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Abstract—This paper Shows and introduce how to buid
computer component from the basic logic gates
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I.  INTRODUCTION

Digital signals
As we know that Digital signals have only a certairmber
of possible values and for the basic logic circtiitat we
will be discussing, there are only two possibleueal , a
digital signal must still be represented by an agaloltage,
it may be corrupted by noise and so on. Having prassible
values then might work something like this, allogvifor
noise: let's suppose the two possible values favltage are
zero and 1 volt. Then, if the voltage is less tBah volts,
assume its actual value is zero volts; if it isagee than 0.5
volts assume it's actually 1 volt. this could haseme
advantages : If the signal is supposed to be zehs,\it
needs a lot of noise to make it appear as 1 voll, \dce
versa. That is, the S/N ratio would have to be ymogr for
an error to occur. Although the digital signal dgesontain
much information, it's pretty robust. The circudich use
signals like these don’t need to linear, it's alijulest if
they aren’t, but tend to “stick” to voltage valuefs(in this
example) zero or 1 volt.
Showing information in binary form
A ( two-state ) signal like this is called a binasignal, and
can be used to represent any information which lasotwo
possible states. These might be:

1. True/false

2. High/low
3. Yes/no
4. 1/0

- It turns out that this is not all that restnetj because
we can represent any amount of information by cainlgia

number of such signals. The common game of “20

guestions” is an example of this. Here, one ohalyflarge)
number of possibilities is identified by successiyes/no”
answers. With each question, the number of po##sksil
potentially halves. Any sequence of answers cawiitéen
down as a string of symbols, each of which is “ye%/or,

Boolean algebra

We are used to seeing numbers in decimal form;ishatse
ten, where the digits 0 to 9 are used. As you aobgbly
aware, we can also represent numbers in binary, fosing
only the digits 0 and -- The decimal integers 01t are
represented in binary form as

Follows:
Decimal Binary
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 1010

Binary representation of integers 0 to 10.

With 4 bits we can count from 0 to 15, we carrespnt 16
different numbers, or 16 differestates(or “possibilities”).
The more bits we have available, the more numbersam
represent. With n bits, 2n different states canepeesented.
Although it is more tedious for humans to write rners in
this way, it is much more convenient for electroaicuits
to store and manipulate them, and the binary reptaton
is used in computers. Most personal computers tdage
basically represent numbers using 32 or 64 bitss Th
referred to as thevord lengthof the computer. With 32 bits,
we can count from 0 to 4,294,967,295 ( = 232 or
4,294,967,296 possible states). The table belowshbe
number of possible states for some common wordtheng
encountered in digital circuits or computers. Nibig abyte
is a group of 8 bits.

Word length in bits | Possible number of stutes
4 16
2 (1 byte) 256
16 (2 bytes) 65,536
32 (4 bytes) 4.294.967.296
64 (8 hytes) 18.446.744.073.709.551.616

. Number of states which can be
represented by a given number of bits.

if you like, “0/1” (the latter takes less paper.Bach one of A Simple logic circuits:

these smallest units of information is called a(fuit binary
digit) . and we can specify the information conterfita
document, message, or whatever by specifying thebeu
of bits needed to represent it. Very often the rimfation is
inherently numerical, and the “0/1” interpretatioinour two
signal states is the most appropriate.
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» the left hand circuit below, which
makes use of two states. we call the two statesa@NOFF,
as it makes most sense.

———"" = -

e  Circuits using switches to implement the AND &
OR logic

functions. This circuit has two “inputs” - the ptiens of the
two switches (either ON or OFF), and one “output’ -
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whether the lamp is ON or OFF. Since the switchrekthe
lamp are all in series, the lamp will light only lfoth
switches are ON. Thus the lamp is ON only if swifclis
ON and switch 2 is ON, but at no other time. We would say
that this circuit performs aAND function. In the right hand
circuit - Here the lamp is ON if switch 1 is Qi switch 2
is ON (and this includes the case when both se#dre
ON). We say that this circuit thus performs an QRction.
Now it wouldn’t be much use if we had to rely oipfling
switches to get results for calculations involviteyrge
numbers of binary signals. What we need is a dinghich
takes binary signals say, as voltages, and geseoatputs
which are also voltages. One relatively primitivenywof
doing this is withrelays which can be thought of as
switches activated by a voltage. Most cars haveequifew
relays to switch relatively heavy currents for &tamotors,
headlights, rear window demisters and the likea Irelay,
the voltage across a coil of wire wound aroundran fod
causes a current to flow and a magnetic field tgérgerated
(note that the coil is also an inductor, but it'st rthe
inductance that's of interest to us here). The tiredly
strong magnetic field pulls a switch contact closmu this
can be used to control a large current. Here éay version
of an AND circuit, with voltage inputs and output:

Switch contact closed
when relay is on

(d) NAND (e) NOR

Symbols for gates.
A basic circuit which performs logical operationsck as
AND or OR is referred to as@ate In the simple examples
we have looked at so far,, there were only two isphut
AND and OR (and some other) gates may have manysnp
The most common types of gates use voltages as logi
signals, with, say, +5 volts representingigh “logic level”
(or 1, or TRUE, ..etc...) and zero volts representrigw
logic level (or O, or FALSE, etc..).

the truth tables for AND and OR gates, togethehwit
the
symbols commonly used for them:

AND

A B A*B A B A+B
4 -
— — A - o | 1| 1
% ] T 1 0 0 1 0 1
—— i i 1 1 1 1 1 1
12V =— | Output
—  InputA | nputB g ¢ Dor+12v
| " Logic symbols for 2-input AND & OR gates and truth
- v | tables
z There are some other types of gates, M@T logical
Relay coils function, and this gate is called ewverter.
- AND logic function is implemented by A circuit ugs Inverters
relays gates compute some particular Boolean function NDA

