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 
Abstract—In this paper we provide an interval of existence of 

critical Gompertz parameter of solid tumour growth model and 

their asymptotic formula for large number of tumour cells, in the 

absence of specific volume data at particular time. 

I. INTRODUCTION 

Cancer is a disease that may affect people at all ages. It causes 

about 13% of all human deaths. In the past two decades 

increasing attention has been paid to tumour growth, a major 

death cause in our society. It has long been documented that 

the growth of cancer tumours follows a sigmoidal growth 

curve, exhibiting at first a phase of exponential growth and 

later a phase of slowed growth. The character of such curves 

is simulated by various mathematical formulations, including 

deterministic models, stochastic models and cellular automata 

models. The most recognized pattern of tumour growth is 

Gompertz growth, which has been utilized by many 

researchers to provide a basis of description and prediction 

[1-17]. 

Broadly speaking solid tumour growth may be termed 

avascular or vascular with angiogenesis facilitating the 

transformation from avascular to vascular growth [18-21]. 

The avascular stage can be characterised by diffusion-limited 

growth, with the tumour receiving vital nutrients and 

eliminating waste products via diffusion across its outer 

boundary [21-23]. Since the size to which such tumours grow 

is limited (O(mm
3
)), avascular tumours are usually harmless. 

To escape from the restrictions of avascular growth a tumour 

must undergo angiogenesis [18-21]. During this process the 

tumour induces blood vessels from the surrounding tissue to 

form a new capillary network that migrates towards, and 

ultimately penetrates, the tumour. Once vascularised the 

tumour has access to an almost limitless supply of nutrients 

and is potentially life-threatening for two reasons. Firstly, the 

rapid growth that results may impair the function of vital 

organs. Second, the development of secondary tumours or 

metastases is now a real threat; tumour fragments that enter 

the blood supply are transported to other parts of the body 

where if conditions are favourable they establish secondary 

tumour colonies that further threaten the host.  

Traditionally mathematical models describing avascular 

tumour growth assume radial symmetry of the tumour and 

focus on its responses to various growth factors [24-26]. 

These models show excellent agreement with experimental 

results, reproducing the multi-layered structures that 

characterise avascular tumours and multicellular spheroids.  
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However, the deterministic Gompertz law of population 

growth has been widely used to describe in vivo tumour 

growth in experimental oncology [27-32]. If V (t) is the 

volume of the tumour cell at time t, then the Gompertz law 

models the cell growth by the equation 

 
where A; the intrinsic growth rate of the tumor, is a parameter 

related to the initial mitosis rate 

and β; the growth deceleration factor and 

; define V (0) = V0, is the volume at 

time t = 0. From a biological point of view, a greater  β value 

or a smaller A value indicates a greater 

antitumoral effect of the therapy [33]. 

The plan of this paper is as follows. In section 2 the details of 

a procedure for the estimation of parameters A and _ in the 

absence of specific volume data . This method utilizes the 

cumulative volume rate (Vc)(i.e., defined by 

, where   

and the maximum lifetime of tumour cells (tm) (at this time 

the tumour reaches its maximum size of volume or maximum 

number of cells before disintegration and final effects). Also 

given details about behaviour growth 

critical Gompertz parameter of solid tumour and proved the 

existence of critical time tk, critical Volume Nk. Section 3 

presents the results for interval of existence of numerical 

solution. In section 4 we given a conclusion. 

II. ESTIMATION OF PARAMETERS 

An exact mathematical description of our model of tumour 

cell proliferation is given by a Gompertz equation (1) of the 

following form 

 
where V (t) is the clonogenic tumour volume at time t; V0 is 

the clonogen number at time t = 0: A and β(> 0) are the 

Gompertz growth parameters. 

The doubling time is a key parameter for assessing the impact 

of delays in cancer treatment. Most of the information about 

tumour growth rates comes from studies performed long ago 

and not known clearly the maximum volume size of 

individual tumours and groups of tumours. In general the time 

the tumour takes to double itself varies widely, such that in 

case of histological type of tumour the time distribution for 

tumour doubling itself is normally long [34-38]. The 

Gompertz model presents a doubling time (Volume Rate 

Doubling time (VRD)) which depends only on β. 

Comparisons of volume data of 

solid tumours in tumour growth 

model are aided by calculation 
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of the VRD, because VRD changes in the same direction as 

lifespan of tumour cells. The growth rate of the tumour may 

also be described by additional coefficients 

(Gompertz-Makeham model) or by other power functions 

(Weibull model), in which the VRD changes with time [37]. 

