
International Journal of Emerging Science and Engineering (IJESE)
ISSN: 2319–6378, Volume-3 Issue-11, September 2015

1
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

An Efficient Technique to Test Suite Minimization
using Hierarchical Clustering Approach

Fayaz Ahmad Khan, Anil Kumar Gupta, Dibya Jyoti Bora

 Abstract:- Software testing is a pervasive activity in software
development. Testing is widely used to reveal bugs in real
software development and is also an expensive task. Testing is
expensive due to the fact that it takes very long time to execute
the whole test suite. The initial test suite is very large in size and
has redundant test cases. So it is necessary to apply some
selective techniques in order to reduce the large size of the initial
test suite to a manageable size and make it feasible for practical
execution. In this study, Hierarchical clustering approach is
presented and implemented on the initially generated test suite in
order to reduce its size and partition it, into a fixed number of
clusters. Here, a branch coverage criterion is selected as the code
coverage criteria and for the determination of the number of
clusters.
 Keywords: Software Testing, Test suite Minimization, Data
Clustering, Hierarchical Clustering.

I. INTRODUCTION

 To reveal bugs, software testing and retesting occurs
continuously during and after software development.
Typically, a test suite should be prepared before initial
testing starts. As software evolves and grows new test cases
are added to the test suite. Over time, some test cases in the
test suite become redundant as the requirements covered by
them are also covered by the other test cases. To reduce the
cost, time and effort for testing, it is very important to
develop some techniques that will help in keeping the size of
the test suite to a manageable number and will eliminate the
redundant test cases from it. The reduction or minimization
can be achieved at the time generating the test cases or at the
time after acquiring an initial test suite. In literature [1] [2]
many efforts have been proposed to address the issue of
redundancy in the test suites by taking only one testing
criterion. Various types of test criterion exists like:
statement coverage criteria, decision coverage, branch
coverage [2] [3], path coverage and requirement coverage
criteria [1] [4]. A tester can set any of the aforesaid criteria
as testing criteria to ensure the complete testing of the
application. Software testing plays a very important role in
assuring the quality and reliability of the software under test.
As the size and complexity of the under developed product
grows, the time and effort required for effective testing also
increases. Literature on software testing indicates that more
than 50% of the cost of software development is devoted to
testing [5]. One of the important issues in software testing is
the test case generation. Test case design and generation are
both time consuming and labour intensive tasks. There are
usually two approaches followed while designing test cases;

Revised Version Manuscript Received on September 02, 2015.
 Fayaz Ahmad Khan, Department of Computer Science and Applications,
Barkatullah University Bhopal, (M.P) India.
 Anil Kumar Gupta, Department of Computer Science and Applications,
Barkatullah University Bhopal, (M.P) India.
 Dibya Jyoti Bora, Department of Computer Science and Applications,
Barkatullah University Bhopal, (M.P) India.

One by manually and second by using automation
techniques. The manual way of designing is very time
consuming and error prone. So to save time, automated
techniques are used for test case generation. But due to
automation in the test case generation, large and redundant
test cases are generated which take longer time for
execution. Thus, it is very important to develop techniques
that will help in tackling the aforesaid problem in order to
reduce the time and cost devoted in testing.

II. TEST SUITE MINIMIZATION

 Test objectives or requirements are usually defined
before the software is tested are very different from each
other and may also vary in granularity. A test case
requirement can be defined with a small granularity like the
coverage of the every statement and on the other hand, it can
be defined with large granularity, such as the coverage of
every user requirement. As one test case is not sufficient to
satisfy all the user requirements, it usually requires large
number of test cases to satisfy as many as possible test
requirements. Thus in practice, the test suite undergoes the
process of expansion due to the addition of new test cases as
and when the software is modified. The other reason behind
the large size of test suite is that the input domain of
program variables is very large and exhaustive. So,
exhaustive testing with an initial test suite is not adequate
for practical execution. Thus, it has long been identified as a
research problem to find a minimized subset of test cases
from the test suite for an effective testing. This problem is
usually referred to as test suite minimization problem.
 In literature various techniques have been proposed in
the area of test suite minimization. Simran et al, in [6],
proposed a delayed greedy algorithm using concept analysis.
Reduction in test suite is also minimized by reducing the
requirement set using graph retraction techniques [7]. In
[1], call tree construction approach is proposed to address
the test suite minimization for white box testing. But the
construction of call tree is very cumbersome process. Also
in [8], an approach based for embedded nondeterministic
systems based on testing in context is proposed. Mutation
analysis proposed in [9], is an important technique for test
suite minimization. But generation of mutants is also a very
difficult task. The other useful techniques each with pros
and cons are genetic algorithm based [10] and Integer linear
programming based [4].
 In this study, we have presented and implemented a
very useful technique for test suite minimization using a
Hierarchical clustering approach. The proposed technique
partitions the test suite into a fixed number of clusters or
partitions based on the branch coverage criteria. A coverage
criterion is an important constraint that is used to stop
testing. It guides the tester during the testing process.