The advantage of this circuit is that the outputage can and OR-gates are usually easy to build, as are haas,
now be used as an input to other circuits, so wedcbuild Which are called inverters. AND & OR gates can hawng
quite complicatedogic circuits. For example, we might humber of inputs, although, as we discuss in Sec®.5,
implement something like this (assuming we havéhere is usually a practical limitation on how manputs a
appropriate input signals from sensof$j:reactor getting gate can have. The output of an AND-gate is 1 lifital
too hot AND ((NOT backup safety circuit active) QR inputs are 1, and its output is O if any one or enof its

Homer Simpson is at control panel) then sound inated
evacuation alarm”. relays aren’t really a practical
proposition for complicated, highspeed or compgstems.
Fortunately, we can use transistors, which candaxed to
act in a somewhat similar way to relays, to buddtf cheap,
compact and incredibly reliable logic circuits. i# now
commonplace to buy integrated circuitCg, or “silicon
chips”) containing millions of such circuits.

Il. The Logic gates &The Truth tables

Gates :

A gate is an electronic device with one or moreutspeach
of which can assume , either the value O or theeval As
mentioned earlier, the logical values 0 and 1 ameecplly
represented electronically by two different voltalgeels,
but the

physical method of representation need not conasrnA
gate usually has one output, which is a functioisoinputs,
and which is also either 0 or 1.
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inputs are 0. Likewise, the output of an OR-gat# i§one
or more of its inputs are 1, and the output is @llifinputs
are 0. The inverter (NOT-gate) has one input; itgot is 1
if its input is 0 and O if its input is We also dint easy to
implement NAND- and NOR-gates in most technologies.
The NAND-gate produces the output 1 unless alinpaits
are 1, in which case it produces the output 0. N&&R-gate
produces the output 1 when all inputs are 0 andywes 0
otherwise. An example of a logical function thah&der to
implement electronically is equivalence, which wkevo
inputs x and y and produces a 1 output if x andeybsth 1
or both 0, and a 0 output when exactly one of x sl 1.
However, we can build equivalence circuits out dfily
OR , and NOT gates by implementing a circuit trestlizes
the logical function xy + ~ X y. The symbols for glages we
have mentioned are shown in Fig. 13.1. In each easept
for the inverter (NOT-gate), we have shown the gaité
two inputs. However, we could easily show more thao
inputs, by adding additional lines. A one-input ANDr
OR-gate is possible, but doesn't really do anythihgust
passes its input to the output. A one-input NANDN®DR-
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gate is really an inverter. This gate has only mpait and sequential circuits. While the subject is beyorel shope of
one output, and changes a 0 at the input to aHeadutput, this book, given any deterministic automaton, we dasign
and vice versa. The inverter is also saiccéonplemenbr a sequential circuit whose output is 1 exactly whke
negatethe input signal — that is, the complement of Q,is sequence of inputs of the automaton is acceptetbeTroore
and vice versa. The logic symbol and truth tabletfe precise, the inputs of the automaton, which majfrdma any
inverter are shown at the left of the diagram below set of characters, must be encoded by the apptepria
number of logical inputs (which each take the vdlusr 1);
k logical inputs to the circuit can code up to Ha@acters.
We shall discuss sequential circuits briefly at ¢imel of this
A %; QjD o8 chapter. As we just saw in Example 13.2, sequediiabits
have the ability to remember important things abthg
- — — sequence of inputs seen so far, and thus theyemed for
0 1 0 0 0 key components of computers, such as main mematy an
- o I registers. Combinational circuits . on the othendjacan
L - - compute the values of logical functions, but thaystnwork
from a single setting for their inputs, and canrehember
what the inputs were set to previously. Neverttgles
combinational circuits are also vital components of
computers. They are needed to add numbers, decode
instructions into the electronic signals that caube
computer to perform those instructions, and martyerot
tasks. In the following sections, we shall devotestrof our
attention to the design of combinational circuits.

NOT XOR

Logic symbols for the inverter (NOT gate) and XOR gte
and truth tables for these functions.

The right-hand side of this diagram shows anotioenraon
function — the exclusive ORor XOR function. This is the
same as an OR function, except when both inputigie
and in this case the output is low. Another wajooking at
the 2-input XOR function is that it gives a hightpput if the
two inputs are different. The AND and OR functionay be
combined with an inverter (the NOT function) to giv
NAND and NOR functions. These are the same as AND & is One of the important tools that digital deggs use is
OR except that the outputs are inverted. Real NANI boolean algebra (named after the nineteenth-century
NOR gates are more common than AND & OR becaudenglish mathematician, George Boole). It's a way of
they can be made more simply (and can operatetla litrepresenting and manipulating logic signals ancttions,
faster). The symbols and truth tables are showmwbel and enables us, for example, to select the mostoecical
Notice the little “bubbles” on the gate outputs @i combination of gates to carry out some function.e Th
indicate negation (inversion) various logic functions correspond ¢perators(analogous

to addition, multiplication etc.) which act on loegsignals.

