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Abstract--Atmospheric Signal processing has been one field of 

signal processing where there is a lot of scope for development of 

new and efficient tools for cleaning of the spectrum, detection and 

estimation of the desired parameters. The  field of digital signal 

processing  is a very active area for research and applications. 

Atmospheric signal processing deals with the processing of the 

signals received from the atmosphere when manually stimulated 

using atmospheric Radar. Removal of clutter in the radar wind 

profiler is the utmost important consideration in radar. In this 

paper, we implement wavelet thresholding for removing clutter 

from wind profiler Radar data. By applying the concept of discrete 

multi-resolution analysis and non-parametric estimation theory, 

we develop wavelet domain thresholding rules, which identifies 

the coefficients relevant for clutter and suppresses them and 

increases  the accuracy of  wind vector  reconstruction. 

 

Index Terms— Clutter, Signal Processing, Wind Profiler, 

Wavelet Thresholding.  

I. INTRODUCTION 

RADAR (Radio Detection and Ranging) is a device that sends 

out electromagnetic waves. These waves reflect off of objects 

in space, and a proportion of the original wave energy is 

actually bounced back towards the RADAR. The RADAR 

then reads this returning signal and analyzes it. This returning 

signal can be processed to determine many properties about 

the original object that the wave reflected off of. Two 

examples that can be determined from the returned signal are 

the location of the object (distance away from the radar itself) 

as well as the velocity of the object in relation to the radar. 

II. CONCEPT OF RADARS 

 

Radar itself is an abbreviation for Radio Detection and 

Ranging. Radar systems send out modulated waveforms 

using antennas in order to transmit electromagnetic energy 

into a specific volume of space to search for targets. Objects 

(i.e. targets) within a certain volume will reflect part of the 

energy (radar returns or echoes) back to the radar. From these 

radar returns, the radar receiver then extracts information 

such as velocity and range, angular position, and other 

identifying characteristics. If relative motion exists between 

target and radar, the shift in the carrier frequency of the 

reflected wave (Doppler effect) is a measure of target’s 
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relative (radial) velocity and may be used to distinguish 

moving targets from stationary objects. National 

Atmospheric Research Laboratory (NARL) at Gadanki 

(13.47°N, 79.18°E) near Tirupati, India has been operating a 

1280 MHz atmospheric radar for studying structure and 

dynamics of lower atmosphere. 

          The operating frequency of LAWP is 1280MHz. The 

phased antenna array consists of 8x8 elements occupying an 

area of 1.4mx1.4m.It transmits a peak power of 0.8KW.The 

number of coherent integrations can be in the range of 

4-1000.The number of Fast Fourier Transform (FFT) points 

can be from 1-256.To obtain the wind speed and direction, 

LAWP measures data in three directions, namely zenith, 

north and east in one observation cycle. The typical height 

coverage in the clear air is 3-4Km and 10Km during 

precipitation. The  selected parameters of  LAWP are shown 

in table. 

 

Specifications 

 

                    1280 MHz 

 

AntennaType      Microstrip Patch Array 

 
 0
 

 

 

Rx Type      Solid State Transceivers  

 

 

– 8.0 μs 

- 1000 

T                                         32 -1024 

-256 

        .  Receiver                        Super Hetrodyne 

 

   70 dB 

 

-5 km 

 
 

 Most of these RWP employ the Doppler-beam swinging 

(DBS) method for the determination of the vertical profile of 

the horizontal wind and, under certain conditions, the vertical 

wind component. These radars transmit short 

electromagnetic pulses in a fixed beam direction and sample 

the small fraction of the electromagnetic field backscattered 

to the antenna. 

At least three linear independent beam directions are required 

to transform the measured ’line-of-sight’ radial velocities 

into the wind vector. Due to the 

nature of the acting atmospheric 

scattering processes, the 
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received signal is several orders of magnitude weaker than 

the transmitted signal. The received signal is Doppler shifted, 

which is used to determine the velocity component of “the 

atmosphere” projected onto the beam direction. The goals of 

signal processing, as summarized by [1], are: 

–   to provide accurate, unbiased estimates of the  

 characteristics of the desired atmospheric echoes; 

–   to estimate the confidence/accuracy of the measurement; 

–   to mitigate effects of interfering signals; 

–  to reduce the data rate.  

 

Fig 1. Data Processing Steps of Rdar Wind Profiler. 

