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   Abstract— In this article, we study the discrete time 

prey-predator model by using Nicholson Bailey model (NB model) 

with Holling type II functional response. NB model with Holling 

type II is applied to know the Prey-predator dynamical system and 

investigated the fixed points and stability analysis. Graphs are 

drawn for different intrinsic growth rate to notice the effects of 

competitions for biologically reasonable range of parameter 

values. The stable existence of axial and interior fixed points of 

prey-predator is shown under different parameter values. 

Numerical simulations not only illustrate the results but also they 

exhibit the complex dynamic behaviours of the model. 

 

Keywords: Prey-predator system, Nicholson-Bailey model, 

Holling type II functional response, Stability analysis. 

I. INTRODUCTION 

   In recent years the study of Holling type functional response 

in population dynamics has attracted very much attention and 

the qualitative analysis of predator prey systems with Holling 

type II or III functional response and prey refuge has been 

done by several papers [2,6,16,9].  The population dynamics 

of Prey-predator and Host parasitoid systems has been studied 

with Allee effect and without Allee effect [11,3,15,12,10]. 

The dynamical behaviour and Stability analysis of nonlinear 

discrete prey-predator and host parasite model has been 

studied and the discrete time host parasitoid model which are 

usually described by difference equation can produce much 

richer patterns than continuous time model [1,8,14,17].  It is 

well known that Nicholson Bailey model was developed in 

1930`s to describe population dynamics of Host-parasite 

(prey-predator) system and it is one of the earliest realistic 

models of two species interaction was developed by 

Nicholson and Bailey, who applied it to the parasitoid 

Encarsia Formosa and the host Trialeurodes vaporariorum 

[5,13,14].  

  The prey-predator interaction has been described firstly by 

two pioneers Lotka(1924) and Volterra (1926) in two 

independent works. After them, more realistic prey-predator 

models were introduced by Holling suggesting three kinds of 

functional responses for different species to model the 

phenomena of predation [2]. The discrete prey-predator 

model to cover the Holling type II  had a little attention in the 

discrete case till now, due to its complexities. Therefore the 

present work aims to analyse the dynamical complexities in a 

discrete-time prey-predator model with Holling type II 

functional response.   
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That is, we shall focus our attention on analyzing how the 

Nicholson Bailey model with Holling type II  response affects 

the dynamic complexities of prey-predator interactions. This 

paper is organized as follows:  In section II, we formulated the 

discrete Nicholson Bailey model with Holling type II 

functional response.  In section III the existence and stability 

of three fixed points are derived.  In section VI  numerical 

simulations are done for the analytic results, such as dynamics 

in a rectangular region (see Appendix).  Finally, section VII 

draws the conclusion. 

II. THE MODEL 

   We have the discrete generation, host-parasitoid 

Nicholson-Bailey model for two-dimensional system of 

difference equations  
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Our analysis can be carried out most precisely by reference to 

an appropriate host-parasitoid system model.  We shall use 

Holling type II functional response [16] to obtain bounded 

dynamics where the parameters discussed later.  
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Where  ,  , ,m  are all positive parameters.

2)

 

    t tN and P   are prey and predator  population at time t.  

 
1 1    t tN and P 

 
 
are prey and predator population size at 

time t+1 in terms of the population at time t. α is prey intrinsic 

growth parameter, β is the proportionality constant,  γ is 

predator intrinsic growth parameter, m is half-saturation 

constant of predator [6] . tp
e


 is the probability that a prey 

escapes from predator and  1
pt

e


  is probability that a 

prey attacked by predator. 

In this paper, we study the dynamics of discrete Prey-predator 

model with Holling type II which has the following two 

different equations: 

 

         (3)  

Where α, β, γ, m
 
are defined in model (2).  It is assumed that 

the initial value of solutions in 

system (2) satisfied 
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   0 0, 0 0x y   all the parameters are positive.  It is 

easy to prove that if the initial value  0 0,x y  is positive, then 

the corresponding solutions  ,t tx y  is positive too. 