An Efficient Technique to Test Suite Minimization using Hierarchical Clustering Approach

2
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

III. DATA CLUSTERING

 The aim of cluster analysis is to partition the given set of
data or objects into clusters (subsets, groups or classes).
Each obtained cluster or partition should have the following
two characteristics:
a). Homogeneity within the cluster that is data that belong
to the same cluster should be as similar as possible.
b). Heterogeneity between clusters that is data belong to
different clusters should be as different as possible.
Data clustering or cluster analysis is one of the fundamental
data mining techniques and has its wide applications to
customer segmentation, data summarization and target
marketing [11]. There are two approaches followed for
cluster analysis [12]: (1) Hard clustering and (2) Soft
clustering. Hard clustering partitions the data or objects into
fixed number of clusters and each object in a cluster cannot
share the properties with objects in other clusters. While in
case of soft clustering, every object is assigned a
membership value calculated using fuzzy logic. The
membership values are used for cluster assignment and
indicate that the objects may belong to more than one
cluster. Soft clustering approach in some situations may give
more promising results compared to hard cluster approach.
We have selected hard clustering approach in our study
because soft clustering approach is computationally very
hard. In hard clustering, two commonly used techniques for
cluster analysis are:
(i). Partitional clustering technique.
(ii) Hierarchical clustering techniques.
In Partitional clustering, the initial data set is treated as a
single cluster and gradually the data set is divided into a
fixed number of clusters. In case of hierarchical clustering,
the data set is decomposed into a hierarchy of groups and
the result is displayed by a tree like structure known as
dendrogram, whose root node represents the whole data set
and each node is the single object of the data set. In our
previous study [13] we have used Partitional clustering
technique for test suite minimization and in this study we are
applying hierarchical agglomerative clustering approach. In
agglomerative hierarchical clustering the clusters are formed
from branches to the root as depicted in the Fig.1.
Hierarchical clustering algorithms usually use proximity
matrix or similarity matrix for the cluster assignment and
merging. There are number of cluster proximities used in
hierarchical clustering approach. The few are single link,
complete link, and group average and wards method.

Fig.1

In [14] [15], the basic steps used in agglomerative clustering
approach are:
[1] Compute the proximity graph or matrix.
[2] Merge the most similar clusters.
[3] Update the proximity matrix by measuring the

proximity between newly formed or merged cluster
with all the remaining clusters.

[4] Repeat steps [2] and [3], until only one cluster remains.
The following are the proximity or distance measures used
for merging the clusters or objects;

I. Single Link or MIN

The distance between two clusters C1 and C2 is the
minimum n1 n2 distances between ant two points in the
different clusters. Single link is good at handling non-
elliptical shapes, but is sensitive to noise and outliers.
 d (C1,C2)= Min(drs) with r Є C1 and s Є C2.

II. Complete Link or MAX

The distance between two groups is defined as the
maximum of n1 n2 distances between each observation of
group C1 and group C2.

 d (C1,C2)= Min(drs) with r Є C1 and s Є C2.

III. Average Link or Group Average

In average linkage, the distance is defined as the arithmetic
average of n1 n2 distances between the observations in both
C1 and C2 groups.
 n1 n2

d (C1,C2)= 1/ n1n2*∑ * ∑ d r s

 r=1 s=1

Where r Є C1 and s Є C2
Average link cluster proximity is an intermediate approach
between MIN and MAX.