Solving equation(2) for VRD gives 

 
The above equation (3) fully depends on β; so we have to 

estimate β to calculate VRD in the absence of specific volume 

data of solid tumour cells, since VRD changes in the same 

direction as lifespan of tumour cells. Equation (2) gives 

 
where .  We assume that V (tm); 

maximum volume of tumour cells (where tm is the time at 

which the tumour contains a cell number which is one less 

than its maximum i.e., one cell less to death, and which 

approximates the maximum lifespan of tumour cells t*m). 

Thus 

 
after a few algebraic manipulations we get, 

 
The cumulative intrinsic volume growth rate Vc of the 

Gompertz model of equation (2), is 

defined Substitute the value of 

from the equation (2) in the above equation and apply a 

little algebra we get the following equation 

 

Where . Clearly, the above integral (7), 

exists  

Consider the initial volume of size V0 at initial stage. From 

the equation (1) the volume at which the growth rate of initial 

volume V0 has increasing or, equivalently, it tends to a V 

(t*m) is the time at which volume approximates the maximum 

number of tumour cells, is called a critical time, tk. The 

remaining tumour cells from an original volume size V (t) 

surviving at this critical time 

is called critical volume Vk, and the corresponding Gompertz 

parameter in equation (1), is called critical Gompertz 

parameter βk. 

2.1 Behaviour of solid tumour growth Gompertz parameter 

To find the critical points of β we consider the partials of β 

with respect to V *(t),Vc and tm  in equation (7). These are 

given by 

 
 

 
and 

 
Here, βtm   ≥1 and [A ≤ (1/Vc)] is positive, since  

 
 Therefore, for βtm   ≥1 the value of 

is positive. 

This will give the result  

. 

It shows that the value of parameter β is increases when value 

of V *(t) is increases, β is decrease when the value of Vc 

increase and also β is decrease when the value of tm increases. 

If we send   

in (8),(9) and (10) get that 

 
Also we obtain, 

 

 

 
Upon substitution       in (4), we get 

 
from (11) it follows that, 

 
The point  

 
at which  β changes sign is said to be the critical point βk. 

From [39], Collins and his co-workers [40] were able to show 

that for a series of 206 children with Wilms' tumour that risk 

of recurrence agreed well with theoretical prediction by the 

method of Boag [41] and also the growth rate function 

approaches a constant with predictions on the basis of 

exponential growth at larger time. To determine the critical 

Gompertz parameter, βk, first we use the identity to 

obtain critical values of β; namely critical volume, Vk and 

critical time tk. Since the partials of β with respect to 

 become zero at . 

 Note that the condition  

is necessary to have a constant growth rate function. Finally 

we obtain the asymptotic solution of (7), for the critical 

values, Vk and tk.Now we shall prove the existence of critical 

volume and critical time. 

2.2 Critical volume Vk 

For a given  

with  

 
There exists a critical volume Vk and is given by 

.  Indeed, since  we can take , or  

 . For instance,(see Table 

I in [42] when (Mouse Krebs)) A = 5:25, tm = 15; 20 and 25, 

we find that Vk = 927ₓ 6
; 949ₓ  and 952 ₓ , 

respectively. Note that Vk is 

increases as tm. Thus the 

remaining volume (critical 
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volume)approximates 949 ₓ  to 952 ₓ  cells. Since the 

volume reaches its maximum size, the above said tm can be 

treated as critical time tk. From this we obtained tk = Vc ln 

[Vk]. To study the tumor growth rate of the remaining critical 

volume we need to consider critical Gompertz parameter βk 

because 

 
 when . Thus, we conclude that when  

, tk = tm and  . Clearly , when 

, both tk and tm are same. 

2.3 Critical growth time tk 

On the contrary, when  

 

 it is trivial to find the critical volume. As tm < Vc ln [Vk]  we 

can take tk = Vc ln [Vk]. For instance,(see Table I in [42] 

when (Rat R39 Sarcoma,R3a7)) 

A = 1.28, tm = 42.44 days and =241 cm
3
, we find that tk 

= 28.4854 . Thus we conclude that when 

          

,, tk = Vc ln [Vk],   and . 

Clearly , when   , tk < tm. Thus, in general, for 

any given , tm and , we get 

. 

