
International Journal of Emerging Science and Engineering (IJESE)
ISSN: 2319–6378, Volume-3 Issue-7, May 2015

30
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

Abstract—This paper Shows and introduce how to build a
computer component from the basic logic gates
 Index Terms -- Introduction, Logic gates & Truth Table,
Combinational and Sequential Circuits, Boolean algebra,
Building complicated circuits Using Logic Gates

I. INTRODUCTION

Digital signals
As we know that Digital signals have only a certain number
of possible values and for the basic logic circuits that we
will be discussing, there are only two possible values , a
digital signal must still be represented by an analog voltage,
it may be corrupted by noise and so on. Having two possible
values then might work something like this, allowing for
noise: let’s suppose the two possible values for a voltage are
zero and 1 volt. Then, if the voltage is less than 0.5 volts,
assume its actual value is zero volts; if it is greater than 0.5
volts assume it’s actually 1 volt. this could have some
advantages : If the signal is supposed to be zero volts, it
needs a lot of noise to make it appear as 1 volt, and vice
versa. That is, the S/N ratio would have to be very poor for
an error to occur. Although the digital signal doesn’t contain
much information, it’s pretty robust. The circuits which use
signals like these don’t need to linear, it’s actually best if
they aren’t, but tend to “stick” to voltage values of (in this
example) zero or 1 volt.
Showing information in binary form
A (two-state) signal like this is called a binary signal, and
can be used to represent any information which also has two
possible states. These might be:

1. True/false
2. High/low
3. Yes/no
4. 1/0

- It turns out that this is not all that restrictive, because
we can represent any amount of information by combining a
number of such signals. The common game of “20
questions” is an example of this. Here, one of a (fairly large)
number of possibilities is identified by successive “yes/no”
answers. With each question, the number of possibilities
potentially halves. Any sequence of answers can be written
down as a string of symbols, each of which is “yes/no”, or,
if you like, “0/1” (the latter takes less paper..). Each one of
these smallest units of information is called a bit (for binary
digit) . and we can specify the information content of a
document, message, or whatever by specifying the number
of bits needed to represent it. Very often the information is
inherently numerical, and the “0/1” interpretation of our two
signal states is the most appropriate.

Revised Version Manuscript Received on May 22, 2015.
 Adel H A Alateyah, Kuwait City, Kuwait, Kuwait 18502. Kuwait.

We are used to seeing numbers in decimal form; that is, base
ten, where the digits 0 to 9 are used. As you are probably
aware, we can also represent numbers in binary form, using
only the digits 0 and -- The decimal integers 0 to 10 are
represented in binary form as
Follows:

Binary representation of integers 0 to 10.

With 4 bits we can count from 0 to 15 , we can represent 16
different numbers, or 16 different states (or “possibilities”).
The more bits we have available, the more numbers we can
represent. With n bits, 2n different states can be represented.
Although it is more tedious for humans to write numbers in
this way, it is much more convenient for electronic circuits
to store and manipulate them, and the binary representation
is used in computers. Most personal computers these days
basically represent numbers using 32 or 64 bits. This is
referred to as the word length of the computer. With 32 bits,
we can count from 0 to 4,294,967,295 (= 232 or
4,294,967,296 possible states). The table below shows the
number of possible states for some common word lengths
encountered in digital circuits or computers. Note that a byte
is a group of 8 bits.

• Number of states which can be
 represented by a given number of bits.

A Simple logic circuits:
• the left hand circuit below, which

makes use of two states. we call the two states ON and OFF,
as it makes most sense.

• Circuits using switches to implement the AND &

OR logic
functions. This circuit has two “inputs” - the positions of the
two switches (either ON or OFF), and one “output” -

Using Logic Gates to Build Computer
Component

Adel H A AlATIEH

Using Logic Gates to Build Computer Component

31

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

whether the lamp is ON or OFF. Since the switches and the
lamp are all in series, the lamp will light only if both
switches are ON. Thus the lamp is ON only if switch 1 is
ON and switch 2 is ON, but at no other time. We would say
that this circuit performs an AND function. In the right hand
circuit - Here the lamp is ON if switch 1 is ON or switch 2
is ON (and this includes the case when both switches are
ON). We say that this circuit thus performs an OR function.
Now it wouldn’t be much use if we had to rely on flipping
switches to get results for calculations involving large
numbers of binary signals. What we need is a circuit which
takes binary signals say, as voltages, and generates outputs
which are also voltages. One relatively primitive way of
doing this is with relays, which can be thought of as
switches activated by a voltage. Most cars have quite a few
relays to switch relatively heavy currents for starter motors,
headlights, rear window demisters and the like. In a relay,
the voltage across a coil of wire wound around an iron rod
causes a current to flow and a magnetic field to be generated
(note that the coil is also an inductor, but it’s not the
inductance that’s of interest to us here). The relatively
strong magnetic field pulls a switch contact closed, and this
can be used to control a large current. Here is a relay version
of an AND circuit, with voltage inputs and output:

- AND logic function is implemented by A circuit uses

relays
The advantage of this circuit is that the output voltage can
now be used as an input to other circuits, so we could build
quite complicated logic circuits. For example, we might
implement something like this (assuming we have
appropriate input signals from sensors): “If reactor getting
too hot AND ((NOT backup safety circuit active) OR ,
Homer Simpson is at control panel) then sound immediate
evacuation alarm”. relays aren’t really a practical
proposition for complicated, highspeed or compact systems.
Fortunately, we can use transistors, which can be coaxed to
act in a somewhat similar way to relays, to build fast, cheap,
compact and incredibly reliable logic circuits. It is now
commonplace to buy integrated circuits (ICs, or “silicon
chips”) containing millions of such circuits.

