
International Journal of Emerging Science and Engineering (IJESE) 

ISSN: 2319–6378, Volume-2 Issue-6, April 2014 

43 

 

Retrieval Number: F0719042614 /2014©BEIESP 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

 

Abstract— In clinical Magnetic Resonance Imaging (MRI), 

any reduction in scan time offers an improvement in patient 

comfort problem. Compressive sensing  introduces a new 

technique to image reconstruction from less amount of data. It 

will reduce imaging time in MRI. Compressive sensing exploit 

the sparsity of the signal. In this paper  fractional Fourier is used 

as sparsifying transform and signal sampled using different 

random sampling method. Such as gaussian, bernoullie,and 

poisson distribution. Then MRI  accurately reconstructed from 

very highly under sampled data using  Maximum likelihood 

estimation. 

 

Index Terms— Compressive sensing, Fractional Fourier 

transform, maximum likelihood estimation 

I. INTRODUCTION 

Researches are going on to increase speed of data 

acquisition and reduce resource consumption due to 

measurements. Whatever the field of application, most of the 

acquisition systems built during the last 50 years have been 

designed under the guiding rules of the Nyquist-Shannon 

sampling theorem. The sampling rate must be at least twice 

the maximum frequency present in the signal (the so-called 

Nyquist rate) [1], [2]. Main disadvantages of conventional 

approach are exponentially increasing amount of data, data 

acquisition time is high ,energy consumption. 
MRI is a noninvasive imaging modality to visualize 

internal organs[3]. The data-intensive nature MRI 

applications inherently prescribe a lengthening of scan 

duration which can decrease patient comfort, increase the risk 

of physiological artifacts, and reduce clinical throughput. As 

many MR images are piecewise smooth and thus naturally 

exhibit sparsity in the fractional Fourier domain, it is now 

accepted that accurate reconstruction of the constituent image 

structures can be achieved using a small subset of their 

fractional Fourier measurements.  

CS is suitable for MRI, because MRI measurments are in 

Fourier or fractional Fourier domain. Compressive sampling 

will  reduces imaging time  in MRI by sampling much fewer 

measurements than Nyquistic rate . This paper considers the 

basic problem of recovering an orginal image, f in C
N
 from a 

fewer set of measurements. Previous article  studied signals 

which have relatively less nonzero terms or whose 

coefficients in some fixed basis have relatively few nonzero 
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entries[4]. This paper discussed some surprising phenomena, 

and has relatively very less nonzero coefficient than preveous. 
This work presents signal sparsity, sampling, signal coding 

and reconstruction. Actually compressive sensing is applied 

to the analog  form of the signal, here orginal image is  used 

for analysis and then generate sparse signal. For satisfying 

sparsity, fractional Fourier transform is applied as a 

sparsifying transform. Then signal is sampled using different 

random sampling method and then generate the orginal image 

by using maximum likelihood estimation. The formulation of 

CS theory emphasizes on maximizing image sparsity on 

known sparse transform domain and minimizing fidelity. 

Gaussian, Bernoulli or Poisson under sampling scheme is 

used as the random projection matrix for MRI problem. 

II. PRILIMINARIES 

A. Compressive sensing  

Compressive sensing suggests the possibility of new data 

acquisition protocols that translate analog information into 

digital form with fewer sensors than what was considered 

necessary. This new sampling theory may come to underlie 

procedures for sampling and compressing data 

simultaneously, in order to solve under-determined problem 

[8], [9]. The basics in this approach are that the signal to be 

sampled is sparse in a convenient basis. In this paper 

fractional Fourier transform serves as the sparsity basis. 

Mathematically, any signal fЄR
n 

(such as the n-pixel image) 

can express as a linear combination of an orthonormal basis ψ   

= [ψ1, ψ2.........ψn] and coefficient as follows: 

 

 
 

where ψ is sparsity promoting transform  

CS we donot aquire x directly but rather aquire M<N 

measurements. MR imaging for instance, one is typically 

able to collect far fewer measurements about an image of 

interest than the number of unknown pixels. This is 

“underdetermined” case where we have many fewer 

measurements than unknown  values. Solution for the 

underdetermined system of equations appears hopeless. 

