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Abstract—To provide reliable and uninterrupted electrical supply 
to consumers, electrical utilities face many economic and 
technical problems in operation, planning and control of power 
systems. Most of the power system optimization problems like 
economic load dispatch include complex and non-linear 
characteristics with heavy equality and inequality constraints. 
Cost minimization of power generation is one of the most 
important power system problems. In this project, an attempt is 
made to minimize the cost for generation in a power system. The 
aim of this project is to find the optimum set of power to be 
generated for a given loading conditions. Equality constraint 
which is the relation between power generated, losses and power 
demand is taken into account. In this thesis, transmission losses 
have not been taken. Inequality constraints such as the maximum 
and minimum generation values for each of the generators are 
also considered along with valve point loading. This paper 
introduces backtracking search optimization algorithm (BSA), a 
new evolutionary algorithm (EA) for solving real-valued 
numerical optimization problems .EA’s are popular stochastic 
search algorithms that are widely used to solve non-linear, 
non-differentiable and complex numerical optimization problems. 
Unlike many search algorithms, BSA has a single control 
parameter. BSA has a simple structure that is effective, fast and 
capable of solving multi modal problems and that enables it to 
easily adapt to different numerical optimization problems. BSA’s 
strategy for generating a trail population includes two new 
crossover and mutation operators.BSA strategies for generating 
trail populations and controlling the amplitude of the 
search-direction matrix and search space boundaries give it very 
powerful exploration and exploitation capabilities. In particular 
BSA possesses a memory in which it stores a population from a 
randomly chosen previous generation for use in generating the 
search-direction matrix. Thus BSA’s memory allows it to take 
advantage of experiences gained from previous generations when 
it generates a trail preparation. The proposed algorithm is applied 
to EED problem. The purpose of EED is to obtain the optimal 
amount of generated power for the generating unit in the system 
by simultaneously minimizing the fuel and emission costs. To 
demonstrate the effectiveness of this method BSA have been 
performed on 6-unit system with valve point loading effect to 
obtain lesser fuel and emission costs 
 
Index Terms—Economic Dispatch, Emission Dispatch, 
Multi-objective optimization, Backtracking search optimization 
algorithm, Trade-off curve  
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I.  INTRODUCTION 

Power system Economic Dispatch (ED) is the most efficient, 
reliable and low cost operation of power system dispatching 
generation among the available generating units such that the 
cost of operation is least, subject to load demand and other 
operational constraints. However, since 1980s due to 
implementation of several pollution control acts, finding out 
of minimum generation cost is not only the major concern of 
the power generating companies. These industries are bound 
to consider the effect of pollutants like NOX, SOX, COX, etc. 
that are present in the waste matter which come out from the 
stack of thermal power plant. Economic Emission Dispatch 
(EED) has come out to minimize the emission of pollutants 
like NOX, SOX, COX, particulate matters, etc. from the 
thermal power plant. Moreover, the objective of minimum 
cost of generation or the objective of minimum emission may 
not be a desirable criterion. Therefore, the concept of 
Economic Emission Load Dispatch (EED) has come into the 
picture to figure out both the objective of minimum cost of 
generation and as well as mini-mum emission level at the 
same time. In a sentence it can be said that the combination of 
Economic Load and Emission Dispatch problem is known as 
Economic Emission Load Dispatch (EED) and it seeks a 
balance between cost and emission. This problem of EED 
may be formulated as a multi-objective Economic Emission 
Load Dispatch (EED) problem or an Emission Constrained 
Economic Load Dispatch problem. Economic dispatch (ED) 
is one of the prime functions in power system operation, 
management and planning and its objective echoes to 
schedule the committed generating units’ output so as to meet 
the load demand at minimum operating cost while satisfying 
all units and system operational constraints  [1,2] . The 
generation of electricity from fossil fuel releases several 
contaminants such as sulfur dioxides, nitrogen oxides and 
carbon dioxide into the atmosphere. In the past few decades, 
environ- mental awareness led to impose rigid environmental 
policies such as ‘‘US Clean air amendments of 1990’’ on 
power utilities to minimize their emissions. A host of 
strategies are in vogue to reduce power plant emissions like 
installing post-combustion cleaning equipment, switching to 
low emission fuels and replacement of the aged fuel burners 
or dispatching with emission considerations. The latter 
option is preferred in many cases due to economical reasons 
and its immediate availability for short- term operation. 
However, the other alternatives are considered as a long term 
option as they incur additional capital cost [3]. Emission 
dispatch (ED) is similar to ED except that it extends to 
minimize the net emissions instead of fuel cost. Operating 
either at absolute minimum fuel cost or at lowest pollution 
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level is no longer acceptable owing to the fact that both of the 
objectives are conflicting in the sense that minimization of 
one causes the other to increase. This endears to the 
formation of combined Economic emission dispatch (EED) 
that focuses to simultaneously minimize both the fuel cost 
and emission levels by satisfying all unit and systems 
constraints. There is no single optimal solution to the bi- 
objective EED problem unless exact preference or weight of 
both the objectives is known. It gives rise to finding a set of 
compromise solutions known as Pareto optimal solutions, 
which show the trade- off between the two competing 
objectives. 