II. The Logic gates &The Truth tables

Gates :
A gate is an electronic device with one or more inputs, each
of which can assume , either the value 0 or the value 1. As
mentioned earlier, the logical values 0 and 1 are generally
represented electronically by two different voltage levels,
but the
physical method of representation need not concern us. A
gate usually has one output, which is a function of its inputs,
and which is also either 0 or 1.

Symbols for gates.

A basic circuit which performs logical operations such as
AND or OR is referred to as a gate. In the simple examples
we have looked at so far,, there were only two inputs, but
AND and OR (and some other) gates may have many inputs.
The most common types of gates use voltages as logic
signals, with, say, +5 volts representing a high “logic level”
(or 1, or TRUE, ..etc…) and zero volts representing a low
logic level (or 0, or FALSE, etc..).

• the truth tables for AND and OR gates, together with
the

symbols commonly used for them:

Logic symbols for 2-input AND & OR gates and truth
tables

There are some other types of gates, the NOT logical
function, and this gate is called an inverter.
Inverters
gates compute some particular Boolean function , AND
and OR-gates are usually easy to build, as are NOT-gates,
which are called inverters. AND & OR gates can have any
number of inputs, although, as we discuss in Section 13.5,
there is usually a practical limitation on how many inputs a
gate can have. The output of an AND-gate is 1 if all its
inputs are 1, and its output is 0 if any one or more of its
inputs are 0. Likewise, the output of an OR-gate is 1 if one
or more of its inputs are 1, and the output is 0 if all inputs
are 0. The inverter (NOT-gate) has one input; its output is 1
if its input is 0 and 0 if its input is We also find it easy to
implement NAND- and NOR-gates in most technologies.
The NAND-gate produces the output 1 unless all its inputs
are 1, in which case it produces the output 0. The NOR-gate
produces the output 1 when all inputs are 0 and produces 0
otherwise. An example of a logical function that is harder to
implement electronically is equivalence, which takes two
inputs x and y and produces a 1 output if x and y are both 1
or both 0, and a 0 output when exactly one of x and y is 1.
However, we can build equivalence circuits out of AND,
OR , and NOT gates by implementing a circuit that realizes
the logical function xy + ¯ x¯ y. The symbols for the gates we
have mentioned are shown in Fig. 13.1. In each case except
for the inverter (NOT-gate), we have shown the gate with
two inputs. However, we could easily show more than two
inputs, by adding additional lines. A one-input AND- or
OR-gate is possible, but doesn’t really do anything; it just
passes its input to the output. A one-input NAND- or NOR-

International Journal of Emerging Science and Engineering (IJESE)
ISSN: 2319–6378, Volume-3 Issue-7, May 2015

32
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

gate is really an inverter. This gate has only one input and
one output, and changes a 0 at the input to a 1 at the output,
and vice versa. The inverter is also said to complement or
negate the input signal – that is, the complement of 0 is 1,
and vice versa. The logic symbol and truth table for the
inverter are shown at the left of the diagram below:

Logic symbols for the inverter (NOT gate) and XOR gate
and truth tables for these functions.

The right-hand side of this diagram shows another common
function – the exclusive OR, or XOR function. This is the
same as an OR function, except when both inputs are high,
and in this case the output is low. Another way of looking at
the 2-input XOR function is that it gives a high output if the
two inputs are different. The AND and OR functions may be
combined with an inverter (the NOT function) to give
NAND and NOR functions. These are the same as AND &
OR except that the outputs are inverted. Real NAND and
NOR gates are more common than AND & OR because
they can be made more simply (and can operate a little
faster). The symbols and truth tables are shown below.
Notice the little “bubbles” on the gate outputs which
indicate negation (inversion)

Logic symbols for 2-input NAND (NOT AND) & NOR
(NOT OR) gates and truth tables.

III. Combinational and Sequential Circuits

There is a very close relationship between the logical
expressions we can write using a collection of logical
operators, such as AND, OR, and NOT, on one hand, and
the circuits built from gates that perform the same set of
operators, on the other hand. Before proceeding, we must
focus our attention on an important class of circuits called
combinational circuits. These circuits are acyclic, in the
sense that the output of a gate cannot reach its input, even
through a series of intermediate gates. We can use our
knowledge of graphs to define precisely what we mean by a
combinational circuit. First, draw a directed graph whose
nodes correspond to the gates of the circuit. Add an arc u →
v if the output of gate u is connected directly to any input of
gate v. If the circuit’s graph has no cycles, then the circuit is
combinational; otherwise, it is sequential.

• Sequential Circuits
There is a very close relationship between the deterministic
finite automata that we discussed in Chapter 10 and

sequential circuits. While the subject is beyond the scope of
this book, given any deterministic automaton, we can design
a sequential circuit whose output is 1 exactly when the
sequence of inputs of the automaton is accepted. To be more
precise, the inputs of the automaton, which may be from any
set of characters, must be encoded by the appropriate
number of logical inputs (which each take the value 0 or 1);
k logical inputs to the circuit can code up to 2k characters.
We shall discuss sequential circuits briefly at the end of this
chapter. As we just saw in Example 13.2, sequential circuits
have the ability to remember important things about the
sequence of inputs seen so far, and thus they are needed for
key components of computers, such as main memory and
registers. Combinational circuits . on the other hand, can
compute the values of logical functions, but they must work
from a single setting for their inputs, and cannot remember
what the inputs were set to previously. Nevertheless,
combinational circuits are also vital components of
computers. They are needed to add numbers, decode
instructions into the electronic signals that cause the
computer to perform those instructions, and many other
tasks. In the following sections, we shall devote most of our
attention to the design of combinational circuits.