V. Boolean algebra

NAND NOR They are shown in the following table, where A aBd
A_ﬁp—ﬁ Aj}ma represent two logic signals (aariables just like normal
B4 B algebra), each of which may have the value 0 or 1:
A B A-B A B A-B Operation Symbal Example Meaning
g 2 ; 8 (1' é NOT |7 (bay) n NOT A (complement.
1 0 1 1 0 0 Inversion or negation)
: L L L L AND [ (ot) A'B [AANDB
OR + (plussign) |A+B AORB
Logic symbols for 2-input NAND (NOT AND) & NOR R _|® ABB |ATORB
(NOT OR) gates and truth tables logical operators
Although the symbols for AND and OR might look like
M. Combinational and Sequential Circuits multiplication and addition (and they do have saritles)

There is a very close relationship between thechigi they operate differently . The result of any onetlédse
expressions we can write using a collection of dabi operations is always just O or 1 (that is, oneshitorth , just
operators, such as AND, OR, and NOT, on one hand, alike any input) For example, we find that:

the circuits built from gates that perform the sase¢ of (A*B) + (A+C)=A< (B +C) so that the follang two
operators, on the other hand. Before proceedingmust logic circuits are equivalent, although the secosds one
focus our attention on an important class of ctcgalled less gate:

combinational circuits. These circuits are acyclic, the B “;m §

sense that the output of a gate cannot reach pid,ieven A—[_/ _/\—m B)+{A C)

through a series of intermediate gates. We can ause c—] /j

knowledge of graphs to define precisely what we meaa

combinational circuit. First, draw a directed graghose gjﬁ T
L/ /

nodes correspond to the gates of the circuit. Addra u—
v if the output of gate u is connected directhatty input of
gate v. If the circuit’s graph has no cycles, th@n circuit is
combinational; otherwise, it is sequential.

e Sequential Circuits
There is a very close relationship between therdwtéstic
finite automata that we discussed in Chapter 10 a

Two logic circuits which implement the same functia.
Notice that this is like a similar rule in normadgebra, and
there are other rules which are also similar. Aljio we
wqon't take the idea of Boolean algebra any furthan this,
] X S
it at least gives you a taste of the possibilities.
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Circuit Diagram Convention

When circuits are complicated, as is the circufFig. 13.10,
there is a useful convention that helps simplify tliawing.
Often, we need to have “wires” (the lines betweeratput
and the input(s) to which it is connected) crosghout
implying that they are part of the same wire. Thtie
standard convention for circuits says that wires aot
connected unless, at the point of intersectionplaee a dot.
For example, the vertical line from the circuit infy is not
connected to the horizontal lines labeled x or even
though it crosses those lines. It is connectefiéchbrizontal
line labeled y, because there is a dot at the pofnt
intersection.

00

0 0 0
I
0 1]

(a) sum 2

o 1 1

—

1 1

(b carry-out d

Karnaugh maps of the sum & carry-out functions.

In the above Fig. we see Karnaugh maps for z artthed,
sum and carry-out functions of the one-bit addefr.ti@
eight possible minterms, seven appear in the fanstfor z
or d, and only one, xyc, appears in both. and
systematically designed circuit for the one-bit exdds
shown in the Fig , We begin by taking the circajputs and
inverting them, using the three inverters at the Tthen we
create AND-gates for each of the minterms that eednin
one or more outputs. These gates are numbereadgthni7,
and each integer tells us which of its inputs anaee"” circuit
inputs, X, y, or ¢, and which are “complemente@iuts,  x,
"y, or c. Thatis, write the integer as a 3-bityi number,
and regard the bits as representing x, y, and thanorder.
For example, gate 4, or (100)2, has input x trueiaputs y
and c¢ complemented; that is, it produces the outp
expression X y c. Notice that there is no gate r@, h
because the minterm ™~ Xy c is not needed for eittart.
Finally, the circuit outputs, z and d, are assethiéh OR-
gates at the bottom. The OR-gate for z has inpota the
output of each AND-gate whose minterm makes z tan€,
the inputs to the OR-gate for d are selected silyilaet us
compute the output expressions for the circuitigf £3.10.
The topological order we shall use is the inverfess, then
the AND-gates 1, 2, ..., 7, and finally the O&tes for z
and d. First, the three inverters obviously havepou
expressions X, Yy, and c. Then we already meatimw
the inputs to the AND-gates were selected and huwoav t
expression for the output of each is associatel thvi
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One-bit-adder circuit.

binary representation of the number of the gateisThate 1
has output expression =~ x yc. Finally, the outpthe®OR-
gate z is the OR of the output expressions forggate?, 4,
and 7, thatis x yc+ Xy c+ X y c + xyc Siyithe
output of the OR-gate for d is the OR of the output
expressions for gates 3, 5, 6, and 7, which is +xycyc +
Xy ¢ + xyc We leave it as an exercise to show thiat
expression is equivalent to the expression yc + xg
Chips
Chips generally have several “layers” of matefiattcan be
used, in combination . to build gates. Wires camiruany
layer, to interconnect the gates , wires on difiedayers
usually can cross without interacting. The featsize,”
roughly the minimum width of a wire, is in 1994 afiy
below half a micron (a micron is 0.00l millimeter, about
0.00004 inches). Gates can be built in an arearakeve
icrons on a side. The process by which chipsatyedated
is complex. For example, one step might depodgifralayer
of a certain substance, called a photoresist,\al @ chip.
Then a photographic negative of the features disire a
certain layer is used. By shining light or a bedmalectrons
through the negative, the top layer can be etclvealydn
places where the beam shines through, leaving trdy
desired circuit pieces.
Some Physical Constraints on Circuits
Today, most circuits are built as “chips,” or imatgd
circuits. Large numbers of gates, perhaps as many a
illions of gates, and the wires interconnectingnth are
constructed out of semiconductor and metallic nelgein

e

an area about a centimeter (0.4 inches) on a gite.
various ‘“technologies,” or methods of constructing
integrated circuits, impose a number of constragrtsthe
way efficient circuits can be designed. For example
mentioned earlier that certain types of gates, sacAND,
OR, and NOT, are easier to construct than othetskin