For instance, suppose signal is sparse and it can be written 

either exactly or accurately as a superposition of a small 

number of vectors in some fixed basis. Then this concept 

radically changes the problem making the search for 

solutions feasible. In fact, 

accurate recovery is possible 
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by solving a convex optimization problem. 
The second premise of CS concerns the mutual coherence 

between the measurement and the sparsity basis[10]. Assume 

that the measurement matrix Φ and the sparsifying matrix ψ 

are orthonormal bases in C
N 

. 

     y=Φx                                             (2) 

B. Fractional Fourier transform 

Fractional Fourier transform(FrFT) is a generalization of 

the Fourier transform. It transform a signal (either in the time 

domain or frequency domain) into the domain between time 

and frequency. The FrFT interpreted as a rotation by an angle 

α=aπ/2 in the time–frequency plane. An FrFT with α=π/2 

corresponds to the classical Fourier transform, and an FrFT 

with α=0 corresponds to identity operator [11], [12]. 

 

     

 

III. PR O P O S E D  MO D E L U S IN G  CO M P R E S S IV E     

SE N S IN G  

A. Data Acquisition 

The original images were obtained on a 3T scanner with a 

dimension of 216x216. These images considered as the 

ground truth for this study. This  image is first partitioned 

into non-overlapped 8X8 subimage. 
 

B. Sparsifying Transform 

  Image is converted in to sparsifying domain using fractional 

Fourier transform. In this step, a 2D-FrFT is applied to each 

block to convert the gray levels of pixels in the spatial domain 

into coefficients in the frequency domain. By using FRFT a 

large amount of information is pack into smallest number of 

transform coefficients, hence small amount of compression is 

achieved at this step.The heart of the routine consists of three 

steps. Multiplications of f with a chirp function, this result is 

convolved with a chirp function and again multiplies with a 

chirp function.   

           MRI Image 

 

 

 

 

 

 

 

 

 

                 Image 
Fig  1 :Schematic diagram of Proposed method 

A. Random Sampling 

  To satisfy incoherent under-sampling in CS, sampled using 

a random Bernoulli, Gaussian or Poisson probability function 

to keep only fewer amount of data. 

B. Run legth encoding 

Compressed datas are coded using run length encoding. 

Run length coding can be applied on a row-by-row basis. RLE 

is most suitable coding method, because most of the pixel 

values are same in MRI. 

C. Reconstruction 

 Reconstruction is based on estimation theory. Estimation 

is a systematic way of searching for the   parameter values of 

our chosen distribution. That maximizes the probability of 

observing the data [15].  

Maximum likelihood esimator, 

 

  
 

The goal of MLE is to find values of the parameters, say β, 

which maximize the (log) likelihood function. To do this, we 

could start with a guess of β and let's call this β0. We could 

then adjust this guess based on the value of the (log) 

likelihood that it gives us.  

 

Thus, our new guess would be 

                             (5) 

   -Direction to take step 

-step size 

Move the vector β to the point at which the likelihood is  

highest. Take account of the slope of the likelihood function 

at each guess. Intuitively, the way that we do this is by 

incorporating information from the gradient. As we get to the 

top, the gradient becomes closer to zero.Then we stop, that 

will be the estimate. It is proved that estimate will be mean of 

the samples. 

Reconstruction of orginal image from estimated data can be 

done using inverse-FrFT with respect to angle θ . which is 

same as FrFT at angle –θ. 

For analyzing resulted image, we used Peak SNR (PSNR), 

MSE and Compression ratio measurements. The SSIM is a 

method for measuring the similarity between two images. 
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IV. THE IMPLIMENTATION AND RESULTS 

   

(a)      (b)     
 

     
 

 (c)         (d) 

Fig  2  (a) Image used in this paper for experiments, 

(b)Reconstructed image using bernoulli random sampling 

(c)gaussian sampling (d)poisson sampling 

 

TABLE I. Performance analysis 

sampling PSNR MSE Compression 

ratio 

Bernoulli 70.76 0.003 1.7 

Poisson 70.5 0.0058 2 

Gaussian 71.4 0.005 2.2 

V. CONCLUSION 

Fractional Fourier transform and Maximum likelihood 

estimator are used to  reconstruct high quality images from 

few MR compressive sensing measurements under different 

sampling pattern. CS changes the rules of the data acquisition 

game. We can reduce acquisition time in MRI using CS 

principle. It leads to next generation data acquisition . 