II.  ECONOMIC EMISSION DISPATCH  

A. Single Objective Optimization  

When an optimization problem modeling a physical system 
involves only one objective function, the task of finding the 
optimal solution is called single objective optimization. 

B.  Multi Objective Optimization 

The Multiobjective Optimization Problem (also called 
multi-criteria optimization, Multi performance or vector 
optimization problem) can then be defined (in words) as the 
problem of finding: A vector of decision variables which 
satisfies constraints and optimizes a vector function whose 
elements represent the objective functions. These functions 
from a mathematical description of performance criteria 
which are usually in conflict with each other. Hence, the 
terms optimize means finding such a solution which would 
give the values of all the objective functions acceptable to the 
decision maker. The mathematical definition of a MOP is 
important in providing a foundation of under-standing 
between the interdisciplinary nature of deriving possible 
solution techniques (deterministic, stochastic); i.e., search 
algorithms. The following discussions present generic MOP 
mathematical and formal symbolic definitions. The single 
objective formulation is extended to reflect the nature of 
multiobjective Problems where there is not one objective 
function to optimize, but many. Thus, there is not one unique 
solution but set of solutions. These sets of solutions are found 
through the use of Pareto Optimality Theory. Note that 
multiobjective problems require a decision marker to make a 
choice of ��∗ values. The selection is essentially a trade-off of 
one complete solution x over another in multiobjective space. 
More precisely, MOPs are those problems where the goal is 
to optimize k objective functions simultaneously. This may 
involve the maximization of all k functions, the Minimization 
of all k functions or a combination of maximization and 
minimization of these k functions. 
A general MOP is defined as minimizing (or Maximizing)  
F(x)= [f1(x)  f2(x)………….fk(x)] 
Subjected to  
gi(x)≤0, i={1,2,………m} 
hj(x)≤0, j={1,2,………p} 
A MOP solution minimizes (or maximizes) the components 
of vector F(x)  
Where x is an n dimensional decision variable vector 
X = [x1 x2 x3……….xn]. 
It is noted that gi(x)≤0, hj(x)≤0 represent constraints that must 
be full filled while minimizing (or maximizes) F(x). 
Thus a MOP consist of k objectives reflected in the k 
objective functions, m+p constraints on the objective 
functions and n decision variables. The k objective functions 

may be linear or nonlinear and continuous or discrete in 
nature. 

C.  Definition of Economic Dispatch 

The economic load dispatch ELD can be defined as the 
process of allocating generation levels to generating units, so 
that the system load is supplied entirely and most 
economically. The ELD is used to define the production level 
of each plant, so that the total cost of generation and 
transmission for a prescribed schedule of load is minimum. 

D. Necessity of generation scheduling 

In a practical power system, the power plants are not located 
at the same distance from the centre of loads and there fuel 
costs are different. Also under normal operating, the 
generation capacity is more than the total   load demand and 
losses [31]. Thus, there are many options for scheduling 
generation. In an interconnected power system, the objective 
is to find the real and reactive power scheduling of each 
power plant in such a way so as to minimize the operating 
cost. This means that the generators real and reactive powers 
are allowed to vary within certain limits so as to meet a 
particular load demand with minimum fuel cost. This is 
called the Economic load dispatch ELD problem. The 
objective functions, also known as cost functions may 
present economic cost system security or other objectives. 
The transmission loss formula can be derived and the 
economic load  dispatch  of  generation  based  on  the  loss  
formula  can  also  be  obtained.  The Loss coefficients are 
known as B-coefficients. A major challenge for all power 
utilities is not only to satisfy the consumer demand for 
power, but to do so at minimal cost. Any given power system 
can be comprised of multiple generating stations having 
number  of generators and the cost of operating these 
generators does not usually correlate proportionally with 
their outputs; therefore the challenge for power utilities is to 
try to balance the total load among generators that are 
running as efficiently as possible. The economic load 
dispatch ELD problem assumes that the amount of power to 
be supplied by a given set of units is constants for a given 
interval of time and attempts to minimize cost of  supplying  
this  energy  subject  to  constraints  of  the  generating  
units[34].  Therefore, it is concerned with the minimization 
of total cost incurred in the system and constraints over the 
entire dispatch period. Therefore, the main aim in the 
economic load dispatch problem is to minimize the total cost 
of generating real power (production cost) at various stations 
while satisfying the loads and the losses in the transmission 
links. 

