Energy Efficient Coordinated Cooperative Cache Replacement Algorithms for Social Wireless Networks

Surabattina Sunanda, Abdul Rahaman Shaik

Abstract-Cooperative caching is a technique used in wireless networks to improve the efficiency of information access by reducing the access latency and bandwidth usage.in this paper, we discuss about cooperative caching policies for minimizing electronic content provisioning cost in Social Wireless Networks (SWNET). SWNETs are formed by mobile devices, such as data enabled phones, electronic book readers etc., sharing common interests in electronic content, and physically gathering together in public places. Electronic object caching in such SWNETs are shown to be able to reduce the content provisioning cost which depends heavily on the service and pricing dependences among various stakeholders including content providers (CP), network service providers, and End Consumers (EC). Cache replacement policy plays a significant role in response time reduction by selecting suitable subset of items for eviction from the cache. In addition, this paper suggests some alternative techniques for cache replacement. Finally, the paper concludes with a discussion on future research directions.

Keywords:Data, Caching, Cache Replacement, SWNETs, Cooperative caching, content provisioning, ad hoc networks

I. INTRODUCTION

Recent emergence of data enabled mobile devices and wireless-enabled data applications have fostered new content dissemination models in today's mobile ecosystem. A list of such devices includes Apple's iPhone, Google's Android, Amazon's Kindle, and electronic book readers from other vendors. The array of data applications includes electronic book and magazine readers and mobile phone Apps. The level of proliferation of mobile applications is indicated by the example fact that as of October 2010, Apple's App Store offered over 100,000 apps that are downloadable by the smart phone users. Wireless mobile communication is a fastest growing segment in communication industry [1]. It has currently supplemented or replaced the existing wired networks in many places. The wide range of applications and new technologies [5] simulated this enormous growth. The new wireless traffic will support heterogeneous traffic, consisting of voice, video and data. Wireless networking environments can be classified in to two different types of architectures, infrastructure based and ad hoc based. The former type is most commonly deployed one, as it is used in wireless LANS and global wireless networks. An infrastructure based wireless network uses fixed network access points with which mobile terminals interact for communication and this requires the mobile terminal to be in the communication range of a base station.

Manuscript Received on June 19, 2014.

Surabattina Sunanda, Pursuing her M.Tech Degree in Computer Engineering from ASCET Gudur, India.

Abdul Rahaman Shaik, Asst. Prof., in ASCET Gudur, M.Tech Degree in Computer Engineering from ASCET Gudur, India.

The ad hoc based network structure alleviates this problem by enabling mobile terminals to cooperatively form a dynamic network without any pre existing infrastructure. It is much convenient for accessing information available in local area and possibly reaching a WLAN base station, which comes at no cost for users. Mobile terminals available today have powerful hard ware, but the capacity of the batteries goes up slowly and all these powerful components reduce battery life. Therefore adequate measures should be taken to save energy. Communication is one of the major sources of energy onsumption. By reducing the data traffic energy can be conserved for longer time. Data caching has been introduced[10] as a techniques to reduce the data traffic and access latency. By caching data the data request can be served from the mobile clients without sending it to the data source each time. It is a major technique used in the web to reduce the access latency. In web, caching is implemented at various points in the network. At the top level web server uses caching, and then comes the proxy server cache and finally client uses a cache in the browser. This paper provides algorithms, for Energy cooperative cache replacement efficient in wireless networks. The topic of caching in ad hoc networks is rather new, and not much work has been done in this area. We classified the replacement policies for MANETs in to two groups uncoordinated and coordinated. In uncoordinated replacement, the data item to be evicted is determined independently by each node based on its local access information. In coordinated replacement policy, the mobile nodes which forms cooperative cache collectively takes the replacement decision. In this paper we discuss about coordinated replacement policy.

RELATED WORK II.