IV. Boolean algebra

it is One of the important tools that digital designers use is
boolean algebra (named after the nineteenth-century
English mathematician, George Boole). It’s a way of
representing and manipulating logic signals and functions,
and enables us, for example, to select the most economical
combination of gates to carry out some function. The
various logic functions correspond to operators (analogous
to addition, multiplication etc.) which act on logic signals.
They are shown in the following table, where A and B
represent two logic signals (or variables, just like normal
algebra), each of which may have the value 0 or 1:

logical operators

Although the symbols for AND and OR might look like
multiplication and addition (and they do have similarities)
they operate differently . The result of any one of these
operations is always just 0 or 1 (that is, one bit’s worth , just
like any input) For example, we find that:
(A • B) + (A • C) = A • (B + C) so that the following two
logic circuits are equivalent, although the second uses one
less gate:

Two logic circuits which implement the same function.
Notice that this is like a similar rule in normal algebra, and
there are other rules which are also similar. Although we
won’t take the idea of Boolean algebra any further than this,
it at least gives you a taste of the possibilities.

Using Logic Gates to Build Computer Component

33

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

Circuit Diagram Convention
When circuits are complicated, as is the circuit in Fig. 13.10,
there is a useful convention that helps simplify the drawing.
Often, we need to have “wires” (the lines between an output
and the input(s) to which it is connected) cross, without
implying that they are part of the same wire. Thus, the
standard convention for circuits says that wires are not
connected unless, at the point of intersection, we place a dot.
For example, the vertical line from the circuit input y is not
connected to the horizontal lines labeled x or ¯ x, even
though it crosses those lines. It is connected to the horizontal
line labeled y, because there is a dot at the point of
intersection.

Karnaugh maps of the sum & carry-out functions.

In the above Fig. we see Karnaugh maps for z and d, the
sum and carry-out functions of the one-bit adder. Of the
eight possible minterms, seven appear in the functions for z
or d, and only one, xyc, appears in both. and A
systematically designed circuit for the one-bit adder is
shown in the Fig , We begin by taking the circuit inputs and
inverting them, using the three inverters at the top. Then we
create AND-gates for each of the minterms that we need in
one or more outputs. These gates are numbered 1 through 7,
and each integer tells us which of its inputs are “true” circuit
inputs, x, y, or c, and which are “complemented” inputs, ¯ x,
¯ y, or ¯ c. That is, write the integer as a 3-bit binary number,
and regard the bits as representing x, y, and c, in that order.
For example, gate 4, or (100)2, has input x true and inputs y
and c complemented; that is, it produces the output
expression x¯ y¯ c. Notice that there is no gate 0 here,
because the minterm ¯ x¯ y¯ c is not needed for either output.
Finally, the circuit outputs, z and d, are assembled with OR-
gates at the bottom. The OR-gate for z has inputs from the
output of each AND-gate whose minterm makes z true, and
the inputs to the OR-gate for d are selected similarly. Let us
compute the output expressions for the circuit of Fig. 13.10.
The topological order we shall use is the inverters first, then
the AND-gates 1, 2, . . . , 7, and finally the OR-gates for z
and d. First, the three inverters obviously have output
expressions ¯ x, ¯ y, and ¯ c. Then we already mentioned how
the inputs to the AND-gates were selected and how the
expression for the output of each is associated with the

One-bit-adder circuit.

binary representation of the number of the gate. Thus, gate 1
has output expression ¯ x¯ yc. Finally, the output of the OR-
gate z is the OR of the output expressions for gates 1, 2, 4,
and 7, that is ¯ x¯ yc + ¯ xy¯ c + x¯ y¯ c + xyc Similarly, the
output of the OR-gate for d is the OR of the output
expressions for gates 3, 5, 6, and 7, which is ¯ xyc + x¯ yc +
xy¯ c + xyc We leave it as an exercise to show that this
expression is equivalent to the expression yc + xc + xy

• Chips
Chips generally have several “layers” of material that can be
used, in combination . to build gates. Wires can run in any
layer, to interconnect the gates , wires on different layers
usually can cross without interacting. The feature size,”
roughly the minimum width of a wire, is in 1994 usually
below half a micron (a micron is 0.00l millimeter, or about
0.00004 inches). Gates can be built in an area several
microns on a side. The process by which chips are fabricated
is complex. For example, one step might deposit a thin layer
of a certain substance, called a photoresist, all over a chip.
Then a photographic negative of the features desired on a
certain layer is used. By shining light or a beam of electrons
through the negative, the top layer can be etched away in
places where the beam shines through, leaving only the
desired circuit pieces.
Some Physical Constraints on Circuits
Today, most circuits are built as “chips,” or integrated
circuits. Large numbers of gates, perhaps as many as
millions of gates, and the wires interconnecting them, are
constructed out of semiconductor and metallic materials in
an area about a centimeter (0.4 inches) on a side. The
various “technologies,” or methods of constructing
integrated circuits, impose a number of constraints on the
way efficient circuits can be designed. For example, we
mentioned earlier that certain types of gates, such as AND,
OR, and NOT, are easier to construct than other kinds
Circuit Speed
Associated with each gate is a delay, between the time that
the inputs become active and the time that the output
becomes available. This delay might be only a few
nanoseconds (a nanosecond is 10−9 seconds), but in a
complex circuit, such as the central processing unit of a
computer, information propagates through many levels of
gates, even during the execution of a single instruction. As
modern computers perform instructions in much less than a
microsecond (which is 10−6 seconds), it is evidently
imperative that the number of gates through which a value
must propagate be kept to a minimum. Thus, for a
combinational circuit, the maximum number of gates that lie
along

