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 

Abstract— This paper describes the Stability Analysis of 

Discrete time Prey-Predator on equilibrium and find the local 

Stability conditions near equilibrium points. A  geometrical 

representation of the trajectories of dynamical system in the phase 

portraits are obtained for different set of parameter and time 

series for selective range of growth parameter are represented 

here. Harvesting activity of the Prey and Prey-Predator 

population are investigated through Chaotic Dynamic System. 

Times Series for both Prey and Predator separately analyzed  for 

different values of harvesting.. Numerical Simulations are 

presented here for explaining complex dynamical behaviors  of 

Bifurcation  

 

Keywords — Prey-Predator system, Local Stability, Quadratic 

harvesting, Phase portraits 

I. INTRODUCTION 

Predator –Prey models are building blocks of the Bio-Eco 

systems as Biomasses are grown out of their resource masses. 

Species compete, evolve and scatter simply for the purpose of 

seeking resources to sustain their struggle for their very 

existence. Depending on their specific settings of 

applications, they can take the forms of resource-consumer, 

plant-herbivore, parasite-host etc.  There are many instances 

in nature where one species of animal feeds on another 

species of animal, which in turn feeds on other things. The 

first species is called the Predator and the second is called the 

Prey. What actually happens in nature is that a cycle develops 

where at some time the prey may be abundant and the 

predators few. Because of the abundance of prey, the predator 

population grows and reduces the population of prey.  

An important problem of Ecology , the science which studies 

the interrelationships of organisms and their environment, is 

to investigate the question of coexistence of the two species. 

To this end, it is natural to seek a mathematical formulation of 

this predator-prey problem. and  to use it to forecast the 

behavior of populations of various species at different times.  

The differential equations are very much helpful in   many   

areas of science. The Lotka-Volterra model is composed of a 

pair of differential equations that describe predator-prey (or 

herbivore-plant, or parasitoid-host) dynamics in their simplest 

case (one predator population, one prey population).  
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It was developed independently by. Alfred Lotka[11] and 

Vito Volterra[13]  in the 1920's, and is characterized by 

oscillations in the population size of both predator and prey, 

with the peak of the predator's oscillation lagging slightly 

behind the peak of the prey's oscillation. The model makes 

several simplifying assumptions:  

 The prey population will grow exponentially when the 

predator is absent;  

 The predator population will starve in the absence of the 

prey population (as opposed to switching to another type 

of prey);  

 Predators can consume infinite quantities of prey;  

 There is no environmental complexity. 

After them more realistic Prey-Predator model was  

introduced by Holling [5] in 1965,  which dealt  many kinds of 

Prey-Predator model in  Ecology. M.Danca.et.al [2] gave 

analytical model of competition between two dimensional 

map and rich Dynamics. J.Dhar[3] proposed a mathematical 

model to study role of supplementary self-renewable resource 

on population in two-patch habitat. They studied the 

dynamics of corresponding discrete models obtained by Euler 

method in Jing et al[6], and Jing andYang[7] . Also complex 

behavior of predator-prey system obtained by Euler method 

examined in Liu andXiao[10]. Chaotic dynamics of a discrete 

prey-predator model with Holling type II studied in Agiza et 

al[1]. N.P Kumar[8][9] et al.,  studied  the mathematical 

model  of commensalism between two species with limited 

sources.  Also [12] studied a prey predator model in which the 

predator  is provided  with alternative  food  in addition  to the 

prey  and the prey predator harvested proportional to the 

population size.        

II.  MATHEMATICAL MODEL  

The model is  

   

 

 

  

                     ----(1) 

   

 

Where ( )x t , ( )y t  be the population densities of prey and 

predators, r  represents natural grow of Prey in the absence 

of Predator. ‘ a ’ represents effect of predation on prey.’ c ’ 

represents natural death rate of  Predator in the absence of 

prey.‘ b ’ represents efficiency and propagation rate of 

predator in the presence of prey , ‘ h ’ harvesting effect. It is 

assumed that initial value of the system (1) satisfied with 

(0) 0, (0) 0x y   and all parameters are positive. 
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III. FIXED POINT AND LOCAL STABILITY  

We now study the existence of fixed point of the system (1) 

particularly we are interested non-negative or interior fixed 

point.  To begin with we list all possible fixed points. 