 

Digital signal processing in a system using an analog receiver 

starts with the sampling of the in- and quadrature phase 

components of the received signal at a rate that is determined 

by the pulse repetition period T. To reduce the data rate for 

further processing, hardware adder circuits perform a 

so-called coherent integration [2][3], adding some N 

(typically ten to hundred) complex samples together. If the 

radar system uses pulse compression techniques (e.g. phase 

coding using complementary sequences), then the next step is 

decoding [4][5][6]. The coherently averaged and decoded 

samples are then used to compute the Doppler spectrum using 

the Windowed Fourier Transform (FFT) and the 

Periodogram method [1]. In our system, a Fourier 

transformed Hanning-window is convolved with the result of 

the FFT. A number (typically some ten) of individual 

Doppler spectra is then incoherently averaged to improve the 

detectability of the signal [7]. Finally, the noise level is 

estimated with the method proposed by [2], and the moments 

of the maximum signal in the spectrum are computed over the 

range where the signal is above the noise level [8]. The 

problem with this type of signal processing is the underlying 

assumption that the signal consists of only two parts: the 

signal, that is produced by one atmospheric scattering 

process, and noise (different sources, mainly thermal 

electronic noise and cosmic noise). This is certainly not true, 

especially at UHF, where the desired atmospheric signal 

itself is often the result of two distinct scattering processes, 

namely scattering at in homogeneities of the refractive index 

(Bragg scattering) and scattering at particles, such as droplets 

or ice crystals (Rayleigh scattering) (see, for instance, [9] 

[10] [11] [12]. Therefore, even the desired atmospheric signal 

may have different characteristics. But, as experience shows 

us, the most serious problems are caused by the following 

contributions to the signal: 

Ground Clutter. Echo returns from the ground surrounding 

the site, which emerge from antenna’s side lobes. 

Intermittent Clutter. Returns from unwanted targets, such  as 

airplanes or birds, from both the antenna’s main lobe and the 

side lobes. 

III. APPLYING MULTIRESOLUTION ANALYSIS   

AND STATISTICAL ESTIMATIONS 

For the problem at hand, the goal of the signal processing 

should be signal component separation, i.e. an automatic, 

reliable and stable extraction of the different contributions to 

the signal (noise, clutter, interference). Motivated by [13] 

[14] [15] [16] and [17], our purpose was to embed the 

filtering procedure into the known mathematical theory of 

wavelets. In general, mathematical experience concerning 

problems related to contamination removal or denoising 

shows that usually more than time domain filtering and 

Fourier domain filtering techniques are required to obtain 

optimum results. Often, most of the existing and 

implemented methods are insufficient. The main reasons for 

the particular effectiveness of wavelet analysis can be 

summarized as follows: 

– The fact that contamination appears often instationary or 

transient, and with a priori unknown scale structure, favors 

the superior localization properties of the wavelets. A 

wavelet expansion may allow the separation of signal 

components that overlap both in time and frequency [18]. 

– In order to effectively localize clutter components, one can 

use a great variety of wavelet filters [13] [19] [20]. To choose 

a certain wavelet that especially suits the desired signal 

component, one can determine the properties of the clutter 

signal; otherwise, one can select a wavelet empirically. 

– The wavelet expansion coefficients,    , drop off rapidly 

for a large class of signals, which makes the expansion very 

efficient [18]. 

– The fast wavelet transform has a computationally 

complexity that is lesser than or equal to the fast Fourier  

transform; the algorithm is recursive [21] [15] [18]. This 

allows for an efficient implementation on digital 

computers.Thus, the application of wavelet techniques to our 

particular problem seems to be promising. Before we start, let 

us briefly repeat the basics of multi-resolution analysis. Let 

L2(R) be the space of functions of finite energy. Let   be 

some function in L2(R), such that the family of translates of  

form an orthonormal system. We define   

                  ),                     (1) 

Assuming that   is chosen in such a way that the spaces are 

nested:         and that              is dense in L2(R) 

Further, we define linear spaces by 

                         
 

    .    (2) 

                                   (3)   

then the sequence         is called a multi-resolution 

analysis.    is called the father wavelet. Furthermore, one 

may define subspaces    by 
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                            (4) 

And iterating this we have                   and       

                            (5) 

Assuming that our data may be described by some 

        we can represent the signal as a series 

                                   (6) 

Where             is an orthonormal basis in    .The 

function    is called mother wavelet. This expansion is a 

special kind of orthogonal series. Hence, it would be useful to 

search in the framework of nonparametric statistical 

estimation theory for an applicable method to solve our 

problem [7]. In case of orthogonal series estimation, the idea 

of reconstructing the desired atmospheric signal is simple. 