International Journal of Emerging Science and Engineering (IJESE)
ISSN: 2319–6378, Volume-3 Issue-7, May 2015

34
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

any path from an input to an output is analogous to the
running time of a program as a figure of merit. That is, if we
want our circuits to compute their outputs fast, we must
minimize the longest path length in the graph of the circuit.
The delay of a circuit is the number of gates on the longest
path — that is, one plus the length of the path equals the
delay. For example, the adder of Fig. 13.10 has delay 3,
since the longest paths from input to output go through one
of the inverters, then one of the AND-gates, and finally,
through one of the OR-gates; there are many paths of length
3. Notice that, like running time, circuit delay only makes
sense as an “order of magnitude” quantity. Different
technologies will give us different values of the time that it
takes an input of one gate to affect the output of that gate.
Thus, if we have two circuits, of delay 10 and 20,
respectively, we know that if implemented in the same
technology, with all other factors being equal, the first will
take half the time of the second. However, if we implement
the second circuit in a faster technology, it could beat the
first circuit implemented in the original technology.
Size Limitations
The cost of building a circuit is roughly proportional to the
number of gates in the circuit, and so we would like to
reduce the number of gates. Moreover, the size of a circuit
also influences its speed, and small circuits tend to run
faster. In general , the more gates a circuit has, the greater
the area on a chip that it will consume. There are at least two
negative effects of using a large area.
1. If the area is large, long wires are needed to connect gates
that are located far apart. The longer a wire is, the longer it
takes a signal to travel from one end to the other. This
propagation delay is another source of delay in the circuit, in
addition to the time it takes a gate to “compute” its output .
2. There is a limit to how large chips can be, because the
larger they are, the more likely it is that there will be an
imperfection that causes the chip to fail.
If we have to divide a circuit across several chips, then wires
connecting the chips will introduce a severe propagation
delay.
Our conclusion is that there is a significant benefit to
keeping the number of gates in a circuit low.
Fan-In and Fan-Out Limitations
it is a constraint on the design of circuits comes from
physical realities. We pay a penalty for gates that have too
many inputs or that have their outputs connected to too
many other inputs. The number of inputs of a gate is called
its fan-in, and the number of inputs to which the output of a
gate is connected is that gate’s fanout. While, in principle,
there is no limit on fan-in or fan-out, in practice, gates with
large fan-in and/or fan-out will be slower than gates with
smaller fan-in and fan-out. Thus, we shall try to design our
circuits with limited fan-in and fan-out.
A Divide-and-Conquer Addition Circuit
One of the key parts of a computer is a circuit that adds two
numbers. While actual microprocessor circuits do more, we
shall study the essence of the problem by designing a circuit
to add two nonnegative integers. This problem is quite
instructive as an example of divide-and-conquer circuit
design. We can build an adder for n-bit numbers from n one-
bit adders, connected in one of several ways. use the circuit
as a one-bit-adder circuit. This circuit has a delay of 3,
which is close to the best we can do , The simplest approach
to building an adder circuit is the ripple-carry adder . In this
circuit, an output of each one-bit adder becomes an input of
the next one-bit adder, so that adding two n-bit numbers

incurs a delay of 3n. For example, in the case where n = 32,
the circuit delay is 96. A Recursive Addition Circuit We can
design an adder circuit with significantly less delay if we
use the divide-and-conquer strategy of designing a circuit
for n/2 bits and using two of them, together with some
additional circuitry, to make an n-bit adder. In Example
13.6, we spoke of a divide-and-conquer circuit for taking the
OR of many bits, using 2-input OR- gates. That was a
particularly simple example of the divide-and-conquer
technique, since each of the smaller circuits performed
exactly the desired function (OR), and the combination of
outputs of the subcircuits was very simple (they were fed to
an OR-gate). The two half-size circuits did their work at the
same time (in parallel), so their delays did not add. For the
adder, we need to do something more subtle. A naive way to
start is to add the left half of the bits (high-order bits) and
add the right half of the bits (low-order bits), using identical
half-size adder circuits. However, unlike the n-bit OR
example, where we could work on the left and right halves
independently, it seems that for the adder, the addition for
the left half cannot begin until the right half is finished and
passes its carry to the rightmost bit in the left half, as
suggested If so, we shall find that the “divide-and-conquer”
circuit is actually identical to the ripple-carry adder, and we
have not improved the delay at all. The additional “trick” we
need is to realize that we can begin the computation of the
left half without knowing the carry out of the right half,
provided we compute more than just the sum. We need to
answer two questions. First, what would the sum be if there
is no carry into the rightmost place in the left half, and
econd, what would the sum be if there is a carry-in?3 We
can then allow the circuits for the left and right halves to
compute their two answers at the same time. Once both have
been completed, we can tell whether or not there is a carry
from the right half to the left. That tells us which answer is
correct, and with three more levels of delay, we can select
the correct answer for the left side. Thus, the delay to add n
bits will be just three more than the delay to add n/2 bits,
leading to a circuit of delay 3(1 + log2 n). That compares
very well with the ripple-carry adder for n = 32; the divide-
and-conquer adder will have delay 3(1+ log2 32) = 3(1+ 5)
= 18, compared with 96 for the ripple-carry adder.

-An inefficient divide-and-conquer design for an adder.

More precisely, we define an n-adder to be a circuit with
inputs x1, x2, . . . , xn & y1, y2, . . . , yn, representing two n-
bit integers, and outputs
 1. s1, s2, . . . , sn, the n-bit sum (excluding a carry out of the
leftmost place, i.e., out of the place belonging to x1 and y1)
of the inputs, assuming that there is no carry into the
rightmost place (the place of xn and yn).
 2. t1, t2, . . . , tn, the n-bit sum of the inputs, assuming that
there is a carry into the rightmost place.
3. p, the carry-propagate bit, which is 1 if there is a carry out
of the leftmost place, on the assumption that there is a carry
into the rightmost place.