There is a rich body of the existing literature on several of cooperative caching including aspects object replacements, reducing cooperation overhead, cooperation performance in traditional wired networks. The Social Wireless Networks explored in this paper, which are often formed using mobile ad hoc network protocols, are different in the caching context due to their additional constraints such as topological insatiability and limited resources. As a result, most of the available cooperative caching solutions for traditional static networks are not directly applicable for the SWNETs. Three caching schemes for MANET have been presented[9][11].

Retrieval Number: H0766062814/2014©BEIESP

Published By:

In the first scheme, CacheData, a forwarding node checks the passing-by objects and caches the ones deemed useful according to some predefined criteria. This way, the subsequent requests for the cached objects can be satisfied by an intermediate node. A problem with this approach is that storing large number of popular objects in large number of intermediate nodes does not scale well. The second approach, CachePath, is different in that the intermediate nodes do not save the objects; instead they only record paths to the closest node where the objects can be found. The idea in CachePath is to reduce latency and overhead of cache resolution by finding the location of objects. This strategy works poorly in a highly mobile environment since most of the recorded paths become obsolete very soon. The last approach in is the HybridCache in which either CacheData or CachePath is used based on the properties of the passingby objects through an intermediate node. While all three mechanisms offer a reasonable solution, and that relying only on the nodes in an object's path is not most efficient. Using a limited broadcast-based cache resolution can significantly improve the overall hit rate and the effective capacity overhead of cooperative caching. According to the protocols the mobile hosts share their cache contents in order to reduce both the number of server requests and the number of access misses. The concept is extended in for tightly coupled groups with similar mobility and data access patterns. This extended version adopts an intelligent bloom filter-based peer cache signature to minimize the number of flooded message during cache resolution. A notable limitation of this approach is that it relies on a centralized mobile support center to discover nodes with common mobility pattern and similar data access patterns. Our work, on the contrary, is fully distributed in which the mobile devices cooperate in a peer-to-peer fashion for minimizing the object access cost. In summary, in most of the existing work on collaborative caching, there is a focus on maximizing the cache hit rate of objects, without considering its effects on the overall cost which depends heavily on the content service and pricing models. This paper formulated two object replacement mechanisms to minimize the provisioning cost, instead of just maximizing the hit rate. Also, the validation of our protocol on a real SWNET interaction trace with dynamic partitions, and on a multiphone Android prototype is unique compared to the existing literature. From a user selfishness standpoint, Laoutaris et al.investigate its impacts and mistreatment on caching. A mistreated node is a cooperative node that experiences an increase in its access cost due to the selfish behavior by other nodes in the network. In, Chun et al study selfishness in a distributed content replication strategy in which each user tries to minimize its individual access cost by replicating a subset of objects locally (up to the storage capacity), and accessing the rest from the nearest possible location. Using a game theoretic formulation, the authors prove the existence of a pure Nash equilibrium under which network reaches a stable situation. Similar approach has been used in which the authors model a distributed caching as a market sharing game. Our work in this paper has certain similarity with the above works as we also use a monetary cost and rebate for content dissemination in the network. However, as opposed to using game theoretic approaches,

we propose and prove an optimal caching policy. Analysis of selfishness in our work is done in a steady state over all objects whereas the previous works mainly analyze the impact of selfishness only for a single data item. Additionally, the pricing model of our work which is based on the practical Amazon Kindle business model is substantially different and practical compared to those used earlier.

III. **NETWORK MODEL, CACHE REPLACEMENT POLICIES**

3.1 Network Model

Fig. 1 illustrates an example SWNET within a University campus. End Consumers carrying mobile devices form SWNET partitions, which can be either multi-hop (i.e., MANET) as shown for partitions 1, 3, and 4, or single hop access point based as shown for partition 2. A mobile device can download an object (i.e., content) from the CP's server using the CSP's cellular network, or from its local SWNET partition. We consider two types of SWNETs. The first one involves stationary SWNET partitions. Meaning, after a partition is formed, it is maintained for sufficiently long so that the cooperative object caches can be formed and reach steady states. We also investigate a second type to explore as to what happens when the stationary assumption is relaxed. To investigate this effect, caching is applied to SWNETs formed using human interaction traces obtained from a set of real SWNET nodes.