IV. IMPLEMENTATION OF PROPOSED
APPROACH

 Agglomerative hierarchical clustering technique with
average linkage proximity measure is implemented on the
test suite of a sample program. The sample program accepts
three input positive integers that represent the coefficients of
quadratic equation. The sample code or module that is to be
tested is shown in Fig.2. We have used Worst test technique
for the generation of the test cases. In addition to specific
range of positive integers we have randomly added some
additional test cases to see the behavior of the sample code.
Total of 99 test cases are present in the initial test suite
which is presented in Fig.4. It is clearly observed from this
test suite that, some test cases are redundant as they are
satisfying the same requirements multiple times. The size
and redundancy of a test suite are two important problems in
testing and many proposed technique exist that in some way
prove beneficial in certain circumstances. But there is no
concrete solution to these problems, because finding the
optimal representative set from the test suite has been
identified as an NP-Complete problem [16].
 In this study, branch coverage criterion is selected as
the testing criteria. For 100% branch coverage of the sample
code, only four test cases are required. The control flow
graph of the sample code presented in Fig.3 is used for the

International Journal of Emerging Science and Engineering (IJESE)
ISSN: 2319–6378, Volume-3 Issue-11, September 2015

3
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

determination of number of branches. Also in our sample
module, four test requirements exist that are:
1. If (d>0): Real Roots
2. If (d=0): Equal Roots
3. If (d<0): Imaginary Roots
4. If (Not Valid Input): Invalid Values
Thus for an effective testing of the sample code, all the test
requirements and branches must be satisfied and covered by
the test cases. Based on the number of test requirements and
branches, we have partitioned the test suite into four (4)
clusters as depicted in Fig.4. Hence with our proposed
approach we have reduced both the size and redundancy of
the test suite. The initial size of the test suite was 99 and
now it has been reduced to only 4, that means now only four
test cases are required for 100% requirement and branch
coverage of the desired sample code. The redundancy of the
test suite is addressed by grouping the multiple test cases in
their appropriate cluster based on the requirements covered
by them. Also, a single test case that is selected from each
cluster will represent the other test cases in the same cluster.
The cluster analysis is performed in Weka, which is an
important tool used for data mining. The resulted partitioned
test suite is pictured in Fig. 5. The final cluster assignment
of test cases is pictured in Fig.7 The two dimensional scatter
plot matrix given in Fig.8, is the visual representation of the
manipulated data set for selection and analysis. The matrix
of plots also represents the different attributes within the
data set plotted against the other attributes. The graphical
representation of the proposed technique is pictured in Fig.6

An Efficient Technique to Test Suite Minimization using Hierarchical Clustering Approach

4
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

Fig.4 The initial test suite

International Journal of Emerging Science and Engineering (IJESE)
ISSN: 2319–6378, Volume-3 Issue-11, September 2015

5
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

An Efficient Technique to Test Suite Minimization using Hierarchical Clustering Approach

6
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

Fig.5 The resulted partitioned test suite.

International Journal of Emerging Science and Engineering (IJESE)
ISSN: 2319–6378, Volume-3 Issue-11, September 2015

7
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

Fig.7 The Final Cluster Assignment of Test Cases.

An Efficient Technique to Test Suite Minimization using Hierarchical Clustering Approach

8
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

Fig.8: Plot Matrix

V. Conclusion and future work

Software testing is very important and challenging activity.
In past, lack of effective testing resulted in many software
troubles and has actually brought many social and financial
losses. Testing techniques should find the possible number
of faults or errors with manageable amount cost and time
with finite number of test cases. But software test case
design and generation algorithms are exhaustive with
respect to the coverage goal defined. Therefore, if a
coverage criterion is not properly chosen, the process can
generate too many test cases that are infeasible to be
considered for practical execution. Also, most of the test
cases can be redundant in the sense of exercising common
features of the Code under test and revealing common sets
of defects. Therefore, other than structural coverage criteria,
test-case generation may need to be combined with selection
strategies that will minimize redundancy in test suites; and
limit the size of test suites. In this study, hierarchical
clustering approach has been implemented on the initial test