E. Generator operating cost 

The total cost of operation includes the fuel cost, cost of 
labour, supplies and maintenance. Generally, cost of labour, 
supplies and maintenance are fixed percentages of incoming 
fuel costs. The power output of fossil plants is increased 
sequentially by opening a set of valves to its steam turbine at 
the inlet. The throttling losses are large when a valve is just 
opened and small when it is fully opened. 

 
Figure (a) Simple model of a fossil plant 
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Figure (a) shows the simple model of a fossil plant 
dispatching purposes. The cost is usually approximated by 
one or more quadratic segments. The operating cost of the 
plant has the form shown in Figure (b). For dispatching 
purposes, this cost is usually approximated by one or more 
quadratic segments. So, the fuel cost curve in the active 
power generation, takes up a quadratic form, given in 
equation (1). 

 

Output Power (MW) 

Figure (b) Operating costs of a fossil fired generator 
The fuel cost curve may have a number of discontinuities. 
The discontinuities occur when the output power is extended 
by using additional boilers, steam condensers, or other 
equipment. They may also appear if the cost   represents the 
operation of an entire power station, and hence cost has 
discontinuities on paralleling of   generators. Within the 
continuity range the incremental fuel cost may be expressed 
by a number of short line segments or piece-wise 
linearization. 

F. Economic load dispatch with valve point loading effect  

Economic load dispatch ELD is considered one of the key 
functions in electric power system operation.  The economic 
load dispatch problem is commonly formulated as an 
optimization problem, with the aim of minimizing the total 
generation cost of power system but still satisfying specified 
constrains[32,33]. The input-output characteristics (or cost 
functions) of a generator are approximated using quadratic 
or piecewise quadratic function, under the assumption that 
the incremental cost curves of the units are monotonically 
increasing piecewise linear functions. However, real 
input-output characteristics display higher-order 
nonlinearities and discontinuities due to valve-point loading 
in fossil fuel burning plant. The valve-point loading effect 
has been modeled in as a recurring rectified sinusoidal 
function, such as the one show in figure (c). 

 

Power output (��) 
Figure (c) Operating cost characteristics with valve point 

loading 

The generating units with multi-valve steam turbines exhibit 
a greater variation in the fuel cost functions. The valve-point 
effects introduce ripples in the heat rate curves. 
Mathematically, economic load dispatch problem 
considering valve point loading is defined as: 

Fi(Pi) = ∑ ����	
 Pi
2+biPi+Ci+��� sin ��������,� − Pi��� 

ai, bi, ci, ei, and fi are the coefficients of the ith generating unit. 

G.  Economic Load Dispatch 
The economic load dispatch (ELD) problem may be 
expressed by minimizing the fuel cost of generating units 
under equality and inequality constraints. The ELD problem 
can be defined as the following optimization problem. 
Minimize Fi = ∑ ����	
 Pi

2+biPi+Ci (Rs/hr)   …….(1) 
Where Pi is the real power output in MW 
ai, bi, and ci are the coefficients of the ith generating unit. 
Fi  is the fuel cost in Rs/hr 
Subjected to the following constraints. ∑ ��		��	
 PD ��,��� ≤	�� ≤	��,��� 
Where  ��,��� is the minimum real power output of ith generator ��,��� is the maximum real power output of ith generator 
PD is the load demand on the system in MW. 

H.  System constraints 

1) Equality constraint: ∑ ��	��	
 =	PD + PL 
If the system is lossless, the total power generation must be 
equal to the load demand. Thus ∑ ��	��	
 =PD 

2) Inequality constraint: ��,��� ≤	�� ≤	��,��� 
Where  ��,��� is the minimum real power output of ith generator ��,��� is the maximum real power output of ith generator 
PD is the load demand on the system in MW. 

