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Robust Stabilization of AVR Loop through 
Extended Reduced-Order Observer 

Rittu Angu, R. K. Mehta 

Abstract: An Extended Reduced Order Observer (EROO) based 
design approach has been presented for an Automatic Voltage 
Regulation (AVR) loop of the synchronous generator. The design 
approach utilizes the full state feedback to stabilize the AVR loop 
in the face of parameter uncertainty. The EROO-based design 
approach is capable of robust trajectory tracking in presence of 
parameter uncertainty and disturbances due to load demand 
changes. The design ensures specified stability margins at 
different speeds of response. An illustrative example has been 
provided to demonstrate the effectiveness of the methodology. 
 
Keywords:  Automatic voltage regulator, Control area, extended 
reduced-order state observer, augmented system, MATLAB 
simulation. 

I. INTRODUCTION 

Power systems are large and complex electrical networks. 
The users of electrical power desire a reliable, uninterrupted 
and stable supply. However, it is not possible for a system to 
remain in steady state, since the load demands keeps on 
changing all the time [8] with rising or falling trend. The 
excitation system must contribute for the voltage control and 
enhancement of system stability. It must be able to respond 
quickly at any occurrence of disturbances enhancing the 
transient stability and the small signal stability. The function 
of the AVR is to provide constancy of the generator terminal 
voltage during normal, small and slow changes in the load. 
The regulation of system voltage magnitude automatically 
using AVR is also known a Reactive Power control loop [1, 
6] and influence the reactive power balances in the power 
system network. The AVR is achieved by the excitation 
mechanism. The excitation system can control the field 
current of the synchronous generator. Hence the field 
current is controlled so as to regulate the terminal voltage of 
a generator [5, 7]. The voltage of the generator is 
proportional to the speed and excitation of the generator. If 
we maintain a speed at constant level, then the excitation 
system can control the terminal voltage of the generator. 
The voltage control is also called as an excitation control 
system. For the generator, the excitation is provided by the 
main exciter. In present days, the exciter is a dc generator 
driven by either steam turbine or an induction motor. In 
modern vast interconnected power system manual control is 
not feasible, hence automatic equipments are installed on 
each generator. 
 
 
 
 
 
Manuscript Received on December 2014. 

Rittu Angu , M-Tech in Power System Engineering in 2013 from 
NERIST (Deemed University), Nirjuli Itanagar, India.  

R. K. Mehta, 

The objective of this work is to regulate the excitation of the 
system and deliver power in an interconnected system as 
stable as possible so that the voltages at various networks 
should not fall below or beyond permissible limits. The 
control strategy in this work attempts to utilize full state 
feedback for single area AVR controller design for a given 
plant conditions, the specifications set as [10]: 
(i)  No deviation in magnitude of voltage in steady-state for 
a step change in load demand. 
(ii)  Critical gain and phase margins must be greater or equal 
to the specified GM and PM. 
It is assumed that the AVR model parameters (i.e. TA, TE, 
T’do, KA, KE and KF) are given, output (∆|V|) is available for 
feedback [1]. State feedback has potential to improve the 
performance of the AVR by judicious choice of closed-loop 
pole locations. An extended  observer  has  been  
constructed  to  meet  the performance  requirements  and  
iterative design  steps are required to ensure satisfactory 
operation. The AVR model enhances disturbance rejection 
capability for the proposed control scheme. Moreover, a 
realistic AVR system having uncertain variations in 
parameters from their nominal values will be characterized 
by deviations in the nominal values of AVR parameters. In 
this paper, the parametric model uncertainty [4] has been 
considered, which represents imprecision of the parameters 
within the model. The extended observer-based closed-loop 
plant stability robustness studies have been carried out 
assigning a bound on the deviations in AVR system. 
Numerical results are presented to demonstrate the efficacy 
of the proposed control design procedure and to evaluate the 
performance and robustness qualities of the controller. 