Basically, we replace the unknown wavelet coefficients in the 

wavelet expansion by estimates which are based on observed 

data. For that, we need a selection procedure to choose 

relevant coefficients since the main emphasis of performing 

wavelet domain filtering is to create a suitable, i.e. problem 

matched, coefficient selecting procedure. To separate the 

atmospheric signal component, we apply statistical 

estimation theory. A side effect of using statistics is to obtain 

a measure of reconstruction quality. A typical quality 

measure is a loss function/ estimation error. Minimizing the 

error function reveals an objective evaluation and a 

self-acting filter algorithm. The following sub-section 

describes the construction of our 

atmospheric-signal-estimator. In advance, we briefly remark 

that in the following section, we assume that our signal 

belongs to some Besov space, i.e. a generalized mathematical 

function space. One special example is the previously 

introduced function space L2(R). But sometimes it makes 

more sense to suppose that the derivatives of our signal are of 

finite energy as well. In this and other situations, the 

framework of Besov spaces is an adequate mathematical tool 

for our application. A Besov space, denoted by   
  , 

depends on three parameters: s smoothness, the number of 

bounded derivatives and p, q which describe the underlying 

function space Lq (lp). In the following, we make use of some 

well-known facts of estimation theory, which are valid for 

almost all Besov spaces [22] [23] [24] [25]. If our signal is an 

element of one of these spaces (which is true for all practical 

signals), we can adapt wavelet threshold estimators. The 

main advantage of this framework is that we can use existing 

rules for evaluating bounds and rates of convergence for our 

loss function, which describes the quality of our 

reconstructed atmospheric signal component. By optimizing 

bounds and rates of convergence, we obtain self acting 

algorithms.  For our purpose, we only need the following 

characterization of Besov spaces: A function f belongs to  

  
    if 

   
                                  

 
           

                      (7) 

For our calculations, we assume that the function is in L2(R) 

and s is small.   

     From given measurements (Y1, . . . , Yn), we want to 

estimate the function f in the simple model. 

                           (8) 

We assume that we have the Xi on a regular grid and   is a 

random variable (a stochastic process which describes all 

non-atmospheric components). The basic idea is to replace 

the wavelet coefficients in the series expansion by empirical 

estimates. 

    
 

 
     

           and      
 

 
   

 
            (9) 

where the Xi are time stamps and the Yi are observations. A 

straightforward linear estimation is given by the projection 

onto a subspace     

                           
  
             (10) 

Obviously, this kind of linear estimation includes oscillating 

components, in particular, the clutter components. This 

phenomenon occurs because we have taken the whole set of 

wavelet coefficients up to scale j1, i.e. we have not performed 

any filtering step thus far. In the following, we need a suitable 

selection procedure for the coefficients in order to perform 

the necessary filtering step. We apply a so-called hard 

thresholding and soft thresholding, respectively. This 

methodology was introduced and adapted to several 

problems by [7] [8]. It is based on taking the discrete wavelet 

transform (using a multiresolution analysis), passing the 

transform through a threshold (actually, the expansion 

coefficients are thresholded) and then taking the inverse 

DWT to obtain a filtered reconstruction.  The functions for 

hard and soft thresholding are defined by 

         
  
  

      
                                         

      (11) 

and               
   

  

   
            

                            
       (12) 

The modified functions for hard and soft thresholding are 

defined by   

       
       
       

                    (13) 

 and           
       

            
         (14) 

  Here,   is an adequate threshold. Applying this rule  to our 

linear wavelet estimator, we obtain a nonlinear estimator 

          
                 

 
  
                     (15) 

   

where    is     or    , respectively. 

If the threshold   is specified according to the asymptotic 

distribution of the empirical coefficients, then only those 

coefficients remain which are supposed to carry significant 

signal information. These are finally used for the 

reconstruction by the inverse wavelet transform. The 

resulting non-linear estimator does not only provide local 

smoothers, but, in many situations, achieves the nearminimax 

L2-rate for the risk of estimation, i.e. for (random) 

thresholds     satisfying   

                 
    

 
         (16) 

for any positive constant C, 

where    is the variance and Mj denotes the number of the 

coefficients used in the nonlinear estimator. The optimal 

threshold rate 
 

 
 

  

        is attained only for the ideal threshold. 