Using Logic Gates to Build Computer Component

35

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

4. g, the carry-generate bit, which is 1 if there is a carry out
of the leftmost place, even if there is no carry into the
rightmost place.
Note that g → p; that is, if g is 1, then p must be 1.
However, g can be 0, and p still be 1. it is clear , if the x’s
are 1010 ・ ・ ・ , and the y’s are 0101 ・ ・ ・ , then g =
0, because when there is no carry in, the sum is all 1’s and
there is no carry out of the
leftmost place. On the other hand, if there is a carry into the
rightmost position, then the last n bits of the sum are all 0’s,
and there is a carry out of the leftmost place; thus p = 1.
We shall construct an n-adder recursively, for n a power of
2. BASIS. Consider the case n = 1. Here we have two
inputs, x and y, and we need to compute four outputs, s, t, p,
and g, given by the logical expressions

s = x¯ y + ¯ xy
t = xy + ¯ x¯ y
g = xy
p = x + y
To see why these expressions are correct, first assume there
is no carry into the one place in question. Then the sum bit,
which is 1 if an odd number of x, y, and the carry-in are 1,
will be 1 if exactly one of x and y is 1. The expression for s
above clearly has that

property. Further, with no carry-in, there can only be a

Adder Circuit

The Divide-and-Conquer Adder

Delay of the Divide-and-Conquer Adder
Let D(n) be the delay of the n-adder we just designed. We
can write a recurrence relation for D as follows. For the
basis, n = 1, examine the basis circuit and conclude that the
delay is 3. Thus, D(1) = 3. Now examine the inductive
construction of the circuit . of the circuit is the delay of the
n-adders plus the delay of the FIX circuitry. Then adders
have delay D(n). Each of the expressions developed for the
FIX circuitry yields a simple circuit with at most three
levels.
Thus, D(2n) is three more than D(n). The recurrence relation
for D(n) is thus
D(1) = 3
D(2n) = D(n) + 3

The solution, for numbers of bits that are powers of 2,
begins D(1) = 3, D(2) = 6, D(4) = 9, D(8) = 12, D(16) = 15,
D(32) = 18, and so on. The solution to the recurrence is
D(n) = 3(1 + log2 n)
particular, note that for a 32-bit adder, the delay of 18 is
much less than the delay of 96 for the 32-bit ripple-carry
adder. Number of Gates Used by the Divide-and-Conquer
Adder We should also check that the number of gates is
reasonable. Let G(n) be the number of gates used in an n-
adder circuit. The basis is G(1) = 9, T, the inductive case,
has 2G(n) gates in the two n-adder sub circuits. To this
amount, we must add the number of gates in the FIX
circuitry. As we may invert gR and pR once, each of the n
si’s and ti’s can be computed with three gates each (two
AND’s and an OR), or 6n gates total. To this quantity we
add the two inverters for gR and pR, and we must add the
two gates each that we need to compute g and p. The total
number of gates in the FIX circuitry is thus 6n + 6. The
recurrence for G is hence ,G(1) = 9 , G(2n) = 2G(n) + 6n +
6 Again, our function is defined only when n is a power of
2. The first six values The closed-form expression for G(n)
is 3n log2 n + 15n − 6, for n a power of 2 , Actually, we can
do with somewhat fewer gates, if all we want is a 32-bit
adder . For then, we know that there is no carry-in at the
right of the 32nd bit, and so the value of p, and the values of
t1, t2, , t32 need not be computed at the last stage of the
circuit. Similarly, the right-half 16-adder does not need to
compute its carry propagate bit or its 16 t-values; the right-
half 8-adder in the right 16-adder does not need to compute
its p or t’s and so on. It is interesting to compare the number
of gates used by the divide-and-conquer adder with the
number of gates used by the ripple-carry adder. The circuit
for a full adder that we designed in Fig. 13.10 uses 12 gates.
Thus, an n-bit ripple-carry

 Numbers of gates can be used by n-adders.

adder uses 12n gates, and for n = 32, this number is 384 (we
can save a few gates if we remember that the carry into the
rightmost bit is 0). We see that for the interesting case, n =
32, the ripple-carry adder, while much slower, does use
fewer than half as many gates as the divide-and-conquer
adder. Moreover, the latter’s growth rate, O(n log n), is
higher than the growth rate of the ripple-carry adder, O(n),
so that the difference in the number of gates gets larger as n
grows. However, the ratio is only O(log n), so that the
difference in the number of gates used is not severe. As the
difference in the time required by the two classes of circuits
is much more significant [O(n) vs. O(log n)], some sort of
divide-and-conquer adder is used in essentially all modern
computers.

V. Building complicated circuits Using Logic Gates

By combining a number of gates, we can start building more
practically useful circuits. For example, the circuit shown

International Journal of Emerging Science and Engineering (IJESE)
ISSN: 2319–6378, Volume-3 Issue-7, May 2015

36
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

below compares two 4-bit binary numbers, giving an output
of 1 if they are equal, or 0 if they are different.

A circuit which compares two 4-bit binary numbers.