III. FIXED POINTS AND LOCAL STABILITY 

 We now study the existence of fixed points of the system (3), 

particularly we are interested in the non-negative interior 

fixed point to begin and we list all possible fixed points.  

         (i) 0 (0,0)E 
 
is trivial or extinction  fixed point. 

        (ii)  1 ,0E m  is the axial or exclusion fixed point 

in the absence of the Predator (y = 0). 

        (ii)
* *

2 ( , )E x y is the interior fixed point,  where  
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where P
x m





  exists if and only if the following 

condition is satisfied 

 
2 2 2 2

1 1 2 1 1 24 2  and  4 2B B B B B B       where  

1B  and 2B  are discussed in sec. V

 
IV. THE DYNAMICAL BEHAVIOUR OF THE 

MODEL 

   In this section, we investigate the local behavior of model 

(3) around each fixed point.  The local stability analysis of the 

model (3) can be studied by computing the variation matrix 

corresponding to each fixed point.  The variation matrix of the 

model at the state variable is given by 

                                                   (5) 
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The characteristic equation of jacobian matrix be written as 
2 0Tr Det     where Tr is the trace and Det is the 

determinant of the jacobian matrix  ,t tJ x y which is 

defined as  

 
2

tt yy

t

tt

x eme
Tr

x mx m

  

 


 and 

 
3

tyt

t

mx
Det e

x m

 



 

 

Hence the model (3) is a Dissipative dynamical system if 
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 and is a un dissipative 

dynamical system otherwise. 

A. Remark: 

Let
2

1 2( )F B B      and if 
1 2 and    are two roots 

of   0F   which are eigen values of fixed point  ,x y .  

We recall some definitions of topological types for a fixed 

point  ,x y .   A fixed point  ,x y is locally asymptotically 

stable if 
1,2 1  . 

Preposition 1:  The fixed point 
0E   asymptotically stable if 

m   otherwise unstable fixed point.   

Proof:  In order to prove this result we estimate the eigen 

values of Jacobian matrix J at
0E  .   The Jacobian matrix for 

0E  is 
0

0

0 0

J m

 
 
 
 

 .   

Hence the eigen values of matrix are  1 2=  and 0
m


   , 

By remark, if  <1 
m


which implies that m   then 

0E  is 

asymptotically stable otherwise unstable fixed point. 

Preposition 2:  The fixed point 1E  locally asymptotically 

stable if 
1

0   0m and m






     , otherwise 

unstable fixed point.   

Proof: One can see that the Jacobian matrix for 1E  is given 

by 
 
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 Hence the eigen values of 1J  are  

 1 2=  and 
m

m   


  .   

By remark, 1E  is stable if 

1
0   0m and m







     and un stable if  

1
  m and m







   .

 

B. Lemma:   

   If the eigen values of the Jacobian matrix of the fixed point 

are inside the unit circle of the complex plane, the fixed point 

of E is locally stable.  Using Jury`s condition [4] we have 

necessary and sufficient condition for local stability of 

interior fixed point which are 

necessary and sufficient 

condition for 1,2 1  . 
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(i) 1 ( ) ( ) 0Tr J Det J    

(ii) 1 ( ) ( ) 0Tr J Det J    

(iii) ( ) 1Det J   

V. LOCAL STABILITY AND DYNAMICS 

BEHAVIOUR AROUND INTERIOR FIXED POINT 

2E
 

We now investigate the local stability and bifurcation of 

interior fixed point
2E .  The Jacobian matrix (5) at 

2E  has of 

the form  
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 Its characteristic equation is  

                       
2 0Tr Det                          (7) 

where Tr is trace and Det is determinant of the jacobian 

matrix 2J  defines in eq. (6)  Where 

11 22 1Tr a a B   ,
11 22 12 21 2Det a a a a B    .