II. PLANT MODEL 

The AVR state model is based upon the open-loop transfer 
function model [1] as shown in Figure (1). Where GA(s), 
GE(s) and GF(s) are amplifier, exciter and generator transfer 
functions. The state variables are chosen as 
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The state model of open-loop AVR system with output as 
terminal voltage ∆|V | is 
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The AVR model in the open loop has three real poles 

A E do

1 1 1
( , and )

T T T '
− − − determined by the time constants 

of amplifier, exciter and generator transfer functions models. 
The system (A, B) is completely controllable.
The proposed closed-loop control scheme for achieving 
desired transient and steady-state performance is discussed 
in the preceding section. 
 

 

Figure 1: Block diagram of an open-loop 
Figure 1 shows the block diagram of an uncontrolled single 
area power system. The state variable model for the system 
[2] is 
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III. EROO BASED CONTROL  

Figure 2 shows the full state feedback scheme based on an 
extended reduced-order observer (EROO). The open
AVR static model with terminal voltage (

given by Equation (1). Where 1 2 3x x x x =   
A, B and C defined by Equation (2). The static variable x
(∆|V|) is measurable through a voltage sensor and it is 
assumed that x1 (∆|VR|) and x2 (∆|Vf|) are to be estimated to 
eliminate the need for two sensors. So, the extended 
observer in Figure (2) is to be designed as third order system 
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The AVR model in the open loop has three real poles 

by the time constants 

of amplifier, exciter and generator transfer functions models. 
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loop control scheme for achieving 
performance is discussed 
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Figure 1 shows the block diagram of an uncontrolled single 
area power system. The state variable model for the system 

                          (1) 

[ ]A= - 0 , B and C= 0 0 1        (2)                                                            

 SCHEME 

Figure 2 shows the full state feedback scheme based on an 
order observer (EROO). The open-loop 

AVR static model with terminal voltage (∆|V|) as output is 
T
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(Figure 2). 

Figure 2: Closed-loop control sc
feedback loop

IV. EXTENDED REDUCED ORDER OBSERVER 
DESIGN

The extended reduced-order observer (EROO) design
has been carried out assuming a constant unknown 
disturbance appearing at the control output. Then, the 

disturbance dynamic can be given 
Ad=0 and Cd=1. Combining the plant with disturbance 
generator, the augmented plant in the state
 

Figure 3: 3rd order extended observer
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observer (or reduced-order observer) can be constructed that 
will compute the estimates for x1 and x2 of plant and d. If 

form (- d̂ ) is added to the control (Figure 2), then it will 
cancel out the effects of the real disturbance. To construct 
third-order observer, the compatible transformation matrix 
on the basis of the augmented system (Equation 3) is 
introduced by 
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Where T is the 3x4 matrix and z is the 3x1 matrix. The 
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The Luenberger’s compatibility conditions to be satisfied [4] 
in the design of the observer are 
TA DT F− =                                                                     (5)                                                                                                                                              

aG TB=                                                                             (6)                                                                                                                             

As a rule of thumb, the observer poles can be chosen to be 
faster than the controller poles by a factor of 2 to 6 [10], the 
third pole (real) of the observer due to disturbance dynamic 
has been placed such that the stability margins are satisfied. 
Thus, for known values for A and D matrices, T-matrix is 
obtained from Equation (5) using MATLAB program. 
Using Equation (6), 
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The estimation of x1, x2 and d are denoted by 1 2
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respectively can be obtained by rewriting the Equation (4) 
with partitioning between measured and observed state 
variables as 
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Figure 4: Closed-loop system with EROO in transfer 

function models 

V.  CLOSED-LOOP POLE LOCATIONS 

The main objective of optimal regulator or controller design 
known as linear quadratic regulator (LQR) is to define the 
performance index (cost function) J and search for u=-Kx 
that minimizes this index to stabilize the system (i.e. to 
transfer the system from its initial state to final state such 
that a given performance index is minimized). Consider the 
system 
x Ax Bu= +ɺ  
The objective  is  to  find  the  feedback  K  of  control  law  
such  that  the performance index  

2 2

0

J y (t) u (t)dt
∞

= ρ +∫  

is minimized for the system (A, B). Here the optimal value 
of K is that which places the closed poles at the stable roots 
of the symmetric root locus equation [3] 
 
1 G( s)G(s) 0+ ρ − =                                                (11)

                                  
In standard form  
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N( s)N(s)
1 0

D( s)D(s)