I.  Emission Dispatch 

The objective of emission dispatch is to minimize the total 
pollutant emission due to the burning of fuels for production 
of power to meet the load demand. The total pollution level 
can be defined as the following, ��=  ∑  �!�	
 Pi

2+"iPi+#i (kg/hr) 
Where  
Pi is the output power in MW 
αi, βi, and γi are the emission coefficients of the ith generating 
unit. 

1) Emission: 

The emission control cost results from the requirement for 
power utilities to reduce their pollutant levels below the 
annual emission allowances assigned for the effected fossil 
units. The total emission is expressed in 2.4. 
To carry out the EED these emissions must be modeled 
through functions that relate emissions with power 
production for each unit. 

J.  Economic emission dispatch (EED) 
In this formulation both fuel cost objective and emission level 
objective are combined to form a single objective with the 
introduction of a factor called price penalty factor. 
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Price penalty factor = hm  (Rs/kg) 
Ft= ∑ ����	
 Pi

2+biPi+Ci+hm (∑  ���	
 Pi
2+"iPi+#i)  

Ft  is the total cost of generation in Rs/hr 
Ft= w*Fi + hm*(1-w)*E i 

Fi  is the fuel cost function 
Et is the emission cost function 
w is the weighing function 
w is the function of rand whose value is in between [0,1]. 
When w is 1, the objective function becomes economic load 
dispatch. In this economic load dispatch, units are optimally 
shared to minimize the total system production costs. When 
w is zero, the objective function becomes emission dispatch 
problem. 

1) Procedure for computing $% parameter: 

• Evaluate the ratio between fuel cost and emissions 
corresponding to P&,'() for each generator i *�+,-� = ./�01,234�51�01,234�     (Rs/hr)    ------------------ 

Where i=1,2,3……n 
• Arrange the ratios in the ascending order 
• Arrange the maximum capacity of each 

generator(�,,7�� ) one at a time, starting from the 
smallest ratio until ∑ ��	��	
 ≥	PD 

• At this stage ratioi is associated with the last unit is the 
penalty factor hm for the given power demand PD. 

2) Fitness function: 

Minimization problems are usually transferred into 
maximization problems’ using some suitable 
transformations. Fitness value f (x) is derived from the 
objective function and is used in successive genetic 
operations. The fitness function for maximization problem 
can be used the same as objective function f(X). Fitness 
function for the maximization problem is, f(x)=Ft. For 
minimization problems, the fitness function is an equivalent 
maximization problem chosen such that the optimum point 
remains unchanged. The following fitness function is often 
used in minimization problems. 
f(x)= 1/(1+Ft) 
where, f(x) = fitness function 
Ft= objective function 

3) Problem formulation: 

The basic objective of EED of electrical power generation is 
to obtain the optimal amount of the generated power for the 
generating unit so as to meet the load demand at minimum 
operating fuel cost, satisfying all unit and system constraints. 
Thus the EED problem can be formulated as a 
multi-objective optimization problem in which the emission, 
in addition to the fuel cost objective, is to be minimized. 
 Objective of the work: 
• To find the solution of EED problem so that the total 

fuel cost is minimized while satisfying the power 
generation limits. 

• Use the BSA technique to find the optimal settings. 
• Investigate the effectiveness of this method for EED 

problem with and without considering transmission 
losses. 

K.  Purpose of EED 

The purpose of EED is to minimize both the operating fuel 
cost and emission level simultaneously while satisfying load 
demand and operational constraints. The multiobjective EED 

problem is converted into a single objective function using a 
modified price penalty factor approach. 

III.  APPLICATION OF BSA ALGORITHM TO 

MULTIOBJECTIVE EED PROBLEM  

In this section, a backtracking search optimization algorithm 
(BSA) is described for solving the EELD problems. The 
search procedures for the BSA method were shown below. 

Step 1:  
Specify the generator cost coefficients and emission 
coefficients, choose the number of generator units (n), 
specify maximum and minimum capacity of constraints for 
all the generators as 
L1= [l1,l2,…………….ln] and 
U1= [u1,u2,………….un] respectively and load demand (xt). 
In implementing the BSA, some parameters must be 
determined in advance like population size(pop), number of 
generations (gn). For this pop=60, gn = 200, dim=6, 
dimrate=0.5 and dimrate=0.8 

Step 2:  
Initialize population that is created randomly for the 
N-dimension problem. A population is represented by N 
decision variable such as 
X i= [x1 x2 x3 ………………..xNi] 
Since decision variables for the EED problems are the real 
power outputs of generation units, they are used to represent 
each element of the given population. 