 

(i). E0 = (0, 0) is trivial point. 

(ii). E1= ( ,0)
r

r h
 in the absence of predator , y =0. 

(iii). The interior fixed point is 2 ( , )E x y 
     where 

               

c
x

b

 
  

( )br c r h
y

ab

  


---------- (2) 

IV. DYNAMIC BEHAVIOR OF THE MODEL 

In this subsection, we investigate the local behavior of the 

model (1) around each fixed point.  The local stability 

analysis of the model (1) can be studied by computing the 

variation matrix corresponding to each fixed point.  The 

variation matrix of the model at state variable is given by 

(1 2 ) 2
( , )  

r x ay hx ax
J x y

by bx c

    
 

   
The determinant of the Jacobian ( , )J x y is 

[( (1 2 ) 2 )( ) ]Det r x ay hx bx c axby      Hence 

the model (3) is dissipative dynamical system 

when | [( (1 2 ) 2 )( ) ] | 1r x ay hx bx c axby       .In 

the following Lemma is useful in the study of nature of fixed 

points. 

Non-linear systems are much harder to analyze since in most 

cases they do not possesses quantitative solution even when 

explicit solution are available they are often too complicated 

to provide much insight. One of the most useful techniques for 

analyzing non-linear system quantitavely is the linearised 

stability technique   the stability of the system is investigated    

by obtaining  Eignvalues of the Jacobian matrix is associated 

with fixed points[1],[4]   in order to study the stability of the 

fixed point model  we first give the  following theorem:  

Theorem Let 
3 2( )p B C D        be the roots of 

( ) 0p   .Then the following                         statements are 

true 

a)   If every root of the equation  has absolute value less than 

one, then  the fixed point of the System is locally 

asymptotically stable and fixed point is called a sink. 

b)    If at least one of the roots of equation has absolute value 

greater than one then the fixed point of the system is 

unstable and fixed point is called saddle. 

c)   If every root of the equation has absolute value greater 

than one then the system is a source. 

d)   The fixed point of the system is called hyperbolic if no 

root of the equation has absolute value equal to one. If 

there exists a root of equation with absolute value equal 

to one then the fixed point is called non-hyperbolic.  

PREPOSITION: 1   The fixed point 0E  of the  system  is 

locally asymptomatically stable  if , 1r c  otherwise 

unstable fixed point. 

PROOF:  In order to prove the result, we estimate the 

eigenvalue of Jacobian matrix J  at
0E .  

 The Jacobian matrix for  
0E  is 

                    0

0
( )

0

r
J E

c

 
  

 
 

 Hence the Eigen values of  0( )J E  are  1 2,r c     

Thus   for the values of  , 1r c    the equilibrium point  0E  is 

locally asymptomatically stable otherwise 
0E is unstable 

fixed point.. 

PREPOSITION: 2   The fixed point 1E  of the  system  is 

locally asymptomatically stable  if 1r       and   

( )br c r h   otherwise unstable fixed point. 

PROOF:   By linearizing system (1) at 1E    we obtain the 

Jacobian 

 The Jacobian   matrix for  1E  is 

              1( )

0

ar
r

r h
J E

br
c

r h

 
 

  
  

 

 

 The characteristic equation of  1( )J E  is   

            
2

1 1( ) ( ) 0trJ E DetJ E     

Where 1

( )( )
( )

br r c r h
trJ E

r h

  



  

   and   

2

1

( )
( )

r c b hcr
DetJ E

r h

 



 

Solving we get the Eigen values   

               1 2,
br

r c
r h

    


     

It is clear that equilibrium point is sink if 1r  and  

( )br c r h   it shows it is locally asymptotically stable 

.Also       if  1r   and  ( )br c r h   is unstable  and fixed 

point is called saddle. 