−+ ρ =
−

 

Where G(s) is the open loop transfer function 

1y(s) N(s)
G(s) C(SI A) B

u(s) D(s)
−= = = −  

and ρ represent weighting penalties on the state variables 
and control inputs and is chosen by the designer. The 
controller’s performance highly depends on the choice of 
the weighting factor ρ. Wrong choice of this may result to 
the frequency and power oscillating during disturbances. In 
reality, choosing different values of ρ can provide us with 
pole locations that achieve varying balances between a fast 
response and a low control effort. In practice, usually a 
value of ρ corresponding to a point close to the knee of the 
trade-off curve is chosen. This is because it provides a 
reasonable compromise between the use of control and the 
speed of response. 

Gain H 

In order to achieve unity steady-state gain H (with EROO 
implemented in the loop) the overall transfer function 
|∆V|/|∆Vref|=HGCL(0) has been evaluated and then H was 
found as  

0
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VI. STABILITY ANALYSIS 

The open loop transfer function of the proposed system is 
obtained by opening its forward path and is solved by 
Mason’s Gain formula for signal flow graph [2]. We 
consider the loop marked X in Figure 4 in our design 
approach to establish the stability margin in terms of open-
loop gain responses. This is in-fact the ability of proposed 
system to deal successfully in-case of model uncertainties. 
The system is stable when gain values are increased but it 
may become unstable if the gain increases past a certain 
critical limit. The transfer function of open loop at X is 
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Two commonly used quantities that measure the stability 
margin for such system are the gain margin (GM) and phase 
margin (PM). This is discussed in next section with respect 
to Bode plots of GM and PM. 

VII. SIMULATION AND RESULTS 

With an objective to meet the specifications GM ≥ 6 dB, PM 
≥ 40 degree and no voltage deviations in the steady-state, an 
extended reduced order state observer with full state 
feedback has been designed for the AVR model. A typical 
operating condition has been chosen as the nominal values 
of the parameters of the AVR model are shown in Table 1. 
A deviation of ± 10% on the nominal values of the 
parameters of AVR model has been considered for 
investigation of stability issues of the designed control 
scheme in Figure 4 for AVR model.  

The closed-loop pole (CLP) locations have been 
chosen from the SRL plot for the equation (11) as shown in 
Figure 5. The closed-loop pole location is given by s = -ρi. 
With the help of three closed loop poles from SRL plot, 
feedback gain constants k1, k2 and k3 are obtained using 
augmented state model. 

The third-order reduced observer has been designed 
with its pole locations are at 3.5 times the controller pole 
locations (obtained from SRL plot) to determine D-matrix. 
The matrices T, G and M have been determined using 
Equations (5), (6) and (9) respectively. The open-loop 
transfer function GX(s) have been determined using 
equations (12) for stability margins analysis.  Figure 6 
indicates the variations in GM and PM at X with ρ for 
various values of ρi. It is observed that the GM and the PM 
remain almost constant with ρ in the higher range, but they 
vary appreciably with ρi. The critical PM occurs corresponds 
to loop opening at X.  

In this paper, ρ=100 and ρi=9 have been selected to 
satisfy GM ≥ 6 dB and PM ≥ 40 degree. Table 2 shows the 
closed-loop pole locations and controller gains. The results 
of performance studies obtained by MATLAB simulations 
for the selected operating points are provided in Table 3 and 
4. The results describing the disturbance rejection property 
for various load demand changes have been shown in Figure 
7.  



The unit step response for terminal voltage with step 
disturbance applied at t= 5 sec. and under parameter 
uncertainties are shown in Figure 8 and 9 respectively.

Table 1: Area parameter values

Area 
Parameter 

 

TA(sec.) TE(sec.) 

