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Abstract—This paper Shows and introduce how to build a 
computer component from the basic logic gates  
        Index Terms -- Introduction, Logic gates & Truth Table, 
Combinational and Sequential Circuits, Boolean algebra, 
Building complicated circuits Using Logic Gates 

I.  INTRODUCTION 

Digital signals 
As we know that Digital signals have only a certain number 
of possible values and for the basic logic circuits that we 
will be discussing, there are only two possible values , a 
digital signal must still be represented by an analog voltage, 
it may be corrupted by noise and so on. Having two possible 
values then might work something like this, allowing for 
noise: let’s suppose the two possible values for a voltage are 
zero and 1 volt. Then, if the voltage is less than 0.5 volts, 
assume its actual value is zero volts; if it is greater than 0.5 
volts assume it’s actually 1 volt. this could have some 
advantages : If the signal is supposed to be zero volts, it 
needs a lot of noise to make it appear as 1 volt, and vice 
versa. That is, the S/N ratio would have to be very poor for 
an error to occur. Although the digital signal doesn’t contain 
much information, it’s pretty robust. The circuits which use 
signals like these don’t need to linear, it’s actually best if 
they aren’t, but tend to “stick” to voltage values of (in this 
example) zero or 1 volt. 
Showing information in binary form 
A ( two-state ) signal like this is called a binary signal, and 
can be used to represent any information which also has two 
possible states. These might be: 

1.  True/false 
2.  High/low 
3.  Yes/no 
4.  1/0 

-  It turns out that this is not all that restrictive, because  
we can represent any amount of information by combining a 
number of such signals. The common game of “20 
questions” is an example of this. Here, one of a (fairly large) 
number of possibilities is identified by successive “yes/no” 
answers. With each question, the number of possibilities 
potentially halves. Any sequence of answers can be written 
down as a string of symbols, each of which is “yes/no”, or, 
if you like, “0/1” (the latter takes less paper..).  Each one of 
these smallest units of information is called a bit (for binary 
digit) . and we can specify the information content of a 
document, message, or whatever by specifying the number 
of bits needed to represent it. Very often the information is 
inherently numerical, and the “0/1” interpretation of our two 
signal states is the most appropriate. 
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We are used to seeing numbers in decimal form; that is, base 
ten, where the digits 0 to 9 are used. As you are probably 
aware, we can also represent numbers in binary form, using 
only the digits 0 and -- The decimal integers 0 to 10 are 
represented in binary form as  
Follows:  

 

Binary representation of integers 0 to 10. 

With 4 bits we can count from 0 to 15 ,  we can represent 16 
different numbers, or 16 different states (or “possibilities”). 
The more bits we have available, the more numbers we can 
represent. With n bits, 2n different states can be represented. 
Although it is more tedious for humans to write numbers in 
this way, it is much more convenient for electronic circuits 
to store and manipulate them, and the binary representation 
is used in computers. Most personal computers these days 
basically represent numbers using 32 or 64 bits. This is 
referred to as the word length of the computer. With 32 bits, 
we can count from 0 to 4,294,967,295 ( = 232 or 
4,294,967,296 possible states). The table below shows the 
number of possible states for some common word lengths 
encountered in digital circuits or computers. Note that a byte 
is a group of 8 bits. 

 
 

• Number of states which can be 
 represented by a given number of bits. 

A Simple logic circuits: 
• the left hand circuit below, which 

makes use of two states. we call the two states ON and OFF, 
as it makes most sense. 

 
• Circuits using switches to implement the AND & 

OR logic 
functions. This circuit has two “inputs” - the positions of the 
two switches (either ON or OFF), and one “output” - 
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whether the lamp is ON or OFF. Since the switches and the 
lamp are all in series, the lamp will light only if both 
switches are ON. Thus the lamp is ON only if switch 1 is 
ON and switch 2 is ON, but at no other time. We would say 
that this circuit performs an AND function. In the right hand 
circuit - Here the lamp is ON if  switch 1 is ON or switch 2 
is ON (and this includes the case when both  switches are 
ON). We say that this circuit thus performs an OR function. 
Now it wouldn’t be much use if we had to rely on flipping 
switches to get results for calculations involving large 
numbers of binary signals. What we need is a circuit which 
takes binary signals say, as voltages, and generates outputs 
which are also voltages. One relatively primitive way of 
doing this is with relays, which can be thought of as 
switches activated by a voltage. Most cars have quite a few 
relays to switch relatively heavy currents for starter motors, 
headlights, rear window demisters and the like. In a relay, 
the voltage across a coil of wire wound around an iron rod 
causes a current to flow and a magnetic field to be generated 
(note that the coil is also an inductor, but it’s not the 
inductance that’s of interest to us here). The relatively 
strong magnetic field pulls a switch contact closed, and this 
can be used to control a large current. Here is a relay version 
of an AND circuit, with voltage inputs and output:  