9 =
:;
;;
<9
9=9>⋮9@AB

BB
C
=D�

 �
= … �
@�=
⋮ �==⋮ …… �=@⋮��
 ��= … ��@F 

Where Xi is the position of the first particle for the set of 
power generations ( set of solutions). 
N is the number of generator units. 
n is number of particles(population size). 
x11 must be randomly generated in between the minimum 
and the maximum loading limits as shown in (3.1) means the 
solution that satisfies the inequality constraint in (2.3), and 
each population matrix should satisfy the equality constraint 
in (2.2). 

Step 3: 
Calculate the fitness value for each set of the total population. 
Fitness value represents the total cost of generators as in (2.6) 
for a particular load demand. The bi-objective EED problem 
is represented as a single objective optimization problem by 
assigning different weights for each objective. FH = w ∗ F& + h' ∗ (1 − wM ∗ E&                                        
The price penalty factor h'  is called scaling factor, is 
multiplied with emission function to get an equivalent cost 
curve in $/hr. The value of w indicates relative significance 
between the two objectives. When w is 1, the problem 
becomes economic dispatch (EcD) that minimizes only the 
fuel cost. The fuel cost increases and emission cost decreases 
when w is reduced in steps from1 to 0.The problem becomes 
emission dispatch (EmD) that minimizes only the emissions 
when w equals 0. The constrained optimization problem of FH = w ∗ F& + h' ∗ (1 − wM ∗ E&  along with power balance 
constraint of (2.3) and generation limit constraints can be 
solved for optimal generations for a chosen value of w. 
Though the Pareto front based on the non-dominated 
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solutions can be obtained by solving the problem several 
times with different w values, it may not yield the best 
compromise solution, which may be defined as the one with 
equal percent deviations from the optimal solutions 
corresponding to economic dispatch (EcD) and emission 
dispatch (EmD) besides lying nearer to both of the best 
solutions. The best compromise solution can be obtained 
simply by setting w as 0.5, if the chosen h' parameter does 
make fuel cost and emission cost components to the same 
level in the objective function but the methods available in 
the literature provide approximate h' parameter values. If 
the fuel cost component of equation  FH = w ∗ F& + h' ∗ (1 − wM ∗ E& is larger than the equivalent 
emission cost, then the optimization process attempts to give 
more importance to fuel cost than emission cost and vice 
versa. 

Step 4: 

Sort the population in the descending order of their fitness. 
Assign the first population as the global best (GPQRH). 
Step 5: 

Start the iteration count, and generate the historical 
population (oldp), means the historical population should be 
randomly generated by using the above equation which is 
given by oldp = L
 + (U
 − L
M ∗ rand                          (3.1)                                                       
And then after the generation of historical population the 
order of the each individual is changed. And then similarly in 
the same way the fitness is calculated by using the new 
position values and if the evaluation of each particle is better 
than the previous PPQRH the current value is said to be  PPQRH,if 
the PPQRH	is better than the GPQRH, the PPQRH is said to be GPQRH. 
Where, PPQRH is said to be local best. GPQRH is said to be global best. 

Step 6: 

Obtain the crossover strategy. And in this strategy we will 
consider the binary-integer valued matrix (map).and in the 
same way the population was also updated .And similarly the 
binary-integer valued matrix (map) consists only 0’s and 1’s F = 3 ∗ rand                                             (3.2)     

Step 7: 

The next step is recombination. In this process the 
recombination of the mutation and the crossover takes place. 
In this the generation of the offspring’s is calculated 
Offspring’s is nothing but mutant. mutant = p + (F ∗ mapM ∗ (oldp − pM 
Where F is given in (3.2) 
F controls the amplitude of the search direction matrix.  
Because the historical population is used in the calculation of 
the search direction matrix 

Step 8: 
Calculate the fitness value and similarly update the value of 

the global best (_`abc). 
Step 9: 

If number of iterations reaches maximum then print the value 

of the global best (_`abc) otherwise go to step 5. 
 