Analysis done on PSNR and compression ratio. Gaussian 

sampling have better perfomance under this class of images. 

Future projects can use adaptive sparse basis and 

Under-sampling pattern such as Poisson disc sampling can be 

used as undersampling matrix. 

REFERENCES 

1. Shanon sampling theorem . Its various extension and application. A 

tutorial review. Proceedings of IEEE 1977 

2. The Origins of the Sampling Theorem:Han    diater luke. Aachen 

university of technology.  

3. Marsellie GJ, dee beer R,Mehlkopf AF,Van ormondit d. on uniform 

phase encode distribution for MRI scan time reduction.J                Magn 

Reson 1996;111:70-75. 

4. Super resolution MRI images using compressive sensing 

ICEE2012,Samad roohi Compt engg&IT dept. Amirkabir university of 

Technology,jafar zamani,M noorhosseini. 

5. M. Lustig, D. Donoho, and 1. M. Pauly, "Sparse MRI: The 

applicationof compressed sensing for rapid MR imaging," Magnetic 

Resonance in   Medicine, vol. 58, no. 6, pp. 1182-1195,2007. 

6. Sampling of Sparse Signals in Fractional Fourier DomainAyush 

Bhandari (1) and Pina Marziliano (Author manuscript, published in 

"SAMPTA'09, Marseille : France (2009)“  

7. Comparison of Reconstruction Algorithms for Images from 

Sparse-Aperture Systems. J.R. Fienup, D. Griffith,L. Harrington, 

Institute of Optics, Wilmot 410, University of Rochester, Rochester, 

Published in Proc. SPIE 4792-01, Image Reconstruction from 

Incomplete Data II, Seattle, WA, July 2002  

8. D.L Donoho,” Compressed sensing,”IEEE Trans. Information 

Theory,vol.52,no.4,pp. 1289-1306,September 2011 

9.  R.G.Baranuik,”Compressive sensing,”IEEE  Signal Processing 

Magazine,vol.24,no.4,pp 5406-5425,Dec 2008 E.J.Candes and 

M.B.Walkin,”An introduction to compressive sampling,”   IEEE 

Signal Processing Mag.,vol.25,no.2,pp.21-30,March 2008  

10. Sampling of Sparse Signals in Fractional Fourier DomainAyush  

Bhandari (1) and Pina Marziliano (Author manuscript, published in 

"SAMPTA'09, Marseille :     France (2009)“  

11. Computation of the Fractional Fourier Transform Adhemar Bultheel   

and Hector E. Martinez Sulbaran Dept. of Computer Science, 

Celestijnenlaan 200A, B-3001 Leuven, 

12.  Application of the Fractional Fourier Transform to Image                 

Reconstruction in MRI Vicente Parot, Carlos Sing–Long, Carlos        

Lizama,  Cristian Tejos Member, IEEE, Sergio Uribe, and Pablo   

13. Comparison of Reconstruction Algorithms for Images from      Sparse 

Aperture Systems J.R. Fienup, D. Griffith,L.Harrington,A.M,                     

Published in Proc. SPIE 4792-01, 

14. Fundamentals of statistical signal processing Steven M Key 

AUTHORS PROFILE 

SARSEENA  C.K, Final year MTech (Digital Signal 

Processing) student, 

K.M.C.T College of Engineering Calicut,Kerala, 

India B.Tech(EEE) 

.  
  

 

 

 
YADHU R. B, Asst.Professor, KMCT College of 

engineering Kallanthode.       Calicut,  Kerala, INDIA       

M.Tech  AE&I  

 

 

 

   