However, in practice, this is unknown. Therefore, we have to 

replace   by some estimation w    hich results in random 

thresholds                  Hence, the log term has to be 

understood as the price for some data-driven threshold rule, 

and it originates due to the estimation of the unknown 

variance    
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     Fig 2. This figure shows hard and soft thresholding. 

IV. WAVELET THRESHOLDING 

In this section, we will demonstrate the performance of 

nonlinear wavelet filtering. For a better understanding, we 

particularize Fig. 1 to see where we have inserted the wavelet 

tool. To apply our procedure, a more substantiated algorithm 

flow diagram is shown in the figure below. Following the 

first box in the algorithm flow diagram, one has first to 

determine the analyzing wavelet (high and low pass filter 

coefficients). Usually, the decomposition of a signal in a 

basis (i.e. a wavelet series) has the goal of highlighting 

particular properties of the signal.  

There have been no detailed investigations thus far about the 

regularity properties of contaminating wind profiler signals, 

but there is evidence that these can be both “quite regular” 

(ground clutter) or “not so regular” (intermittent clutter). 

Thus, the Daubechies family was selected. The order of the 

Daubechies wavelet was chosen according to the regularity 

condition, which we have conservatively chosen to be rather 

small (s    ).To approximate correctly a function of   
  , 

we need to select an analyzing wavelet of regularity [s] + 1. A 

wavelet with regularity of the order of s = 2 and minimal In 

the problem of wind profiler signal filtering, the desired 

atmospheric signal component can be contaminated with 

spurious signal components. The ultimate goal is obviously 

to find a wavelet basis, which would allow a separation of the 

desired and the unwanted parts of the signal, i.e. which would 

have the ability to approximate the unwanted signal 

components (ground clutter, intermittent clutter) with only a 

few non-zero wavelet coefficients. In other words, the 

wavelet    has to be chosen in such a way that a maximum 

number of wavelet coefficients,      are close to zero. This 

depends primarily on the regularity of the (contaminating) 

signal f , the number of vanishing moments of the wavelet   , 

and the size of the wavelets support. If f is regular and   has   

enough vanishing moments, then the coefficients      are 

guaranteed to be small for small scales. If, however, the 

signal f contains isolated singularities, the strategy to have a 

maximum number of small wavelet coefficients would be to 

reduce the support size of the wavelet. Unfortunately, there is 

a tradeoff between both properties for orthogonal wavelets: if 

   has p vanishing moments, then its support size is at least 

2p − 1. The best compromise between those two 

requirements are Daubechies wavelets, which are optimal in 

the sense that they have minimum support for a given number 

of vanishing moments. compact support is the 

Daubechies-2-wavelet; hence, we have chosen this one for 

our calculations. 

 

 
 

Fig 3. Left: The flow diagram extended by the wavelet tool.          

Right: The wavelet algorithm flow diagram. 

 

Mathematically, it is no problem to increase the wavelet 

order (regularity), but the wavelet support size and the 

number of filter coefficients also increases, and this will 

decelerate the algorithm. Finally, we note, in passing, that we 

have concentrated on the fast wavelet transform 

(multiresolution analysis), which is a special case of the 

discrete wavelet transform. Obviously, for an online 

algorithm, the number of operations per data point is limited. 

The fast wavelet transform is, therefore, the best choice, since 

it has the highest numerical efficiency (i.e. it is faster than the 

fast Fourier transform). This, of course, restricts the possible 

choices of the underlying basis wavelet. The number of 

decomposition scales is determined by balancing the 

stochastic and the deterministic part of the MISE. Thus, the 

optimal scale may be evaluated automatically by the 

rule        
 

       After fixing the main parameters, one 

may start the wavelet decomposition of the in-phase and the 

quadrature-phase time series. To separate the atmospheric 

component, the algorithm calculates for each decomposition 

level the local thresholds     . 

V.  RESULTS 
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VI. CONCLUSION 

This paper discusses an signal processing algorithm which 

implements discrete multiresolution analysis and nonlinear 

estimation theory for separating the atmospheric Doppler 

signal in RWP measurements in  the presence of 

contaminating signals.We have demonstrated that wavelet 

thresholding is effective in removing ground and intermittent 

clutter (airplane echoes) from the RWP raw data (I/Q 

timeseries).  
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