III. INTERVAL OF EXISTENCE OF NUMERICAL 

SOLUTION 

Recall that in [42-44] we obtained asymptotic solution of 

equation(7) for a large  with  for 

β > 0. The asymptotic solution is given by 

  

 
 and   

 
when   respectively, and  

C = 0.577215; Euler's constant. 

We remark that when           

 the above asymptotic formulae remain valid, provided 

or . 

Our immediate concern is to extend the above formulae to 

. It is amazing to learn that 

the formulae (13) and (14) derived for a large  equally 

hold good for  Here is the 

proof: Upon substitution   to (7), we get 

 
where tk = tm ,          

and tk = Vc ln [Vk] when           

Equation (15) gives 

 

 
Hence  

. 

The above inequality ensures the existence of solution 

βk,provided   

As a consequence, we get 

 
Obviously, any βk  ≥ 0 will satisfy (16). To obtain the solution 

of (15) for every fixed  choose any  from the 

solution interval [0, . As every  satisfies (15), let 

us find the largest possible of these. To achieve this, fix one 

such . Substitute this into the right hand side of (15) to get 

 
where  

, since . We 

observe that by sending  to zero in (17), one can obtain the  

asymptotic value of βk for a large , as we have  

 
from(16). 

If we send  to zero, on account of 8.212,1. in [45], we get 

  (19a) 

 
And also from equation (17), 

 

 
where C = 0:577215; Euler's constant. 

In expressions (19b) and (20b) are equated to each other, i.e., 

 

 
We expanding the a series and integrand in the value of β and 

the limit can be expressed then In the resulting equation 

retaining dominant  term only, after a little algebra, 

we get 

 
or, equivalently, 

 

A simple substitution of  into  

yields the required asymptotic formula 
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of (15) for large   with  

Strangely, on account of (21), the above formula fails at  

. But when , we have 

from (16). Now setting  

substitute this into equation (15), to get 

             

If we send  to zero, on account of 8.212,1. in [45], we get 

 

 
And also from equation (17), 

 

 
 

In expressions (23b) and (24b) are equated to each other, i.e., 

 
 

 
We expanding the a series and integrand in the value of β and 

the limit can be expressed. then in the resulting equation, as 

the dominant  term vanishes, we consider only 

-order term. 

After a little algebra, we obtain 

 
Or 

 
A simple substitution of  into  yields the 

required asymptotic formula 

 
of (15) for large  when  . summing up, we 

conclude the following. 

THEOREM : For every fixed   , let  and 

be intervals defined by 

 

 
where C = 0:577215; Euler's constant. Suppose there exists a 

unique solution of (7) in respectively, when  

Then it is necessary that . 

Moreover, the asymptotic solution of (7) for a large 

 is given by (22), (25), respectively, when 

  . 

Remark 1. Note that care must be taken while using the 

asymptotic solution (22) and (25), 

since the condition when ,   and when 

,   and are crucially 

dependent on whether given  or . 

Remark 2. From (4) it is easy to get the asymptotic formula of 

A using (22) and (25) for  

 

Remark 3. We listed in table I the numerical values of 

asymptotic solution (22) for for 

a comparison with that for a large  

Remark 4. There were no recorded samples with  =  to 

compare with the asymptotic solution(25) for . 

Remark 5. Asymptotic solution is useful in the study of 

qualitative behaviour of solution. 

Remark 6. Using (13) or (14) from the values of   

 we can calculate unique  β  then using that  β substitute 

in (4) we will get the value of A. 

Remark 7. Using (22) or (25) we can find critical Gompertz 

parameter βk for large number solid tumour growth cells, in 

the absence of specific volume data at particular time.   

IV. CONCLUSION 

The above theorem states that the asymptotic solution β of (7) 

is a continuous function in the variables    

from initial growth to critical growth time (or, ). 

What happens to solution β when  (below the 

critical volume)? As we have already equated  with 

when  , what then is the actual maximum life 

time(theoretically exists)  

? Such  exists, How to determine this  ?. 

All these questions remain to be addressed. 

The purpose of this discussion has been to address the issue of 

existence of critical Gompertz parameter βk for large number 

solid tumour growth cells, in the absence of specific volume 

data at particular time. Such a method is necessary when 

attempting to estimate the growth decelaration rate parameter. 

From these analyses, we believe that our model and methods 

will provide a useful approach to prediction of experimental 

and clinical tumour growth. For further applications more 

research is needed.   
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