Circuit Speed

Associated with each gate is a delay, betweeninhe that
the inputs become active and the time that the uutp
becomes available. This delay might be only a few
nanoseconds (a nanosecond is 10-9 seconds), bat in
complex circuit, such as the central processing ohia
computer, information propagates through many kel
gates, even during the execution of a single iotitrn. As
modern computers perform instructions in much teas a
microsecond (which is 10-6 seconds), it is evidentl
imperative that the number of gates through whiclalae
must propagate be kept to a minimum. Thus, for a
combinational circuit, the maximum number of gate lie
along
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any path from an input to an output is analogought®
running time of a program as a figure of merit. flisaif we
want our circuits to compute their outputs fast, mast
minimize the longest path length in the graph ef ¢rcuit.
The delay of a circuit is the number of gates anltingest
path — that is, one plus the length of the pathaéxjthe
delay. For example, the adder of Fig. 13.10 hasyd8|
since the longest paths from input to output gough one
of the inverters, then one of the AND-gates, anally,
through one of the OR-gates; there are many pdtlength
3. Notice that, like running time, circuit delaylpmakes

ISSN: 2319-6378, Volume-3 Issue-7, May 2015

incurs a delay of 3n. For example, in the case &/her 32,
the circuit delay is 96. A Recursive Addition CiittWe can
design an adder circuit with significantly lessajelf we
use the divide-and-conquer strategy of designingjreuit
for n/2 bits and using two of them, together withme
additional circuitry, to make an n-bit adder. InaBxple
13.6, we spoke of a divide-and-conquer circuittéding the
OR of many bits, using 2-input OR- gates. That vaas
particularly simple example of the divide-and-coaqu
technique, since each of the smaller circuits peréa
exactly the desired function (OR), and the comlxmabf

sense as an ‘“order of magnitude” quantity. Différeroutputs of the subcircuits was very simple (theyenfed to

technologies will give us different values of thme that it
takes an input of one gate to affect the outputhaf gate.

an OR-gate). The two half-size circuits did thearlwat the
same time (in parallel), so their delays did nad.deor the

Thus, if we have two circuits, of delay 10 and 20adder, we need to do something more subtle. A naayeto

respectively, we know that if implemented in themsa
technology, with all other factors being equal, finst will
take half the time of the second. However, if w@lement
the second circuit in a faster technology, it cob&ht the
first circuit implemented in the original technolog

Size Limitations

The cost of building a circuit is roughly proporia to the
number of gates in the circuit, and so we woulc lio
reduce the number of gates. Moreover, the size cfcait
also influences its speed, and small circuits témdun
faster. In general , the more gates a circuit tas,greater
the area on a chip that it will consume. Thereaadeast two
negative effects of using a large area.

1. If the area is large, long wires are neededtmect gates
that are located far apart. The longer a wirehis,longer it
takes a signal to travel from one end to the otfidis
propagation delay is another source of delay ircthmuiit, in
addition to the time it takes a gate to “computs”dutput .
2. There is a limit to how large chips can be, bseathe
larger they are, the more likely it is that therdl Wwe an
imperfection that causes the chip to fail.

If we have to divide a circuit across several chipen wires
connecting the chips will introduce a severe pragiag
delay.

Our conclusion is that there is a significant bénéd
keeping the number of gates in a circuit low.

Fan-In and Fan-Out Limitations

it is a constraint on the design of circuits confesm
physical realities. We pay a penalty for gates tiate too
many inputs or that have their outputs connectedotm
many other inputs. The number of inputs of a gatealled
its fan-in, and the number of inputs to which thepot of a
gate is connected is that gate’s fanout. Whileprinciple,
there is no limit on fan-in or fan-out, in practigates with
large fan-in and/or fan-out will be slower than egatwith
smaller fan-in and fan-out. Thus, we shall trydasign our
circuits with limited fan-in and fan-out.

A Divide-and-Conquer Addition Circuit

One of the key parts of a computer is a circuit #ads two
numbers. While actual microprocessor circuits doenwe
shall study the essence of the problem by desigaicigcuit
to add two nonnegative integers. This problem igequ
instructive as an example of divide-and-conquercuiir
design. We can build an adder for n-bit numbersfroone-
bit adders, connected in one of several ways.theseircuit
as a one-bit-adder circuit. This circuit has a detd 3,
which is close to the best we can do , The sim@pptoach
to building an adder circuit is the ripple-carrydad . In this
circuit, an output of each one-bit adder becomempnt of
the next one-bit adder, so that adding two n-bitnbers
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start is to add the left half of the bits (high-erdits) and
add the right half of the bits (low-order bits)jngidentical
half-size adder circuits. However, unlike the n-i@R
example, where we could work on the left and righives
independently, it seems that for the adder, thetiaddfor
the left half cannot begin until the right halffisished and
passes its carry to the rightmost bit in the ledif.has
suggested If so, we shall find that the “divide-motquer”
circuit is actually identical to the ripple-carrdder, and we
have not improved the delay at all. The additidtratk” we
need is to realize that we can begin the computaifothe
left half without knowing the carry out of the righalf,
provided we compute more than just the sum. We reed
answer two questions. First, what would the sunif bigere
is no carry into the rightmost place in the lefifhand
econd, what would the sum be if there is a carBgiive
can then allow the circuits for the left and ridtglves to
compute their two answers at the same time. OntteHzove
been completed, we can tell whether or not theie darry
from the right half to the left. That tells us whianswer is
correct, and with three more levels of delay, we salect
the correct answer for the left side. Thus, thegéb add n
bits will be just three more than the delay to ad? bits,
leading to a circuit of delay 3(1 + log2 n). Thatmpares
very well with the ripple-carry adder for n = 32gtdivide-
and-conquer adder will have delay 3(1+ log2 32)(&+3b)
= 18, compared with 96 for the ripple-carry adder.

T © Tnf2 Ynj2

left-half
adder

Z %2 o Zn/2 Zn/241 Zn/242

right-half
adder

-An inefficient divide-and-conquer design for an ader.