 
By Lemma , using formulas of Tr and Det, the interior fixed 

point is locally stable if  we find that 

the  inequality (i) is equivalent to 
1 21 0B B    which 

implies that 1 2 1B B  , the  inequality (ii) is equivalent to 

1 2 1B B   . the  inequality (iii) is equivalent to 2 1B  . 

For the interior fixed point 
2E  the roots of eq.(7) are 

2 2

1 1 2

1,2

4

2

B B B


 
  .  Both of the eigen values are local 

asymptotically stable if  

2 2 2 2

1 1 2 1 1 24 2  and  4 2B B B B B B      . 

The eigen values in numerical simulations can be used to 

classify different types of dynamic behavior in a rectangular 

region. 

VI. NUMERICAL SIMULATION 

   In this section we give the numerical simulations to verify 

our theoretical results proved in the previous section by using 

MATLAB programming.  We also confirm the results by 

visual representation of the system for some values of 

parameters.  We provide some numerical evidence for the 

qualitative dynamic behavior of the map (3).  We use 

mathematical functions over a rectangular region to 

illustrating the above analytic results and dynamic behavior of 

map (3) as the parameters varying. The diagrams are 

considered in three cases which was explained in the above 

prepositions.  

   Fig-(1) (for figures see Appendix) is surface diagram in a 

rectangular region for ∝=2, a stable coexistence is noticed 

when ∝ < β (at extinction point). Fig-(2)  is a surface diagram 

in rectangular region when ∝=7, m<∝ and when predation 

goes to extinction rate, stable coexistence is noticed. Fig-(3) 

is a surface diagram in rectangular region when ∝=7 at the 

interior fixed point and the absolute value is less than 1.  

Hence by remark the equilibrium point is local asymptotically 

stable. Fig-(4) is a surface diagram in rectangular region 

when ∝=35 at the interior fixed point and the absolute value is 

greater than one, hence it is a unstable coexistence is noticed. 

We conclude that the numerical simulations agree with the 

analytical results on NB model with Holling type II functional 

response. 

VII. CONCLUSION 

  In this paper, we analyzed dynamics of a nonlinear 

discrete-time prey-predator system. This paper presents some 

innovative analysis with respect to previous studies on 

stability analysis in prey predator system with Holling type II 

functional response [2,6,16,9]. The study of host-parasitoid 

with the help of modified N-B model yields interesting 

results. In general parasitoid  lives in or  on the host and  

necessarily kills the host, similarly predators kills its prey. In 

the present study we discussed about the local stability of prey 

predator by using modified NB model with Holling type II 

functional response. We have introduced certain new 

parameters to discrete-time prey predator model and obtain 

equilibrium points. The numerical solution of the population 

size shows a succession of stable dynamics.  We also showed 

that the system exhibits a huge variety of complicated 

dynamical behaviour in a rectangular region.  
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 APPENDIX 
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Fig-(1) 

Prey predator dynamics at extinction point 
0E  

∝=2,  γ =1, β=0.5, m=5 

1  0.4 and 2  0. 

One of the eigen value 1  , 
0E  is stable. 

 

Fig-(2) 

Prey predator dynamics at  

axial fixed point 1E  

∝=7,  γ =4, β=0.5, m=5 

1  0.7143 and 2  0.5714 

Since 1,2 1  , 1E  is Local asymptotically stable 
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Fig-(3) 

 

Prey predator dynamics at 

 interior fixed point 
2E  

∝=7,  γ =4, β=0.5, m=5  

 0.4622± 0.2166 i 

Since   0.5195 < 1, 
2E  is Local asymptotically stable. 

 

Fig-(4) 

Prey predator dynamics at  

interior fixed point 
2E  

∝=35,  γ =15, β=0.5, m=5 

1  9.7392 and 2  0.1384 

Since 1 1  , 
2E  is un stable. 