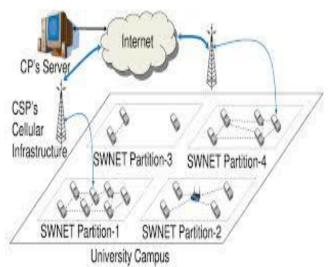


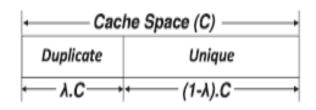
Fig. 1. Content access from an SWNET in a University Campus.

3.2. Cache Replacement

Published By:

& Sciences Publication

Caching in wireless environment has unique constraints like scarce bandwidth, limited power supply, high mobility and limited cache space. Due to the space limitation, the mobile nodes can store only a subset of the frequently accessed data. The availability of the data in local cache can significantly improve the performance since it overcomes the constraints in wireless environment.



A good replacement mechanism is needed to distinguish the items to be kept in cache and that is to be removed when the cache is full. While it would be possible to pick a random object to replace when cache is full, system performance will be better if we choose an object that is not heavily used. If a heavily used data item is removed it will probably have to be brought back quickly, resulting in extra overhead. So a good replacement policy is essential to achieve high hit rates. The extensive research on caching for wired networks can be adapted for the wireless environment with modifications to account for mobile terminal limitations and the dynamics of the wireless channel.

3.3. Cache Replacement Policies in Ad hoc networks

Data caching in MANET is proposed as cooperative caching. In cooperative caching the local cache in each node is shared among the adjacent nodes and they form a large unified cache. So in a cooperative caching environment, the mobile hosts can obtain data items not only from local cache but also from the cache of their neighboring nodes. This aims at maximizing the amount of data that can be served from the cache so that the server delays can reduced which in turn decreases the response time for the client. In many applications of MANET like automated highways and factories, smart homes and appliances, smart class rooms, mobile nodes share common interest. So sharing cache contents between mobile nodes offers significant benefits. Cache replacement algorithm greatly improves the effectiveness of the cache by selecting suitable subset of data for caching. The available cache mechanisms for ad hoc network can be replacement categorized in to coordinated and uncoordinated on how replacement decision is made. In depending uncoordinated scheme the replacement decision is made by individual nodes. In order to cache the incoming data when the cache is full, replacement algorithm chooses the data items to be removed by making use of the local parameters in each node.

3.4. Split Cache Replacement

Fig.2. Cache partitioning in split cache policy

To realize the optimal object placement under homogeneousobject request model we propose the following Split Cache policy in which the available cache space in each device is divided into a duplicate segment (λ fraction) and a unique segment (see Fig. 2). In the first segment, nodes can store the most popular objects without worrying about the object duplication and in the second segment only unique objects are allowed to be stored. The parameter λ in Fig. 2 ($0 \le \lambda \le 1$) indicates the fraction of cache that is used for storing duplicated objects. With the Split Cache replacement policy, soon after an object is downloaded from the CP's server, it is categorized as a unique object as there is only one copy of this object in the network. Also, when a node downloads an object from another SWNET node, that object is categorized as a duplicated object as there are now at least two copies of that object in the network. For storing a new unique object, the least popular object in the whole cache is selected as a candidate and it is replaced with the new object if it is less popular than the new incoming object. For a duplicated object, however, the evictee candidate is selected only from the first duplicate segmentof the cache. In other words, a unique object is never evicted in order to accommodate a duplicated object.

IV. ENERGY EFFICIENT COORDINATED COOPERATIVE CACHE REPLACEMENT ALGORITHMS FOR SOCIAL WIRELESS NETWORKS

4.1 Coordinated Cache replacement Policies

Coordinated cache replacement strategy for cooperative caching schemes in mobile environments should ideally consider cache admission control policy. Cache admission control decides whether the incoming data is cacheable or not. Substantial amount of cache space can be saved by proper admission control, which can be utilized to store more appropriate data, thereby reducing the number of evictions. If a node doesn't cache the data that adjacent nodes have it can cache more distinct data items which increase the data availability. There is coordination between the neighboring nodes for the proper placing of data. Another feature of coordinated replacement is that the evicted data may be stored in neighboring nodes which have free space. Some of the replacement are given below.