 
- AND logic function is implemented by A circuit uses 

relays 
The advantage of this circuit is that the output voltage can 
now be used as an input to other circuits, so we could build 
quite complicated logic circuits. For example, we might 
implement something like this (assuming we have 
appropriate input signals from sensors): “If reactor getting 
too hot AND ((NOT backup safety circuit active) OR , 
Homer Simpson is at control panel) then sound immediate 
evacuation alarm”.  relays aren’t really a practical 
proposition for complicated, highspeed or compact systems. 
Fortunately, we can use transistors, which can be coaxed to 
act in a somewhat similar way to relays, to build fast, cheap, 
compact and incredibly reliable logic circuits. It is now 
commonplace to buy integrated circuits (ICs, or “silicon 
chips”) containing millions of such circuits.  

II.  The Logic gates &The Truth tables 

Gates : 
A gate is an electronic device with one or more inputs, each 
of which can assume , either the value 0 or the value 1. As 
mentioned earlier, the logical values 0 and 1 are generally 
represented electronically by two different voltage levels, 
but the 
physical method of representation need not concern us. A 
gate usually has one output, which is a function of its inputs, 
and which is also either 0 or 1. 
 

 
Symbols for gates. 

A basic circuit which performs logical operations such as 
AND or OR is referred to as a gate. In the simple examples 
we have looked at so far,, there were only two inputs, but 
AND and OR (and some other) gates may have many inputs. 
The most common types of gates use voltages as logic 
signals, with, say, +5 volts representing a high “logic level” 
(or 1, or TRUE, ..etc…) and zero volts representing a low 
logic level (or 0, or FALSE, etc..). 
 

• the truth tables for AND and OR gates, together with 
the 

symbols commonly used for them: 
 

 
 

Logic symbols for 2-input AND & OR gates and truth 
tables 

There are some other types of gates, the NOT logical 
function, and this gate is called an inverter. 
Inverters 
gates compute some particular Boolean function ,  AND  
and OR-gates are usually easy to build, as are NOT-gates, 
which are called inverters. AND & OR gates can have any 
number of inputs, although, as we discuss in Section 13.5, 
there is usually a practical limitation on how many inputs a 
gate can have. The output of an AND-gate is 1 if all its 
inputs are 1, and its output is 0 if any one or more of its 
inputs are 0. Likewise, the output of an OR-gate is 1 if one 
or more of its inputs are 1, and the output is 0 if all inputs 
are 0. The inverter (NOT-gate) has one input; its output is 1 
if its input is 0 and 0 if its input is We also find it easy to 
implement NAND- and NOR-gates in most technologies. 
The NAND-gate produces the output 1 unless all its inputs 
are 1, in which case it produces the output 0. The NOR-gate 
produces the output 1 when all inputs are 0 and produces 0 
otherwise. An example of a logical function that is harder to 
implement electronically is equivalence, which takes two 
inputs x and y and produces a 1 output if x and y are both 1 
or both 0, and a 0 output when exactly one of x and y is 1. 
However, we can build equivalence circuits out of AND, 
OR , and NOT gates by implementing a circuit that realizes 
the logical function xy + ¯ x¯ y. The symbols for the gates we 
have mentioned are shown in Fig. 13.1. In each case except 
for the inverter (NOT-gate), we have shown the gate with 
two inputs. However, we could easily show more than two 
inputs, by adding additional lines. A one-input AND- or 
OR-gate is possible, but doesn’t really do anything; it just 
passes its input to the output. A one-input NAND- or NOR-



International Journal of Emerging Science and Engineering (IJESE) 
ISSN: 2319–6378, Volume-3 Issue-7, May 2015 

32 
Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication Pvt. Ltd. 

gate is really an inverter. This gate has only one input and 
one output, and changes a 0 at the input to a 1 at the output, 
and vice versa. The inverter is also said to complement or 
negate the input signal – that is, the complement of 0 is 1, 
and vice versa. The logic symbol and truth table for the 
inverter are shown at the left of the diagram below: 

 

 
 

Logic symbols for the inverter (NOT gate) and XOR gate 
and truth tables for these functions. 