More precisely, we define an n-adder to be a diraith

inputs x1, x2, ...,xn &yl,y2,...,yn, repenting two n-
bit integers, and outputs
1.s1,s2, ..., sn, the n-bit sum (excludirguay out of the

leftmost place, i.e., out of the place belongingtoand y1)
of the inputs, assuming that there is no carry itiie
rightmost place (the place of xn and yn).

2.11,t2, . . ., tn, the n-bit sum of the inpwssuming that
there is a carry into the rightmost place.

3. p, the carry-propagate bit, which is 1 if thizra carry out
of the leftmost place, on the assumption that tiegecarry
into the rightmost place.
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4. g, the carry-generate bit, which is 1 if thexaicarry out
of the leftmost place, even if there is no carrjoirthe
rightmost place.

Note that g— p; that is, if g is 1, then p must be 1.

However, g can be 0, and p still be 1. it is cledrthe x's
are 1010- -, and the y’s are 0101 - ,theng=
0, because when there is no carry in, the sum E'sakbnd
there is no carry out of the

leftmost place. On the other hand, if there is rayciato the
rightmost position, then the last n bits of the sanm all 0's,
and there is a carry out of the leftmost placesthu 1.

We shall construct an n-adder recursively, for poaver of
2. BASIS. Consider the case n
inputs, x and y, and we need to compute four osfmytt, p,
and g, given by the logical expressions

S=X y+ xy

t=xy+ Xy
g=Xxy
p=x+y

To see why these expressions are correct, firshasshere
is no carry into the one place in question. Thenstiim bit,
which is 1 if an odd number of x, y, and the cdmrare 1,
will be 1 if exactly one of x and y is 1. The exggi®on for s
above clearly has that

property. Further, with no carry-in, there can opdya

Trt1Un1 Tan Y2n

n-adder

51 F e ® iy

R

g p t tn Snpitngn San to

The Divide-and-Conquer Adder
Delay of the Divide-and-Conquer Adder

Let D(n) be the delay of the n-adder we just designVe
can write a recurrence relation for D as followsr Fhe
basis, n = 1, examine the basis circuit and cormcthdt the
delay is 3. Thus, D(1) = 3. Now examine the indeeti
construction of the circuit . of the circuit is tdelay of the
n-adders plus the delay of the FIX circuitry. Thaeaders
have delay D(n). Each of the expressions develdpethe
FIX circuitry yields a simple circuit with at moghree
levels.

Thus, D(2n) is three more than D(n). The recurreetaion
for D(n) is thus

D(1)=3

D(2n) =D(n) + 3
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The solution, for numbers of bits that are powefs2p
begins D(1) = 3, D(2) = 6, D(4) = 9, D(8) = 12, B}{¥ 15,
D(32) = 18, and so on. The solution to the recueen

D(n) = 3(1 + log2 n)

particular, note that for a 32-bit adder, the detdyl8 is
much less than the delay of 96 for the 32-bit epgdrry
adder. Number of Gates Used by the Divide-and-Cenqu
Adder We should also check that the number of getes
reasonable. Let G(n) be the number of gates useuh in-
adder circuit. The basis is G(1) = 9, T, the intccase,
has 2G(n) gates in the two n-adder sub circuits.tfis
amount, we must add the number of gates in the FIX

1. Here we have twarcuitry. As we may invert gR and pR once, eaclihef n

si's and ti's can be computed with three gates dach
AND’s and an OR), or 6n gates total. To this qugntie
add the two inverters for gR and pR, and we muslt the
two gates each that we need to compute g and piotake
number of gates in the FIX circuitry is thus 6n + @he
recurrence for G is hence ,G(1) =9, G(2n) =r)G{(6n +
6 Again, our function is defined only when n is @ner of
2. The first six values The closed-form expresgmmG(n)
is 3n log2 n + 15n - 6, for n a power of 2 , Actyalve can
do with somewhat fewer gates, if all we want is 2abg
adder . For then, we know that there is no carrgtirthe
right of the 32nd bit, and so the value of p, ameltalues of
t1, t2, . ... ., t32 need not be computed atdkedtage of the
circuit. Similarly, the right-half 16-adder doestnweed to
compute its carry propagate bit or its 16 t-valubs; right-
half 8-adder in the right 16-adder does not neecbtopute
its p or t's and so on. It is interesting to congtre number
of gates used by the divide-and-conquer adder ttith
number of gates used by the ripple-carry adder. cliteaiit
for a full adder that we designed in Fig. 13.10suk2 gates.
Thus, an n-bit ripple-carry

12 | ()
1 9
2 30
4 =)
8 186
16 426
32 954

Numbers of gates can be used by n-adders.

adder uses 12n gates, and for n = 32, this nurst84 (we
can save a few gates if we remember that the datwythe
rightmost bit is 0). We see that for the interegtoase, n =
32, the ripple-carry adder, while much slower, dose
fewer than half as many gates as the divide-andoem
adder. Moreover, the latter's growth rate, O(n lg is
higher than the growth rate of the ripple-carry exldd(n),
so that the difference in the number of gates lgetger as n
grows. However, the ratio is only O(log n), so tliae
difference in the number of gates used is not gevks the
difference in the time required by the two classgsircuits
is much more significant [O(n) vs. O(log n)], sos@t of
divide-and-conquer adder is used in essentiallyraltern
computers

V. Building complicated circuits Using Logic Gates

By combining a number of gates, we can start bugldhore
practically useful circuits. For example, the citcshown
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below compares two 4-bit binary numbers, givingoatput
of 1 if they are equal, or O if they are different.

Nemerh— 1] 0] [1] 0]
S, P I i

\ 0
L /| Output s 1 only i
0 numbers are equal

| —
Ninter8— 101 [1][1]

A circuit which compares two 4-bit binary numbers.