In order to see how it works, you will need to remember the
behaviour of the exclusive-OR (XOR) and NOR gates.
Recall that the XOR gate gives an output of 0 only if its
inputs are the same. The NOR gate here has four inputs
rather than two, but remember that it is a “NOT (OR)”, so
that it will give an output of 1 only if all of its inputs are 0.
Here’s how it works: a separate XOR gate compares the two
bits at each bit position of the two numbers. If the bits are
the same, then the XOR will give an output of 0. A 4-input
NOR gate then combines the results from all the XOR gates.
If the two numbers are identical, then all the XOR outputs
will be 0, and the output of the NOR will be 1. On the other
hand, if the numbers are different, then at least one of the
XOR outputs will be 1, forcing the output of the NOR gate
to zero. For the two binary numbers being compared in the
diagram above (1010 and 1011), the first three bits are
identical, so that the outputs of the first three XOR gates are
0. The last bit is different, but it only takes one input of the
NOR gate to be 1 to make its output zero. The circuit can
easily be expanded to handle larger numbers of bits, and
might serve as a useful building block in a larger digital
system, where, for example, a notification might be required
when a counter reaches a certain value.

VI. FLIP FLOPS - REGISTERS- COUNTERS

1. Flip-flops as memory elements
The figure below shows a strange-looking circuit – two
inverters, with outputs A and B, talking only to each other
(note that you could redraw this circuit as a simple closed
loop with a “chain” of two inverters).

Cross-coupled inverters form a basic flip-flop.

suppose for a start that outputs A and B can only have
values 0 or 1.Then, let’s assume that A = 1. Is this OK? The
output A goes into the lower inverter and is complemented,
so that B must be 0. Output B is fed to the upper inverter,
producing an output of 1 at A. This is the same as our
original assumption, and tells us that everything is
consistent; the circuit can have this state. Furthermore, there
is no reason for the state to change. It is stable. What if we
had chosen A = 0 instead? Following the same chain of
reasoning, we could argue that this is also a stable state (but

obviously the only other one). Thus the circuit has two
stable states; it is referred to as a bistable circuit, or a flip-
flop. Note also that B = A. Another way of looking at it is to
say that the circuit has a “memory”. If it is somehow forced
into one state, it will stay there. So, in principle, we have a
simple way of “saving” binary information (at least as long
as the power is not turned off!). The only problem we have
is that it’s not clear how to make the flip-flop “flip” or
“flop” on demand. A “brute-force” method is shown in the
diagram below, where a switch can connect the input of
either flip-flop (and hence the output of the other) directly to
a voltage source representing logical 0, or just hang loose in
the middle position. Connecting one gate input to logical 0
also forces the input of the other gate to 1, and hence its
output to 0, and so the circuit can be “set” or “reset”.

Adding a switch enables the flip-flop to be forced into

one state or the other.
In practice we might not simply connect outputs to 0 volts
like this, as the gates might be damaged; we would include
resistors in appropriate places. A version of this technique is
often used to “de-bounce” switches, such as pushbuttons on
a panel connected to logic circuits. It is normal for switch
contacts to “chatter” as they close, causing multiple changes
of signal level. The de-bouncing scheme makes sure that
only one change occurs, at the time the switch first makes
contact.

2. The R-S flip-flop
Using switches to set values in flip-flops clearly isn’t going
to be much practical use, except in some fairly simple
applications. We need to be able to set and reset flip-flops
using logic signals. The circuit below shows such a
possibility. It is called an R-S flip-flop (where the R and S
refer to the reset and set functions), and this particular one is
made by cross-coupling two NOR gates, rather than simple
inverters. This leaves two spare gate inputs, which are used
to set and reset the circuit. The symbol for this R-S flip-flop
is also shown on the right of the diagram.

A flip-flop formed from two NOR gates makes an R-S

flip-flop which may be set and reset via the two inputs R
and S.

Here’s how it works:
• If R = S = 0 then the two NOR gates just function as
inverters for the signals fed between the two gates. (To see
this, look at the truth table for a NOR gate with one input set
to 0. The output is then just always the complement of the
other input.) Thus the circuit behaves exactly as the simple
pair of inverters – that is, it just stays in whichever state it
finds itself, and acts as a one-bit memory.
• If R = 1 and S = 0 (that is, we make the reset input high),
then output Q is forced to 0. (To see why, look at the NOR
truth table again.

Using Logic Gates to Build Computer Component

37

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

Making any input 1 forces the output to 0). Q′ (= Q) is thus
forced to 1, and the flip-flop is reset. It doesn’t matter how
many times this is then repeated; the circuit will still stay
reset.
Note: Q is taken to be the “normal” output of the flip-flop
(Q is always just its complement). Making Q = 1 is said to
be setting the flip-flop, while making Q = 0 is resetting it.
Set and reset are often also called preset and clear.
• If R = 0 and S = 1 (that is, we make the set input high),
then output Q´ is forced to 0 (it’s just the reverse of the
previous case – the circuit is symmetric). Q is thus forced to
1, and the flip-flop is set.
• If R = 1 and S = 1 at the same time, we have a problem.
Why? Because the outputs of both gates will be forced low.
Then, when R and S are both returned to 0, which state will
the circuit choose? (Note that Q = Q´ = 0 is not a stable state
if R = S = 0). The answer is – we don’t know! It all depends
on whether R or S went back to 0 first. For this reason, the
combination R = S = 1 is not allowed.
So, to store a 0 or 1 in this R-S flip-flop, we momentarily set
R or S respectively to 1.
It is also possible to build an R-S flip-flop using NAND
gates, as shown inthe diagram below

Another R-S flip-flop - this time using NAND gates.

We won’t work through the logic of it, but the R-S input
signals used here have to be the complement of those used
in the previous (NOR) case. That is, the set and reset signals
(labelled S and R) are normally 1 in “remember” mode, and
are taken to 0 to set or reset the circuit. Here the state S = R
= 0 is not allowed.
Note that these “inverted sense” input signals are denoted by
bars over the S and R (hence becoming S and R) and by the
little bubbles at the S and R inputs on the flip-flop symbol.