TDS

The cache replacement [5] is based on two parameters distance (D) which is measured as the number of hops and access frequency. As the network is mobile the value of distance (D) may become obsolete. So the value is chosen based on the time at which it is last updated. The T value is obtained by the formula 1/tcur- tupdate. Distance is updated by looking at the value of T. Based on how the distance and time is selected three different schemes are proposed TDS_D,TDS_T and TDS_N.TDS_D considers distance as the replacement criteria. If two data items have the same distance least value of (D+T) is replaced. In TDS_T the replacement decision is made by selecting the data with lowest T value. In the third scheme product of distance and access frequency is considered. In these algorithms TDS_D has the lower success rate and TDS_T has the higher hit ratio.

LUV Mi

This replacement scheme [6], has two parts replacement and migration. The replacement decision is based on a utility value formed by combining the parameters access probability, distance, size and coherency. In the migration part the replaced data is stored in the neighboring nodes which have sufficient space. For migration the data with

highest utility value is given preference. Here even though the replacement decision is

Published By: Blue Eyes Intelligence Engineering & Sciences Publication

Energy Efficient Coordinated Cooperative Cache Replacement Algorithms for Social Wireless Networks

made locally migration is a coordinated operation. In order to save the cache space the data item is cached based on the location of the data source. If it is from the same cluster the data is not cached. The limitation of this scheme is that no checking is done whether the data is already present in the migrating node.

ECORP

Energy efficient cooperative cache replacement problem (ECORP) [7] is an energy efficient cache replacement policy used in ad hoc networks. Here the replacement decision is done based on the energy utilization for each data access. For this, they considered the energy for in zone communication, energy for sending the object, energy for

receiving and energy cost for forwarding the object. Based on this they proposed a dynamic ECORP DP and ECOPR _greedy algorithms to replace data. The neighboring nodes will not cache the same data item in its local cache which reduces the redundancy and increases hit ratio.

Count Vector

In this scheme [8], each data item maintains a count which gives the number of nodes having the same data. Whenever the cache is full, data item with maximum count is removed first as this will be available in the neighboring nodes. Whenever a data item is removed from the cache the access count will be decremented by one. Initially when the data is brought in to cache the count is set to zero. Table1 shows a comparison of different cache replacement policies.

V. 5. DISCUSSION AND FUTURE WORK

Most of the replacement algorithms used in ad hoc networks is LRU based which uses the property of temporal locality. This is favorable for MANET which is formed for a short period of time with small memory capacity. Frequency based algorithms will be beneficial for long term accesses. It is better if the function based policies can adapt to different workload condition. In these schemes if we are using too many parameters for finding the value function, which are not easily available the performance can be degraded. Most of the replacement algorithms mentioned above uses cache hit ratio as the performance metric. In wireless network the cost to download data item from the server may vary. So in some cases this may not be the best performance metric. Schemes which improve cache hit ratio and reduce access latency should be devised. In cooperative caching coordinated cache replacement is more effective than local replacement since the replacement decision is made by considering the information available in the neighboring nodes. The area of cache replacement in cooperative caching has not received much attention. Lot of work needs to be done in this area to find better replacement policies.

Algorithm	Parameters Considered	Eviction	Performance measure	Advantage	Disadvantage
TDS	Distance and access frequency	Low access rate and lowest distance	Success rate, cache hit ratio.	Value of distance is updated.	Doesn't consider recency of data item.
LUV Mi	Access probability, size, coherence and distance.	Low access probability, bigger size, low consistency, lowest distance	Byte hit ratio, average query latency, message overhead	Evicted data is stored in adjacent nodes	No checking is done before storing data.
ECORP	Energy for in zone communication, sending object, receiving object	Lowest energy value	Cache hit ratio, average access delay	Energy is taken as the important parameter	Computing energy for each task is not easy
Count Vector	Access count	Maximum access count	Average access time	Coordinated simple to implemen	Data redundancy is high.