In order to see how it works, you will need to renber the

ISSN: 2319-6378, Volume-3 Issue-7, May 2015

obviously the only other one). Thus the circuit Ha®
stable states; it is referred to abistablecircuit, or aflip-
flop. Note also that B = A. Another way of looking fisi to
say that the circuit has a “memory”. If it is soroehforced
into one state, it will stay there. So, in prineiplve have a
simple way of “saving” binary information (at leass$ long
as the power is not turned off!). The only probles have
is that it's not clear how to make the flip-flopliff’ or
“flop” on demand. A “brute-force” method is shownthe
diagram below, where a switch can connect the imgjut
either flip-flop (and hence the output of the ojtdirectly to
a voltage source representing logical 0, or jusighaose in
the middle position. Connecting one gate inputogidal 0
also forces the input of the other gate to 1, aedch its
output to 0, and so the circuit can be “set” os&t.

momentary
contact switch

behaviour of the exclusive-OR (XOR) and NOR gates. \ A

Recall that the XOR gate gives an output of 0 dfligs

inputs are thesame The NOR gate here has four inputs

rather than two, but remember that it is a “NOT JORo0
that it will give an output of bnly if all of its inputs are O.
Here’s how it works: a separate XOR gate compdreswo
bits at each bit position of the two numbers. ¥ thits are
the same, then the XOR will give an output of 04-Anput
NOR gate then combines the results from all the Xgags.
If the two numbers are identical, then all the XO®puts
will be 0, and the output of the NOR will be 1. @ other
hand, if the numbers are different, then at least of the
XOR outputs will be 1, forcing the output of the R@ate
to zero. For the two binary numbers being companethe
diagram above (1010 and 1011), the first three bits
identical, so that the outputs of the first thre@X gates are
0. The last bit is different, but it only takes dneut of the
NOR gate to be 1 to make its output zero. The tircan
easily be expanded to handle larger numbers of hitd
might serve as a useful building block in a lardéagital
system, where, for example, a notification mightéguired
when a counter reaches a certain value.

VI. FLIP FLOPS - REGISTERS- COUNTERS

1. Flip-flops as memory elements
The figure below shows a strange-looking circuitwe
inverters, with outputs A and B, talking only tochaother
(note that you could redraw this circuit as a sienglosed
loop with a “chain” of two inverters).

A / B\
A
f— >hl_' S
= J
\ -~ 1)
B \ /
Cross-coupled inverters form a basic flip-flop.

suppose for a start that outputs A and B can omrlyeh
values 0 or 1.Then, let's assume that A = 1. Is ®K? The
output A goes into the lower inverter and is compated,
so that B must be 0. Output B is fed to the uppeerier,
producing an output of 1 at A. This is the sameoas

.

0 volts -—o—‘
{logical 0) !

A

Adding a switch enables the flip-flop to be forcednto
one state or the other.
In practice we might not simply connect outputteolts
like this, as the gates might be damaged; we wouldide
resistors in appropriate places. A version of tachnique is
often used tdde-bounce” switches, such as pushbuttons on
a panel connected to logic circuits. It is normal $witch
contacts to “chatter” as they close, causing migltghanges
of signal level. The de-bouncing scheme makes thae
only one change occurs, at the time the switch firakes
contact.
2. The R-S flip-flop
Using switches to set values in flip-flops cleady’'t going
to be much practical use, except in some fairly pm
applications. We need to be able to set and réipefidps
using logic signals. The circuit below shows such a
possibility. It is called aR-S flip-flop(where the R and S
refer to theresetandsetfunctions), and this particular one is
made by cross-coupling two NOR gates, rather tliraple
inverters. This leaves two spare gate inputs, whighused
to set and reset the circuit. The symbol for thiS Rip-flop
is also shown on the right of the diagram

RE, Q s o
=L

I
A flip-flop formed from two NOR gates makes an R-S

flip-flop which may be set and reset via the two iputs R
and S.

Q—

Here'show it works:

« If R = S = 0 then the two NOR gates just functias
inverters for the signals fed between the two gafes see
this, look at the truth table for a NOR gate witfeanput set
to 0. The output is then just always the complenwérthe
other input.) Thus the circuit behaves exactlyhes dimple
pair of inverters — that is, it just stays in wheebr state it

original assumption, and tells us that everything ifinds itself, and acts as a one-bit memory.

consistent; the circuit can have this state. Funtloee, there
is no reason for the state to change. Btéble What if we

IfR=1and S = 0 (that is, we make the resptiirhigh),
then output Q is forced to 0. (To see why, lookhat NOR

had chosen A = 0 instead? Following the same cbéin truth table again.

reasoning, we could argue that thigisoa stable state (but
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Making any input 1 forces the output to 0)! = Q) is thus
forced to 1, and the flip-flop ireset It doesn’'t matter how
many times this is then repeated; the circuit wflll stay
reset.

Note Q is taken to be the “normal” output of the ffipp
(Q is always just its complement). Making Q = Is&d to
be settingthe flip-flop, while making Q = 0 is settingit.
Setandresetare often also callepresetandclear.
«IfR=0and S =1 (that is, we make thetinput high),
then output Q" is forced to O (it's just the rewersf the
previous case — the circuit is symmetric). Q isstfarced to
1, and the flip-flop iset

«IfR=1and S =1 at the same time, we haveadlpm.
Why? Because the outputs of both gates will beefiow.
Then, when R and S are both returned to 0, whiate still
the circuit choose? (Note that Q = Q" = B¢ a stable state
if R = S =0). The answer is — we don’t know! It d@pends
on whether R or S went back to 0 fifsor this reason, the
combination R = S =1 is not allowed

So, to store a 0 or 1 in this R-S flip-flop, we mamtarily set
R or S respectively to 1.