3. The J-K flip-flop
Although the R-S flip-flop is occasionally used, the J-K flip-
flop is far more commonly found in digital systems. In a
sense it is an enhancement of the R-S type, being rather
more versatile, but it does has some fundamental
differences. It has two inputs, J and K, which function
somewhat like the S and R inputs on an R-S flip-flop, as
well as a third clock input. The symbol for it is shown in the
diagram below. The particular variety of J-K flip-flop shown
in the diagram also has R and S inputs, which function in the
same way as in a plain R-S flip-flop (to force it into one
state or other). However, we won’t be concerned with them
here; they are not a necessary feature of J-K flip-flops.

The J-K flip-flop and its truth table. (Note that the R
and S inputs are not provided on all J-K flip-flops.)

Here’s how the J-K flip-flop works:
• A change can only occur when the clock rises (that is,
changes from 0 to 1). Nothing can happen at any other time
(for example, when the clock falls). The flip-flop is said to
be rising-edge-triggered. (It is also possible to get J-K flip-
flops which are falling-edge-triggered.)
• What happens depends on the values of J and K at the
instant the
clock rises. Now, the truth table:
• The third column of the truth table is just to remind you
that the
values of J and K are only important at the moment the
clock rises.
• The fourth column indicates the state which Q goes to after
the clock
rises, for a particular set of values of J and K. The notation
looks a bit
strange, but here’s what it means: Qn+1 means the state
after the clock
rises, while Qn means the state before. So the four entries in
column 4

for Qn+1 mean:

as toggling. Note that this behaviour did not occur with the
R-S flip-flop. The J-K truth table is actually not too difficult
to remember. The rules are:

(1) Things only happen when the clock rises.
(2) If J = K = 0 then nothing happens.
(3) If J = K = 1 then the flip-flop toggles
(4) If J ≠ K then Q goes to the value that J has.

The J-K flip-flop has some advantages over the R-S type.
First, because changes are controlled by the clock, the
operation of many circuits can be synchronised. Second, the
behaviour is defined for all values of J and K (remember
that R = S = 1 was not allowed with the R-S flip-flop).
Third, the toggling behaviour when J = K = 1 allows us to
design circuits which do some neat things.
There are many useful circuits we can build by connecting
J-K flip-flops together. Two of the most important are shift
registers and counters. Let’s look at some of these.

4. Shift registers
In digital parlance, a register is simply a fancy name for a
memory circuit to hold one “chunk” of information
consisting of a number of bits. A shift register has the ability
to “shift” all the bits of the binary number contained in it
one place to the left (or right, or either, depending on its
design), for each “tick” of a clock. It’s exactly like having a
full row of seats at the cinema, each seating a girl (1) or boy
(0). Some newcomer wants to sit at the end, so everybody
shifts along by one at the same time to accommodate them.
Of course, somebody also gets dropped off the other end,
since there are only a fixed number of seats. So the situation
might look like this: Before shift: 1 → 1010101100110100 -
-- (new girl) After shift: 1101010110011010 → 0 --- (boy
lost off end) The figure below shows a single stage of a shift

International Journal of Emerging Science and Engineering (IJESE)
ISSN: 2319–6378, Volume-3 Issue-7, May 2015

38
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

register using a J-K flipflop. J is set to the new value to be
shifted in, while K is set to its complement (this is easy to
arrange with an inverter if necessary). When the clock rises,
the J and K values are transferred to Q and Q respectively
(refer back to the J-K truth table to see why). The old values
of Q & Q are lost from this flip-flop, but are shifted to the
following stage at the same time

Figure 16.6 A basic shift register stage. With
complementary J and K inputs, the data at J and K are
transferred to Q and Q on rising clock edges. We can string
together as many basic stages as we like, each feeding the
next, as shown in the 3-stage example below. Note that the
same clock signal connects to all stages. After the clock
rises each time, a new value must be present at the input (A)
to get shifted into the register.

A three-stage shift register.

A timing diagram is shown below for an 8-stage shift
register, with outputs named Q1 to Q8 (flip-flops 1 to 8).
Initially the shift register contains all zeroes (see down left-
hand side). Notice that the bits comprising the data (input)
signal (going to flip-flop 1) are presented one bit at a time
(serially), and are changed just after the clock rises each
time. Notice also that Q1 follows the input signal (but
delayed by just a little; it doesn’t change until the clock
rises). Q2 follows Q1, but one clock cycle later, and so on.
Eventually, after 8 clock cycles, the 8 bits of the input signal
are shifted along to appear at Q1 through Q8.

A Timing diagram for serial-to-parallel conversion
using an 8-bit shift register. Q1 to Q8 are all initially 0, but
after 8 clock cycles are set to the values of the incoming
serial data. At this point all the bits of the signal are
available simultaneously at the flip-flop outputs – that is, in
parallel, rather than one at a time. Since the serial data
stream is converted into parallel form, the shift register thus
acts as a serial-to-parallel converter. (In practice, a little
more circuitry would be required to inform the eventual
receiver of the data that a new output was available after
every 8 bits.) This might be useful, for example, if you
wanted to test whether consecutive bits of the serial data
stream were equal to some particular pattern (you would

also need a little extra circuitry), or if they had to be sent to
another device which required them all at the same time. For
example, printers used with personal computers used to
accept their data this way, one byte (8 bits) at a time, via the
computer’s parallel port. A shift register can also be used to
perform parallel-to-serial conversion, as illustrated in the
next timing diagram. Here the idea is that the shift register is
“loaded” with the new data, 8 bits at a time. These 8 bits are
then shifted to the right one bit at a time, appearing at Q8.
After 8 clock cycles, the next 8 bits are loaded, and so on.