Table.1	Comparison	of cache re	placement	policies for	cooperative caching
I GOICII .	comparison	or cuente re	pracement	Pomeres for	cooperative caching

VI. CONCLUSION

In this paper we made a general comparison of the majorreplacement policies in wireless networks and summarized the main points. Numerous replacementpolicies are proposed for wireless networks, but a few for cooperative caching in ad hoc networks. We alsosummarized the operation, strengths and drawbacks of these algorithms. Finally we provided some alternatives for cache replacement and identified topics for future research.

REFERENCES

Published By:

& Sciences Publication

- C. Aggarwal, J.L. Wolf, and P.S. Yu, "Caching on the World Wide 1. Web," IEEE Trans. Knowledge and Data Eng., vol. 11, no. 1, pp. 94-107, Jan./Feb. 1999
- Denko, M.K., Tian, J., Cross-Layer Design for Cooperative Caching in 2 Mobile Ad Hoc Networks, Proc .of IEEE Consumer Communications and Networking Conf(2008).
- L. Yin, G. Cao: Supporting cooperative caching in ad hoc networks, 3. IEEE Transactions on Mobile Computing, 5(1):77-89(2006).
- 4 Chand, N. Joshi R.C., and Misra, M., Efficient Cooperative Caching in Ad Hoc Networks Communication System Software and Middleware.(2006).

- 5. S. Lim, W. C. Lee, G. Cao, C. R. Das: A novel caching scheme for internet based mobile ad hoc networks. Proc .12th Int. Conf. Computer Comm. Networks (ICCCN 2003), 38-43 (Oct. 2003).
- Narottam Chand, R.C. Joshi and Manoj Misra, "Cooperative Caching 6. Strategy in Mobile Ad Hoc Networks Based on Clusters, International Journal of Wireless Personal Communications special issue on Cooperation in Wireless Networks, Vol. 43, Issue 1, pp. 41-63. Oct 2007
- Li, W., Chan, E., & Chen, D. (2007). Energy- efficient cache 7. replacement policies for cooperative caching in mobile ad hoc network. In Proceedings of the IEEE WCNC (pp3349-3354).
- 8 B. Z heng, J. Xu, and D. L ee. Cache invalidation and replacement strategies for location dependent data in mobile environments,. IEEE Transactions on Computers, 51(10): 1141–1153, October 2002.
- 9. Mary Magdalene Jane.F, Yaser Nouh and R. Nadarajan,"Network Distance Based Cache Replacement Policy for Location-Dependent Data in Mobile Environment", Proceedings of the 2008 Ninth International Conference on Mobile Data Management Workshops ,IEEE Computer Society Washington, DC, USA, 2008.
- Kumar, A., Sarje, A.K. and Misra, M. 'Prioritised Predicted Region 10 based Cache Replacement Policy for location dependent data in mobile environment', Int. J. Ad Hoc and Ubiquitous Computing, Vol. 5, No. 1, (2010) pp.56-67.
- 11. B. Zheng, J. Xu, and D. L. Lee. cache invalidation and replacement strategies for location-dependent data in mobile environments. IEEE Trans. on Comp, 51(10):14-21, 2002.
- 12 O. Ren and M. Dhunham. Using semantic caching to manage location dependent data in mobile computing. Proc. Of ACM/IEEE MobiCom, 99:210-221, 2000.
- 13. K. Lai, Z. Tari, and P. Bertok . Mobility aware cache replacement for location dependent information services. In Technical Report T R-04-04 (R MI T School of C S & I T),2004.

AUTHORS PROFILE

Surabattina Sunanda, is pursuing her M.Tech degree in computer engineering from ASCET gudur. She B.Tech from completed her narayana eng college,gudur.Her interests research focus on networking.

Abdul Rahaman Shaik, received the M.Tech degree in computer engineering from avs cet . He is currently working as Assistant professor in ASCET gudur.His research interests focus on networking.

Published By:

& Sciences Publication