It is also possible to build an R-S flip-flop usidndAND
gates, as shown inthe diagram below

R
f

Another R-S flip-flop - this time using NAND gates.

We won't work through the logic of it, but the RiSput
signals used here have to be tloenplementof those used
in the previous (NOR) case. That is, the set ardtreignals
(labelled S and R ) are normally 1 in “remember’daoand
are taken to O to set or reset the circuit. Heeestate S = R
= 0 is not allowed.
Note that these “inverted sense” input signalsdamoted by
bars over the S and R (hence becoming S and R hatite
little bubbles at the S and R inputs on the fligefsymbol.

3. The J-K flip-flop
Although the R-S flip-flop is occasionally usede thK flip-

Here’s how the J-K flip-flop works:
» A change caronly occur when the clockises (that is,
changes from 0 to 1). Nothing can happen at angrdtme
(for example, when the clodlls). The flip-flop is said to
be rising-edge-triggered(lt is also possible to get J-K flip-
flops which ardalling-edge-triggered.
* What happens depends on the values of J and K at the
instant the
clock rises. Now, the truth table:
» The third column of the truth table is just toniad you
that the
values of J and K are only important at the montéet
clock rises.
* The fourth column indicates the state which Qsgtoeafter
the clock
rises, for a particular set of values of J and Ke hotation
looks a bit
strange, but here’s what it means: Qn+1 means tbte s
after the clock
rises, while Qn means the staiefore. So the four entries in
column 4

for Qn+1 mean:

Qr: @fJ=K=0) Qdoesn'tchange (Q=*1=Qw)

0: (i d=0,K=1) Qisset 1o 0 (rezardless of previous state)

x (fd=1,K=0) Qe zet to 1 {vegardless of previous state)

E: (ffJ=K=1) Q changes to the complement of what 1t was.

That 15, 1f Q was 0. 1t goes to 1. and vice versa. This 1 known

astoggling Note that this behaviour did not occur with the
R-S flip-flop. The J-K truth table is actually nwto difficult
to remember. The rules are:

(1) Things only happen when the clock rises.
(2) If 3 = K = 0 then nothing happens.

(3) If J = K = 1 then the flip-flop toggles

(4) If I # K then Q goes to the value that J has.

The J-K flip-flop has some advantages over the 8.
First, because changes are controlled by the cltin,
operation of many circuits can be synchronisedoBSecthe
behaviour is defined for all values of J and K (esmber

flop is far more commonly found in digital systems. In ahat R = S = 1 was not allowed with the R-S flipg].

sense it is an enhancement of the R-S type, beitiger
more versatile,
differences. It has two inputs] and K, which function
somewhat like the S and R inputs on an R-S flipsflas
well as a thircclockinput. The symbol for it is shown in the
diagram below. The particular variety of J-K flilpid shown
in the diagram also has R and S inputs, which fandh the
same way as in a plain R-S flip-flop (to force ritd one
state or other). However, we won't be concernedh wiem
here; they are not a necessary feature of J-Kfltips.

s I K | Clock | Q7

EnCE o | o | | @
—ICLK 0 1 _}_ 0
1 0 1

—K ar 4 —
R 1 SO I T

The J-K flip-flop and its truth table. (Note that the R
and S inputs are not provided on all J-K flip-flops)
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Third, the toggling behaviour when J = K = 1 allous to

but it does has some fundamentdksign circuits which do some neat things.

There are many useful circuits we can build by eating
J-K flip-flops together. Two of the most importaare shift
registersandcounters Let’s look at some of these.
4. Shift registers

In digital parlance, aegisteris simply a fancy name for a
memory circuit to hold one “chunk” of information
consisting of a number of bits. #hift registerhas the ability
to “shift” all the bits of the binary number comed in it
one place to the left (or right, or either, depegdon its
design), for each “tick” of a clock. It's exactlké having a
full row of seats at the cinema, each seating lgHiror boy
(0). Some newcomer wants to sit at the end, soybuoey
shifts along by one at the same time to accommatiat®.
Of course, somebody also gets dropped off the athel
since there are only a fixed number of seats. Eaitnation
might look like this:Before shift:1 — 1010101100110100 -
-- (new girl) After shift: 1101010110011016» 0 --- (boy
lost off end) The figure below shows a single stafje shift

Published By: g
Blue Eyes Intelligence Engineering\*
& Sciences Publication Pvt. Ltd.




International Journal of Emerging Science and Engieering (IJESE)
ISSN: 2319-6378, Volume-3 Issue-7, May 2015

register using a J-K flipflop. J is set to the nemlue to be also need a little extra circuitry), or if they htmdbe sent to
shifted in while K is set to its complement (this is easy t@nother device which required them all at the same. For
arrange with an inverter if necessary). When tlelcrises, example, printers used with personal computers used
the J and K values are transferred to Q and Q c&sply accept their data this way, one byte (8 bits) taina, via the
(refer back to the J-K truth table to see why). Blikvalues computer'sparallel port A shift register can also be used to
of Q & Q are lost from this flip-flop, but are stafl to the perform parallel-to-serial conversion, as illustrated in the
following stage at the same time next timing diagram. Here the idea is that thetsbkijister is
“loaded” with the new data, 8 bits at a time. Th8gsts are

