.

The RQMT assigns a globally unique identifier to each

request and performs any preemption that may be required to

order requests within the RTFS-internal high-level scheduling

queue. The RQMT is also responsible for delivering the

responses to a request via the QPs.

Request Processing Threads (RPTs):Several instances of

these “worker” threads are used to implement the processing

needed to service a request. Each request is assigned to a RPT

by the RQMT. For file operations that modify the file

metadata (such as directory information, file allocation tables

and soon), the RPT performing such updates log metadata

transactions to a journal maintained within on-board

non-volatile memory. This permits the file system to be

quickly recovered on a crash, as metadata transactions remain

saved on the non-volatile memory, allowing the recovery

steps to restore the integrity of the file system. The RPTs also

invoke device-specific low-level scheduling functions that

mitigate the impact of seeking delays on mass storage devices

such as disks and CD/DVD drives. RPTs also implement the

support required for accessing mass storage devices remotely

in network-centric environments.

Completion Threads (CTs): For each type of device used,

an appropriate CT is provided to handle completions and

low-level request scheduling for that device. The CT

essentially pools the device status to determine when pending

I/Os have completed. On the completion of an I/O request for

the device, the CT for the device initiates the next operation

for the device from the head of the low-level scheduling

queue for the device.

IV. TIME AND SPACE PARTITION

Software in real-time embedded systems differs

fundamentally from its desktop or Internet counterparts.

Embedded computing is not simply computation on

small devices. In most control applications, for example,

embedded software engages the physical world. It reacts

to physical and user-interaction events , performs

computation on limited and competing resources, and

produces results that further impact the environment . Of

necessity, it acquires some properties of the physical

world, most particularly, time. Despite the fact that both

value and time affect the physical outputs of embedded

systems, these two aspects are developed separately in

algorithms may rely on. In most control applications,

this run-time uncertainty is undesirable or even

disastrous.

 We believe that two steps can be taken to improve the de-

sign process for embedded software and to bridge the gap

between the functionality development and timing assurance:

• Rigorous software architectures that expose

resource utilization and concurrent interactions among

soft- ware components.

• Specification, compilation, and execution

mechanisms that preserve timing properties

throughout the software life cycle

A component-based software architecture can help

compilers to determine typical embedded software design.

The functionality is determined at design time with

assumptions such as zero or a fixed nonzero run-time

delay. The actual timing the logical dependencies and shared re-

sources among components. By bringing the notion of

time and concurrent interaction to the programming

level, compilers properties are determined at run time by

a real-time operating system (RTOS).

Typically, an RTOS offers as control of these timing

properties one number for each task, a priority. Whether a

piece of computation can be finished or brought to a

quiescent state at a particular time is totally a dynamic

phenomenon, and it depends largely on the hardware plat-

form, when the inputs arrive, what other software is

running at that time, and the relative priorities. These

factors are usually out of the control of embedded

system designers and may break the timing assumptions

that the control algorithm and run-time systems can be

developed to preserve both timing and functional

properties at run time.

Recent innovations in real-time programming models

such as port-based objects (PBOs) [1] and Giotto [2] are

examples that take a time-triggered approach to

scheduling software components and to preserving

their timing properties. These purely time-triggered

approaches, although explicitly con- trolling the timing

of each component, require tasks to be periodic and do

not handle irregularly spaced new information (or events)

well. In this article, we introduce an event-triggered

programming model, timed multitasking (TM), that

also takes a time-centric approach to real-time

programming but controls timing properties through

deadlines and events rather than time triggers.

By doing so, each piece of information is processed

exactly once, and the tasks can be a periodic.

Real Time System Partition for Multithreading Applications

50 Retrieval Number: C0629012314/2014©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

This model takes advantage of actor-oriented software

architecture [3] and embraces timing properties at

design time, so that designers can specify when the

computational results are produced to the physical world

or to other actors. The specification is then compiled

into stylized real-time tasks, and a run-time system

further ensures the function and timing determinism

during execution. As long as there are sufficient

resources, the computation will al- ways produce

predictable values at a predictable time.

V. DYNAMIC PARTITIONING OVERVIEW

(PROPOSED TECHNIQUE)

A hardware partitionable server can be configured into one or

more isolated hardware partitions. Each hardware partition in

the server is assigned its own processors, memory, and I/O

host bridges that are independent from all other hardware

partitions in the server. Each hardware partition runs an

independent instance of the operating system.

A hardware partition consists of one or more partition units. A

partition unit is the smallest unit of hardware that can be

assigned to a particular hardware partition. A partition unit

can be an individual processor, memory module, or I/O Host

Bridge, or it can be a hardware module or board that contains

a combination of these components. Today’s

hardware-partitionable servers typically have multiple

hardware components in each partition unit. For example, a

single partition unit could consist of four processors, a

memory module, and some I/O. In this situation, all of the

hardware components in the partition unit must be added or

replaced in a hardware partition as a single unit. As the

number of processor cores per physical processor increases,

the number of components per partition unit is likely to come

down. However, with the memory controllers being

implemented internal to the processors, processors and

memory are likely to continue to be included in a single

partition unit.