A.  Introduction 

In this chapter, the proposed method BSA is applied to six 
unit test systems with varying degree of complexity for 
studying its performance 

IV.  SIMULATION  RESULTS 

A.  Six unit test system 

The characteristics of the six thermal units are given in Table 
4.1. This test system contains six thermal units. The load 
demand is 2.834 p.u. This system is considered as a lossless 
system. Therefore, the problem constraints are the generation 
capacity constraint and the power balance constraint Without 
Ploss. Initially, the fuel cost objective and emission objective 
are optimized individually by taking the weighting factor ‘w’ 
as 1 and 0 in equation (6), respectively to explore the extreme 
points of trade-off curve in all cases. The proposed 
algorithms have been applied to the problem and both 
objectives were treated simultaneously as competing 
objectives. The optimal parameter setting the BSA for 6-unit 
system is given in Table 4.2 

Table 1 Cost coefficients and emission coefficients for 
6-unit system 

Pmin Pmax ai bi ci ae be ce de ee 

0.05 0.5 100 200 10 6.49 -5.55 
4.09

1 
2e-4 2.857 

0.05 0.6 120 150 10 5.638 -6.04 
2.54

3 
5e-4 3.333 

0.05 1.0 40 180 20 4.586 -5.09 
4.25

8 
1e-6 8.000 

0.05 1.2 60 100 10 3.380 -3.55 
5.32

6 
2e-3 2.000 

0.05 1.0 40 180 20 4.586 -5.09 
4.25

8 
1e-6 8.000 

0.05 0.6 100 150 10 5.151 -5.55 
6.13

1 
1e-5 6.667 

Table 2 Optimal parameters setting 

Parameter Description Value 

Pop Population of size 60 

Dim Dimension of the search space 6 

Dimrate Dimension rate 0.8 

Gn Maximum number of generations 200 

The best cost and the best emission solutions of 6-unit test 
System obtained out of ten runs with the proposed algorithm 
are given in Tables 4.3 and Table 4.4 respectively. From 
Tables 4.3 and Table 4.4, it can be observed that the proposed 
BSA method gives best solution compare to multi-objective 
stochastic search technique (MOSST) [1] and linear 
programming (LP) [2], modified bacterial foraging 
optimization algorithm (MBFA) [3], Non-dominated sorting 
genetic algorithm (NSGA) [4], and differential evolution 
(DE) [5]. 

Table 3 Comparison of cost/emission obtained by 
different methods with cost objective for 6-unit system 

Methods 
Unit 

MOSST 
[26] 

LP 
[27] 

BSA 

1 0.1130 0.1500 0.0835 
2 0.3020 0.3000 0.2683 
3 0.5310 0.5500 0.5308 
4 1.0210 1.0500 1.0438 
5 0.5310 0.4600 0.5366 
6 0.3630 0.3500 0.3710 

Cost ($/hr) 605.8900 606.3100 600.3654 
Emission 
(ton/hr) 

0.2220 0.2230 0.2256 
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The minimum cost and emission obtained by the proposed 
BSA algorithm with cost objective is 600.3654 $/h and 
0.2256 ton/h, respectively. The proposed algorithm also 
provides a solution of minimum emission of 0.1945 ton/h 
with cost of 643.1197 $/hr., with emission objective. These 
are extreme points of the emission-cost trade off curve of 
BSA shown in Fig. 4.1. From this, it is clear that the BSA 
gives slightly better cost with reduced emission level when 
compared with those of methods reported in the literature. 

  
Table 4 Comparison of cost/emission obtained by 

different methods with emission objective for 6-unit 
system 

Methods 
Units 

MBFA 
[28] 

NSGA 
[29] 

DE 
[30] 

BSA 

1 0.3693 0.4072 0.4060 0.4095 
2 0.4326 0.4536 0.4590 0.4620 
3 0.5556 0.4888 0.5380 0.5861 
4 0.4503 0.4302 0.3830 0.3227 
5 0.5478 0.5836 0.5380 0.5599 
6 0.4784 0.4707 0.5100 0.4940 

Cost 
($/hr) 

629.6500 633.8300 638.2700 643.1197 

Emission 
(ton/hr) 

0.1946 0.1946 0.1952 0.1945 

 
The comparison of best compromise solution for 
multi-objective function without valve point loading effects 
and without loss for 6-unit test system by the BSA with 
various methods is provided in Table 4.5. It is clear that the 
proposed BSA gives minimum cost and minimum emission 
of 609.442$/hr., 0.2040 ton/hr., respectively.  