} then shifted to the right one bit at a time, apjpepat Q8.
A1 Q— After 8 clock cycles, the next 8 bits are loaded] ao on.
4oLk cosk | LI LI LI LT
A—K  3— at 1]
Q2 o | |
Figure 16.6 A basic shift register stage. With &3 [
complementary J and K inputs, the data at J andre&K a Q4 o |
transferred to Q and Q on rising clock edges. Westeng Qs 1_| |
together as many basic stages as we like, eacinfede
next, as shown in the 3-stage example below. Nwethe Q6 1 | | |
same clock signal connects to all stages. After dloek Q7 o [ ]
rises each time, a new value must be present anplé¢ (A) Q8 . 5 T3 16 6 B :1
to get shifted into the register.
At at— Jﬂ a2 Ao A Timing diagram for parallel-to-serial conversion
oLk o1 ek e Using an 8-bit shift register.
K-—Fm af ‘KE 7] CCRNGE] 5. C.Ounters L .
\ One particularly useful class of circuits which cae

constructed with J-K , flip-flops iounters Just like a
Clock digital clock, a counter steps through a specifiequence of
numbers with each “tick” of a clock. In fact, letjsist
consider this example for a moment to tune in tevho
A timing diagramis shown below for an 8-stage shiftcounters operate. A digital clock is probably bassigned
register, with outputs named Q1 to Q8 (flip-flopsal8). a5, say, 3 counters, two of which count througho 69
Initially the shift register contains all zeroegésdown left- (seconds and minutes), and one which counts thr6utgh
hand side). Notice that the bits comprising theadatput) 11 (or 0 to 23). When the seconds counter goes5asit
signal (going to flip-flop 1) are presented one dfita time  resets to zero, as well as sending a “minute tickthe
(serially), and are changed just after the clock rises eaghinutes counter (this is a “carry”). And so onwttuldn’t be
time. Notice also that Q1 follows the input sigriéut difficult to design such a clock with flip-flops dmyates, but
delayed by just a little; it doesn’t change untietclock e'll do something a little bit easier. Here wejst going
rises). Q2 follows Q1, but one clock cycle laterd &0 on. to considerbinary counters. That is, circuits which count
Eventually, after 8 clock cycles, the 8 bits of theut signal  through a series of states which represent binanyoers, as
are shifted along to appear at Q1 through Q8. in the following table (similar to the one in theepious

A three-stage shift register.

Data T o[ 1 1] o o o 1 Chapter),
cleck | | [ T B A T O A |
a1 | L | I
az 1 o Decimal Binary Decimal Binary
as [ [ | o 0 0000 § 1000
(=2 [ | I lo 1 0001 9 1001
= I — ; 2 0010 10 1010
<5 [ [ [
ar . 3 0011 11 1011
as ER 4 0100 12 1100
5 0101 13 1101
A Timing diagram for serial-to-parallel conversion 6 0110 1 1110
using an 8-bit shift register. Q1 to Q8 are altiatly 0, but 1 0111 15 111
after 8 clock cycles are set to the values of theiming The Successive states of a 4-bit binary counter caiimg
serial data. At this point all the bits of the sigrare from 0 to 15 (decimal).

available simultaneously at the flip-flop outputshat is, in As a start, let’s look a bit closer at a J-K flipg which is
parallel, rather than one at a time. Since #erial data set up tatoggle- (that is when J = K = 1), as shown in the
stream is converted infarallel form, the shift register thus diagram below. We know that for every clock cyaléhén
acts as aserial-to-parallel converter. (In practice, a little the clock rises), its stathanges from 0—1 or 1-0. If we
more circuitry would be required to inform the eweni look at the timing diagram on the right, we seet tQa
receiver of the data that a new output was avalafler changes onlyhalf as often as the clock. (That is, the
every 8 hits.) This might be useful, for exampleyou frequency of the signal at Q is half that of theckl We
wanted to test whether consecutive bits of theabaetata could make immediate use of this if we had needdor
stream were equal to some particular pattern (youldv circuit to divide the frequency of a (digital) sajrby two.)
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=y g= Ok 1“”1‘

[ f—

Figure 16.10 A J-K flip-flop with J = K = 1 toggléshanges
state) on rising clock edges to give an output titicanges
at one-half the clock rate. If you look at the titjand bit
(usually referred to akeast-significant bitor LSB) of each
binary number in the table above, and compare ti Wie
next bit (one from the right), you will notice thtte LSB
changes exactly twice as often as its left neightazuthe
count proceeds. This bears a striking similarity the

relationship between the clock and Q signals intiméng

diagram above. Similarly, the next bit to the leftanges
half as often again, and so on. Now suppose weemniwo
J-K flip-flops together as shown below. That i thutput Q
of the first flip-flop is used as the clock inputrfthe next
flip-flop. The output of the second flip-flop wilow change
at one-quarter the rate of the clock.

Te— 1 (@)}

o

Te— J2 Q2

1CLEK {CLK

1e—Ki le—K2 2

Clock
The Cascading two stages gives a final output (Q2 Q2)
which is one-quarter the clock rate. The circuit ato
functions as a two-bit binary counter.

Assume that initially Q1 = 0 and Q2 = 0. Let’s |oatkwhat

happens on successive clock cycles. The timingamags
shown below.

uanainiaiiaiy
Q1 U i

0 1 1

0 1

0

Q2

Q2Q1 o0 01
Number ¢ 1

il
3

00 01
0 1

10
2

The Timing diagram for the two-bit binary counter.

Notice that:

-Every time the clock rises, Q1 (and Q1 of courdgnges.
-Every time Q1 falls (that is, Q1 rises), Q2 changdfter 4
clock cycles, everything is back to where it st@yrtgith Q1
= Q2 = 0. This is probably not surprising — there anly 4
different possibilities for the values of Q1 and @ken
together. That is, the whole circuit has only 4fatiént
possible states. It certainly can't take longemtiaclock
cycles to return!
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» Taken together as a binary number, the pair {32Q1
cycles through the values 00, 01, 10, 11, ...(decind], 2,
3,...). That is, we have constructed a 2-bit binanyrtder.

VILI.

important computer components like Flip Flops giRers
and counters have been built by using the basic pates .

Conclusion
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