A Timing diagram for parallel-to-serial conversion
Using an 8-bit shift register.

5. Counters
One particularly useful class of circuits which can be
constructed with J-K , flip-flops is counters. Just like a
digital clock, a counter steps through a specified sequence of
numbers with each “tick” of a clock. In fact, let’s just
consider this example for a moment to tune in to how
counters operate. A digital clock is probably best designed
as, say, 3 counters, two of which count through 0 to 59
(seconds and minutes), and one which counts through 0 to
11 (or 0 to 23). When the seconds counter goes past 59, it
resets to zero, as well as sending a “minute tick” to the
minutes counter (this is a “carry”). And so on. It wouldn’t be
difficult to design such a clock with flip-flops and gates, but
we’ll do something a little bit easier. Here we’re just going
to consider binary counters. That is, circuits which count
through a series of states which represent binary numbers, as
in the following table (similar to the one in the previous
chapter).

The Successive states of a 4-bit binary counter counting

from 0 to 15 (decimal).
As a start, let’s look a bit closer at a J-K flip-flop which is
set up to toggle - (that is when J = K = 1), as shown in the
diagram below. We know that for every clock cycle (when
the clock rises), its state changes, from 0→1 or 1→0. If we
look at the timing diagram on the right, we see that Q
changes only half as often as the clock. (That is, the
frequency of the signal at Q is half that of the clock. We
could make immediate use of this if we had need for a
circuit to divide the frequency of a (digital) signal by two.)

Using Logic Gates to Build Computer Component

39

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

Figure 16.10 A J-K flip-flop with J = K = 1 toggles (changes
state) on rising clock edges to give an output which changes
at one-half the clock rate. If you look at the right-hand bit
(usually referred to as least-significant bit or LSB) of each
binary number in the table above, and compare it with the
next bit (one from the right), you will notice that the LSB
changes exactly twice as often as its left neighbour as the
count proceeds. This bears a striking similarity to the
relationship between the clock and Q signals in the timing
diagram above. Similarly, the next bit to the left changes
half as often again, and so on. Now suppose we connect two
J-K flip-flops together as shown below. That is, the output Q
of the first flip-flop is used as the clock input for the next
flip-flop. The output of the second flip-flop will now change
at one-quarter the rate of the clock.

The Cascading two stages gives a final output (Q2 or Q2)

which is one-quarter the clock rate. The circuit also
functions as a two-bit binary counter.

Assume that initially Q1 = 0 and Q2 = 0. Let’s look at what
happens on successive clock cycles. The timing diagram is
shown below.

The Timing diagram for the two-bit binary counter.

Notice that:
-Every time the clock rises, Q1 (and Q1 of course) changes.
-Every time Q1 falls (that is, Q1 rises), Q2 changes. -After 4
clock cycles, everything is back to where it started, with Q1
= Q2 = 0. This is probably not surprising – there are only 4
different possibilities for the values of Q1 and Q2 taken
together. That is, the whole circuit has only 4 different
possible states. It certainly can’t take longer than 4 clock
cycles to return!

• Taken together as a binary number, the pair {Q2Q1}
cycles through the values 00, 01, 10, 11, …(decimal 0, 1, 2,
3,…). That is, we have constructed a 2-bit binary counter.

VII. Conclusion

 important computer components like Flip Flops , Registers
and counters have been built by using the basic logic gates .

References

1. R. Landauer, “Irreversibility and Heat Generation in the
Computational Process”, IBM Journal of Research and Development,
1961.

2. D. P. Vasudevan, P.K. Lala , J. Di and J.P Parkerson, “Reversible–
Logic Design with Online Testability”, IEEE Trans. on Intrumentation
and Measurement, April 2006.

3. C. H. Bennett, “Logical Reversibililty of Computation”, IBM J.
Research and Development, November 1973.

4. R. Feynman, “Quantum Mechanical Computers” , Optics News, 1985.
5. T. Toffoli, “Reversible Computing”, Tech memo MIT/LCS/ TM-151,

MIT Lab for Computer Science, 1980.
6. H. Thapliyal and N. Ranganathan, “Design of Reversible Sequential

Circuits Optimizing Quantum Cost, Delay and Garbage Outputs,”
ACM Journal of Emerging Technologies in Computing Systems, Dec.
2010.

7. Abu Sadat Md. Sayem and Masashi Ueda, “Optimization of Reversible
Sequential Circuits,” Journal of Computing, 2010.

8. E. Fredkin and T. Toffoli, “Conservative Logic”, Int‟l J. Theoretical
Physics, 1982.

9. Peres, “Rversible Logic and Quantum Computers”, Physical review A,
1985.

10. M.P Frank, “Introduction to Reversible Computing: Motivation,
Progress and Challenges”, Proceedings of the 2nd Conference on
Computing Frontiers, 2005.

11. Diganta Sengupta, Mahamuda Sultana, Atal Chaudhuri, “Realization of
a Novel Reversible SCG Gate and its Application for Designing
Parallel Adder/Subtractor and Match Logic”, International Journal of
Computer Applications (0975-8887), October 2011.

12. B. Raghu kanth, B. Murali Krishna, M. Sridhar, V. G. Santhi Swaroop,
“A Distinguish between Reversible and Conventional Logic Gates”,
International Journal of Engineering Research and Applications
(IJERA), Mar-Apr 2012.

13. H. P. Sinha, Nidhi Syal, “Design of Fault Tolerant Reversible
Multiplier”, International Journal of Soft Computing and Engineering
(IJSCE), January 2012.