suite from the size and redundancy perspective. With the
proposed approach, we have reduced and partitioned the
initial test suite into a fixed number of clusters with respect
to requirement and branch coverage criteria. Also based on
the requirement coverage the redundant test cases are
grouped into their appropriate cluster. So with the proposed
approach, considerable amount of reduction (95%) has been
achieved by the elimination of unnecessary or redundant test
cases. The future scope of this study will be the application
of soft clustering approach. Also in future, a comparative
study between hard and soft clustering technique from test
suite minimization perspective will be carried out.

REFERENCES

1. Smith, A., Geiger, J., Kapfhammer, M. and Soffa, M. (2007), Test suite
reduction and prioritization with call trees, in Proceedings of the
twenty-second IEEE/ACM international conference on Automated
software engineering (ASE '07), 2007, pp. 539-540.

2. Parsa, S., and Khalilian, A., (2010), On the optimization approach
towards test suite minimization, International Journal of Software
Engineering and its applications, Vol. 4, No. 1, January 2010.

International Journal of Emerging Science and Engineering (IJESE)
ISSN: 2319–6378, Volume-3 Issue-11, September 2015

9
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

3. Selvakumar, S. and Ramaraj, N., (2011), Regression test suite
minimization using dynamic interaction patterns with improved FDE,
European Journal of Scientific Research, 2011, Vol. 49, No. 3, pp. 332-
353.

4. Hsu, H. and Orso, A., (2009), MINTS: A general framework and tool
for supporting test suite minimization, International Conference on
Software Engineering (ICSE ‘09), 2009.

5. R.V Binder. “Testing Object-Oriented Systems Models, Patterns, and
Tools”. Object Technology Series. Addision Wesley, Reading,
Massachusetts, October 1999.

6. Tallam, S. and Gupta, N. (2005), A concept analysis inspired greedy
algorithm for test suite minimization,in Proceedings of the 6th ACM
SIGPLAN-SIGSOFT workshop on Program analysis for software tools
and engineering (PASTE '05), 2005, pp. 35-42.

7. Chen, Z., Xu, B., Zhang, X. and Nie, C., (2008), A novel approach for
test suite reduction based on requirement relation contraction, in
Proceedings of the 2008 ACM symposium on Applied computing
(SAC '08), 2008, pp. 390-394.

8. Yevtushenko, N., Cavalli, A., and Anido, R., (1999), Test Suite
Minimization for Embedded Nondeterministic Finite State Machines,
in Proceedings of the IFIP TC6 12th International Workshop on Testing
Communicating Systems: Method and Applications, 1999, pp. 237-
250.

9. Usaola, M., Mateo, P., and Lamancha, B., Reduction of test suites
using mutation, in Proceedings of the 15th international conference on
Fundamental Approaches to Software Engineering (FASE'12), 2012,
pp. 425-438

10. N. Mansour, K. El-Fakih, Simulated annealing and genetic algorithms
for optimal regression testing, Journal of Software Maintenance 11 (1)
(1999) 19–34.

11. Jain. Data clustering: 50 years beyond k-means. Pattern Recognition
Letters, 31(8):651– 666, 2010.

12. Dibya Jyoti Bora, Anil Kumar Gupta,” A Comparative study Between
Fuzzy Clustering Algorithm and Hard clustering Algorithm”,
International Journal of Computer Trends and Technology (IJCTT)
,volume 10 number 2 – Apr 2014,pp. 108-113.

13. A. Khan, A.K.Gupta, D.J.Bora, Profiling of Test Cases with Clustering
Methodology, .International Journal of Computer
Applications 106(14):32-37.

14. Richard C. Dubes and Anil K. Jain, (1988), Algorithms for Clustering
Data, Prentice Hall.

15. L. Kaufman and P. J. Rousseeuw, (1990), Finding Groups in Data: an
Introduction to Cluster Analysis, John Wiley and Sons.

16. D.S. Johnson, Approximation algorithms for combinatorial problems
Journal of Computer and System Sciences 9 (3) (1974) 256–278.