On a statically partitionable server, the configuration of

partition units that are assigned to each hardware partition

cannot be changed while the system is running. To change the

configuration, the system must be powered down and

restarted. Windows Server 2000 and later versions of

Windows Server support statically partitionable servers.

On a dynamically partitionable server, the configuration of

partition units that are assigned to a particular hardware

partition can be changed while the system is running. Partition

units can be added or replaced without restarting the instance

of the operating system that is running on the hardware

partition. Common operations include:

Hot Add

Adding a partition unit to a running hardware partition.

Hot Replace

Replacing a partition unit with an identical replacement

partition unit that is already present in the system. Note that

this is a single atomic operation that is not the same as a hot

remove operation followed by a hot add operation.

Hot Remove

Removing a partition unit from a running hardware partition.

Windows Server 2003 SP1 Enterprise Edition and Datacenter

Edition support hot add of memory on x86-based, x64-based,

and Itanium-based systems. Windows Server 2008 supports

hot add of processors, memory, and I/O host bridges plus hot

replace of processors and memory on x64-based and

Itanium-based systems.

Features :

(a) Processors, memory, and I/O host Bridges can be hot

added to a hardware partition while the system is

running.

(b) Processors and memory can be hot replaced in hardware

partition while the system is running.

(c) Device drivers and applications can register to be

notified of changes to the hardware configuration so that

they can adjust their resource allocations accordingly.

(d) Existing applications should continue to run without

modification. However, in order for an application to

take advantage of any new hardware resources that are

added to the hardware partition after the application has

been started, the application must register for

notification of changes to the hardware configuration.

International Journal of Emerging Science and Engineering (IJESE)

ISSN: 2319–6378, Volume-2 Issue-3, January 2014

51

Retrieval Number: C0629012314/2014©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Circuit diagram

VI. OUT PUT

PSOS BOOTLOADER

PSOS INITIALISE

PSOS FILESYSTEM

INITLIAISE TASK

Real Time System Partition for Multithreading Applications

52 Retrieval Number: C0629012314/2014©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

INPUT TASK

OUTPUT TASK

VII. CONCLUSION

We presented the design of RTFS, a real-time file system that

complies fully with the file system standard. In addition, the

RTFS also provides a POSIX compliant interface to support

legacy code. RTFS provides a predictable temporal

behavior, bounding the file operation times. RTFS

implements the space and time partitioning in a rigorous

manner and includes support for network centric operations,

and a variety of mass storage devices. RTFS also supports

metadata journaling on non-volatile memory devices to

implement fast file updates and fast file system recovery on

faults.Our effort at designing RTFS clearly demonstrates that

it is possible to implement a file system that provides

real-time performance as well as the space and time

partitioning .We address the variable access latencies inherent

to mass storage devices like hard disks and DVD/CD drives

and make use of a two- level scheduling mechanism to

guarantee and bound the access times to such devices. Our

low-level scheduling technique for these storage devices

additionally ensures that transfer rates to/from these devices

are maximized. Although not discussed here, the basic design

approach for RTFS makes it possible for us to handle mass

storage implemented on RAM as well as non-volatile storage

devices such as NVRAM or Flash memory.

REFERENCES

1. Avionic Application Software Standard Interface – ARINC

Specification 653, Aeronautical Radio Inc., 1997.

2. ARINC 653 File System Standards Draft –Revision 5, version of Feb.

2005.

3. ARINC 653 File System Standards Draft – Revision 5, version dated

June 8, 2005.

4. ARINC 653 File System Standards, discussions and comments from

the meeting of March 1 to 3, 2005.

5. Ghose, K., Aggarwal, S., Vasek, “ASSERTS: A Toolkit for

Real-Time Software Design, Development and Evaluation”, in the

Proc. of the 9-th Euromicro Real-Time Systems Workshop

(available from the IEEE CS Press), 1997.

6. Bosch, P. and Mullender, S. J., “Real- time Disk Scheduling in a

Mixed-Media File System”. In Proc. RTSS-2000.

7. Shenoy, P. J., and Vin, H. M., “Cello: A Disk Scheduling

Framework for Next Generation Operating Systems”,

Master’s Thesis, Univ. of Texas.

8. Gopalan, K., “Real-time disk scheduling using deadline

sensitive scan”, Technical Report TR-92, Dept. of Computer

Science, State University of New York, Stony Brook, 2001.

9. Reuther, L. and Pohlack, M., “Rotational- Position- Aware

Real-Time Disk Scheduling Using a Dynamic Active Subset

(DAS)”, in Proc. Real- Time System Symposium (RTSS), 2003.

10. Zhang, Z., and Ghose, K., “yFS: A Journaling File System Design

for Handling Large Data Sets with Reduced Seeking”, in Proc. of the

USENIX Symposium on File Systems and Storage Technologies

(FAST '03), 2003.