 

Fig. (a)  Emission-cost trade-off curve for 6-unit test 
system 

Table 5 Comparison of best compromise solution for 
6unit test system 

Methods 
Units 

MBFA 
[28] 

   SPEA 
[29] 

NSGA 
[29] 

NPGA 
[29]  

BSA 

1 0.2661 0.2623 0.2252 0.2663 0.1849 

2 0.3792 0.3765 0.3622 0.3700 0.3271 

3 
0.5387 0.5428 0.5222 0.5222 0.4804 

4 
0.6750 0.6838 0.7660 0.7202 0.7183 

5 0.5383 0.5381 0.5397 0.5256 0.5869 

6 0.4366 0.4305 0.4187 0.4296 0.5363 

Cost ($/hr) 610.9060 610.3000 606.03 608.90 609.4442 

Emission(Ton/h) 0.2000 0.2004 0.2041 0.2015 0.2040 

Table 6 Variation of emission/cost with dimrate 

Dimrate Minimum cost 
Minimum 
emission 

0.1 650.6138 0.1950 

0.2 634.0976 0.1948 

0.3 638.4872 0.1948 

0.4 644.6708 0.1947 

0.5 633.4503 0.1945 

0.6 640.1814 0.1945 

0.7 639.5004 0.1943 

0.8 640.2422 0.1943 

Table 7 Variation of cost/emission with dimrate 

 
Dimrate 

 

Minimum cost 
($/hr) 

Minimum 
emission      
(ton/hr) 

0.1 600.3681 0.2239 

0.2 600.2482 0.2223 

0.3 600.5292 0.2220 

0.4 600.6069 0.2247 

0.5 600.3338 0.2200 

0.6 600.5227 0.2268 

0.7 600.5924 0.2237 

0.8 600.6507 0.2241 
 

   Fig. (b) Convergence of emission with emission 
objective for     different dimrates 

 

 Fig(c) Convergence of cost with cost objective for 
different dimrate  
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Table 8 Fuel cost/emission obtained by BSA for 6-unit 
system by varying w for population 60 

Weight Factor  
(w) 

Fuel cost 
($/hr) 

Emission 
(ton/hr) 

0 638.1512 0.1946 
0.1 636.9222 0.1947 
0.2 616.7334 0.1973 
0.3 614.0086 0.1994 
0.4 613.3008 0.1991 
0.5 610.1564 0.2015 
0.6 603.8146 0.2078 
0.7 602.5698 0.2098 
0.8 602.0148 0.2123 
0.9 600.9323 0.2175 
1.0 600.7627 0.2168 

 
The variation of emission and fuel cost with dimrate for the 
emission objective is given in Table 6. Similarly, the 
variation of emission and fuel cost with dimrate for the cost 
objective is given in Table 7. The convergence characteristics 
of the proposed algorithms with different objective functions 
are shown in Fig(b) to Fig(c). It was observed that the best 
values of minimum fuel cost and minimum emission values 
are obtained within 180 iterations for different dimrates. For 
dimrate 0.8, the minimum fuel cost and minimum emission 
values are obtained as shown in Fig(b) and Fig(c) compared 
to the other values. The variation of emission and fuel cost 
with different populations 60 and 30 are given in Table 8 and 
Table 9 respectively with dimrate 0.8. 

Table 9  Fuel cost/emission obtained by BSA for 6-unit 
system by varying w for population 30 

Weight Factor 
(w) 

Fuel cost 
($/hr) 

Emission 
(ton/hr) 

0 635.8751 0.1951 

0.1 632.5514 0.1960 

0.2 618.6714 0.1981 
0.3 613.7130 0.1993 
0.4 615.7824 0.1979 

0.5 609.4442 0.2040 

0.6 605.4143 0.2067 

0.7 604.8932 0.2088 

0.8 602.5941 0.2114 

0.9 600.8887 0.2178 
1.0 601.3195 0.2266 

V. CONCLUSION 

In the fourth chapter, realistic EED Problem has been 
considered with quadratic cost function, which always exists 
in the power systems. The proposed algorithm BSA has been 
successfully applied to solve this EED problem. These 
strategies improve the global searching ability but also 
prevent the solution from trapping in a local optimum point. 
The Proposed algorithm found the better solution for the 
6-unit system than MBFA, SPEA.The result clearly show 
that the proposed method can be used as an efficient 
optimizer providing satisfactory solutions for realistic EED 
problems. 
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