 
The right-hand side of this diagram shows another common 
function – the  exclusive OR, or XOR function. This is the 
same as an OR function, except when both inputs are high, 
and in this case the output is low. Another way of looking at 
the 2-input XOR function is that it gives a high output if the 
two inputs are different. The AND and OR functions may be 
combined with an inverter (the NOT function) to give 
NAND and NOR functions. These are the same as AND & 
OR except that the outputs are inverted. Real NAND and 
NOR gates are more common than AND & OR because 
they can be made more simply (and can operate a little 
faster). The symbols and truth tables are shown below. 
Notice the little “bubbles” on the gate outputs which 
indicate negation (inversion) 

 
 

Logic symbols for 2-input NAND (NOT AND) & NOR 
(NOT OR) gates and truth tables. 

III.  Combinational and Sequential Circuits 

There is a very close relationship between the logical 
expressions we can write using a collection of logical 
operators, such as AND, OR, and NOT, on one hand, and 
the circuits built from gates that perform the same set of 
operators, on the other hand. Before proceeding, we must 
focus our attention on an important class of circuits called 
combinational circuits. These circuits are acyclic, in the 
sense that the output of a gate cannot reach its input, even 
through a series of intermediate gates. We can use our 
knowledge of graphs to define precisely what we mean by a 
combinational circuit. First, draw a directed graph whose 
nodes correspond to the gates of the circuit. Add an arc u → 
v if the output of gate u is connected directly to any input of 
gate v. If the circuit’s graph has no cycles, then the circuit is 
combinational; otherwise, it is sequential. 

• Sequential Circuits  
There is a very close relationship between the deterministic 
finite automata that we discussed in Chapter 10 and 

sequential circuits. While the subject is beyond the scope of 
this book, given any deterministic automaton, we can design 
a sequential circuit whose output is 1 exactly when the 
sequence of inputs of the automaton is accepted. To be more 
precise, the inputs of the automaton, which may be from any 
set of characters, must be encoded by the appropriate 
number of logical inputs (which each take the value 0 or 1); 
k logical inputs to the circuit can code up to 2k characters. 
We shall discuss sequential circuits briefly at the end of this 
chapter. As we just saw in Example 13.2, sequential circuits 
have the ability to remember important things about the 
sequence of inputs seen so far, and thus they are needed for 
key components of computers, such as main memory and 
registers. Combinational circuits . on the other hand, can 
compute the values of logical functions, but they must work 
from a single setting for their inputs, and cannot remember 
what the inputs were set to previously. Nevertheless, 
combinational circuits are also vital components of 
computers. They are needed to add numbers, decode 
instructions into the electronic signals that cause the 
computer to perform those instructions, and many other 
tasks. In the following sections, we shall devote most of our 
attention to the design of combinational circuits. 

IV.  Boolean algebra 

it is One of the important tools that digital designers use is 
boolean algebra (named after the nineteenth-century 
English mathematician, George Boole). It’s a way of 
representing and manipulating logic signals and functions, 
and enables us, for example, to select the most economical 
combination of gates to carry out some function. The 
various logic functions correspond to operators (analogous 
to addition, multiplication etc.) which act on logic signals. 
They are shown in the following table, where A and B 
represent two logic signals (or variables, just like normal 
algebra), each of which may have the value 0 or 1: 

 
logical operators 

Although the symbols for AND and OR might look like 
multiplication and addition (and they do have similarities) 
they operate differently . The result of any one of these 
operations is always just 0 or 1 (that is, one bit’s worth , just 
like any input) For example, we find that: 
(A • B) + (A • C) = A • (B + C)  so that the following two 
logic circuits are equivalent, although the second uses one 
less gate: 