LEMMA(1): If the Eigen values of the Jacobian matrix of the 

fixed point are inside the unit circle of the complex plane, the 

fixed point of E is locally stable.  Using Jury`s condition we 

have necessary and sufficient condition for local stability of 

interior fixed point which are necessary and sufficient 

condition for 1,2 1  . 

(i) 1 ( ) ( ) 0Tr J Det J    

(ii) 1 ( ) ( ) 0Tr J Det J    

(iii) ( ) 1Det J   

 PREPOSITION: 3   The interior equilibrium point  

2 ( , )E x y 
 of the system (1) is locally stable if h r   and   

( )br c r h   where x
, y

  

is given by the equation (2) 



International Journal of Emerging Science and Engineering (IJESE) 

ISSN: 2319–6378, Volume-2 Issue-4, February 2014 

50 Retrieval Number: D0664022414/2014©BEIESP 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Proof: By linearizing system (1) at  1E    we obtain the 

jacobian  

The Jacobian matrix for  
2E  is 

            
2

( )

( )
( )

0

c r h ac

b b
J E

rb c r h

a

   
 

  
  

 
 

 

 The characteristic equation of  2( )J E  is   

              2

2 2( ) ( ) 0 (3)trJ E DetJ E        

Where 2 1

( )
( )

c r h
trJ E B

b

 
        ------ (4) 

and   
2 2

( ( ) )
( ) (5)

c c h r br
DetJ E B

b

 
    

By Lemma (1), using formulas of  Tr and  Det,  we find that 

inequality (i) is equivalent to 1 21 0B B    which implies 

that 1 2 1B B  . 

The second inequality (ii) is equivalent to 1 2 1B B   . 

The third inequality (iii) is equivalent to 2 1B  . 

By solving the characterstic equation (3) at the  interior fixed 

point 2E  the roots (EigneValues at E2) will be  

2 2 2

1,2

( ( )) ( ( ( )2 4 ( ))

2

Tr J E Tr J E DetJ E


 
  .   

Where 2( ( ))Tr J E  and 2( )DetJ E  given by equations (4) 

and (5). The Eigen Values in numerical can be used to 

classifiy different type of bifurcation. 

5. Numerical simulation 

In this section we give the numerical simulations to verify our 

theoretical results proved in the previous section by using 

MATLAB programming.  We also confirm the results by 

visual representation of the system for some values of 

parameters.  We provide some numerical evidence for the 

qualitative dynamic behavior  of the map (1).  

Following Diagram illustrates Time Series Plots for both  

Prey –Predator and Phase  Portraits for Different values of  

r,h,a,b and c 

  

 

 

 
  Figure 1 TIME SERIES  FOR PREY –PREDATOR         

       AND PHASE PORTRAIT     

               1, 0.5, 0.5, 0.5, 0.25r a b c h      

 
Figure2 BIFURCATION FOR WITHOUT 

QUADRATIC HARVESTING 

               0 4, 2, 4, 0.5, 0r to a b c h      

 
Figure 3  BIFURCATION FOR WITH QUADRATIC 

HARVESTING 

               0 4, 2, 4, 0.5, 0.5r to a b c h      
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V. CONCLUSION 

This paper investigated the stability of quadratic harvesting 

equilibrium model and conditions for stability are obtained. 

We conclude that equilibrium of prey-predator model (1) is 

stable for harvesting activity and when we consider the 

harvesting activity of prey, the population size of predator 

decreased then  the system will be unstable.   The purpose of 

the work is to give the mathematical analysis of the model and 

to discuss some significant results are expected from the 

biological forces. We presented numerical simulations to 

show the dynamical behavior of the system which is being 

harvested. Also we exhibit Bifurcation diagram for 

Prey-Predator model with and without quadratic harvesting 

for different values. 
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