Nominal 
value 

 

0.1 0.4 

Nominal 
value  
+10% 

0.11 0.44 

Nominal 
value 
-10% 

0.09 0.36 

Table 2: Closed-loop pole locations and associated gains

CLP for 
 

CLP 
locations 

Observer 
poles 

ρ=100 
ρi =9 

λ2= -12.17 
λ1= -5.56 
+7.16i 

λ0= -5.56 - 
7.16i 

d2 = −94.16
d1 = − 

2579.35 
d0 = − 

16316.40 

Table 3: Result of frequency response studies on 
proposed system 

Loop 
break 

at 
X 

Perturbation GM 
(dB) 

GCF 
(rad/sec) 

Nominal 9.93 7.45 
+10% 9.94 6.76 
-10% 9.91 8.82 

Table 4: Settling time at varying load demands

Load 
demand 

Perturbation Settling 
time (sec)

10% Nominal 1.98 

+10% 2.18 

-10% 2.40 
20% Nominal 1.99 

+10% 2.18 
-10% 2.39 

 

Figure 5: Symmetrical root locus diagram 
closed-loop poles 
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nit step response for terminal voltage with step 
disturbance applied at t= 5 sec. and under parameter 
uncertainties are shown in Figure 8 and 9 respectively. 

Table 1: Area parameter values 

T’do(sec.) 

1.0 

1.1 

0.9 

loop pole locations and associated gains 

Observer Controller 
gains 

−94.16 

 

 

k1 =0.24 
k2= 1.46 
k3=  8.05 

Result of frequency response studies on 

PM 
(deg) 

 

PCF 
(rad/sec) 

 

43.5 2.86 
43.7 2.59 
43.2 3.19 

Settling time at varying load demands 

Settling 
time (sec) 

Maximum 
variation in  
frequency 

(Hz) 
 

1.02 

1.02 

0.98 
0.204 
0.204 
0.196 

 
Symmetrical root locus diagram with selected 

 

Figure 6: GM and PM of the open
function of ρ for various values of

 

Figure 7: G M and PM as a function
parameter variations
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for various values of ρi 

 
 

 
G M and PM as a function of ρ under 

parameter variations 
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Figure 8: Unit step response for terminal voltage with 
step disturbance applied at t= 5s

 

Figure 9: Unit step response for terminal voltag
parameter uncertainties

VIII. CONCLUSION  

In this paper, a reduced-order extended observer based 
control for AVR system has been presented. The designed 
system is very effective to compensate input disturbances as 
well as modeling uncertainties present in the AVR loop. It 
has been possible to estimate states (immeasurable) and the 
uncertainties as well as input disturbance in an integrated 
manner using EROO. It has also been observed that the 
EROO-based control improves tracking performance in 
presence of uncertainties and disturbances. The design 
enables to achieve desired specified stability margins in 
order to fully utilize the hardware resources by judiciously 
choosing the optimal speed of response in this design 
process.  

IX. NOTATIONS 

d0, d1, d2            coefficients of characteristic equati
extended reduced observer

λ0, λ1, λ2                 roots of characteristic equation of plant
ρ                               system weighting penalty from 
                                 SRL  equation 
ρi                              weighting penalty assigned to system 
                                 due to observer 
u                               control force/signal/input
Ts                             settling time, sec. 
TA                            amplifier time constant, sec.
TE                            exciter time constant, sec.
T’do               direct axis short circuit generator time 

constant, sec. 
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Unit step response for terminal voltage with 

ep disturbance applied at t= 5s 

 
Unit step response for terminal voltage under 

parameter uncertainties 

 

order extended observer based 
control for AVR system has been presented. The designed 
system is very effective to compensate input disturbances as 
well as modeling uncertainties present in the AVR loop. It 

mate states (immeasurable) and the 
uncertainties as well as input disturbance in an integrated 
manner using EROO. It has also been observed that the 

based control improves tracking performance in 
presence of uncertainties and disturbances. The design 
enables to achieve desired specified stability margins in 
order to fully utilize the hardware resources by judiciously 
choosing the optimal speed of response in this design 

coefficients of characteristic equation of        
extended reduced observer 
roots of characteristic equation of plant 
system weighting penalty from  

weighting penalty assigned to system  

control force/signal/input 

amplifier time constant, sec. 
exciter time constant, sec. 
direct axis short circuit generator time  

KA                      gain of Amplifier, puHz/Mw
KE                       gain of exciter, puHz/Mw
KF                       gain of generator field, puHz/Mw
k1, k2, k3            feedback gains
e                          error signal 
s                           Laplace variable
K(=KAKEKF)    open loop gains
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