 
 

Two logic circuits which implement the same function. 
Notice that this is like a similar rule in normal algebra, and 
there are other rules which are also similar. Although we 
won’t take the idea of  Boolean algebra any further than this, 
it at least gives you a taste of the possibilities. 
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Circuit Diagram Convention 
When circuits are complicated, as is the circuit in Fig. 13.10, 
there is a useful convention that helps simplify the drawing. 
Often, we need to have “wires” (the lines between an output 
and the input(s) to which it is connected) cross, without 
implying that they are part of the same wire. Thus, the 
standard convention for circuits says that wires are not 
connected unless, at the point of intersection, we place a dot. 
For example, the vertical line from the circuit input y is not 
connected to the horizontal lines labeled x or ¯ x, even 
though it crosses those lines. It is connected to the horizontal 
line labeled y, because there is a dot at the point of 
intersection. 

 

Karnaugh maps of the sum & carry-out functions. 

In the above Fig. we see Karnaugh maps for z and d, the 
sum and carry-out functions of the one-bit adder. Of the 
eight possible minterms, seven appear in the functions for z 
or d, and only one, xyc, appears in both. and A 
systematically designed circuit for the one-bit adder is 
shown in the Fig , We begin by taking the circuit inputs and 
inverting them, using the three inverters at the top. Then we 
create AND-gates for each of the minterms that we need in 
one or more outputs. These gates are numbered 1 through 7, 
and each integer tells us which of its inputs are “true” circuit 
inputs, x, y, or c, and which are “complemented” inputs, ¯ x, 
¯ y, or ¯ c. That is, write the integer as a 3-bit binary number, 
and regard the bits as representing x, y, and c, in that order. 
For example, gate 4, or (100)2, has input x true and inputs y 
and c complemented; that is, it produces the output 
expression x¯ y¯ c. Notice that there is no gate 0 here, 
because the minterm ¯ x¯ y¯ c is not needed for either output. 
Finally, the circuit outputs, z and d, are assembled with OR-
gates at the bottom. The OR-gate for z has inputs from the 
output of each AND-gate whose minterm makes z true, and 
the inputs to the OR-gate for d are selected similarly. Let us 
compute the output expressions for the circuit of Fig. 13.10. 
The topological order we shall use is the inverters first, then 
the AND-gates 1, 2, . . . , 7, and finally the OR-gates for z 
and d. First, the three inverters obviously have output 
expressions ¯ x, ¯ y, and ¯ c. Then we already mentioned how 
the inputs to the AND-gates were selected and how the 
expression for the output of each is associated with the  
 

 
One-bit-adder circuit. 

 
binary representation of the number of the gate. Thus, gate 1 
has output expression ¯ x¯ yc. Finally, the output of the OR-
gate z is the OR of the output expressions for gates 1, 2, 4, 
and 7, that is ¯ x¯ yc + ¯ xy¯ c + x¯ y¯ c + xyc Similarly, the 
output of the OR-gate for d is the OR of the output 
expressions for gates 3, 5, 6, and 7, which is ¯ xyc + x¯ yc + 
xy¯ c + xyc We leave it as an exercise to show that this 
expression is equivalent to the expression  yc + xc + xy 

• Chips 
Chips generally have several “layers” of material that can be 
used, in combination . to build gates. Wires can run in any 
layer, to interconnect the gates , wires on different layers 
usually can cross without interacting. The  feature size,” 
roughly the minimum width of a wire, is in 1994 usually 
below half a micron (a micron is 0.00l millimeter, or about 
0.00004 inches). Gates can be built in an area several 
microns on a side. The process by which chips are fabricated 
is complex. For example, one step might deposit a thin layer 
of a certain substance, called a photoresist, all over a chip. 
Then a photographic negative of the features desired on a 
certain layer is used. By shining light or a beam of electrons 
through the negative, the top layer can be etched away in 
places where the beam shines through, leaving only the 
desired circuit pieces. 
Some Physical Constraints on Circuits 
Today, most circuits are built as “chips,” or integrated 
circuits. Large numbers of gates, perhaps as many as 
millions of gates, and the wires interconnecting them, are 
constructed out of  semiconductor and metallic materials in 
an area about a centimeter (0.4 inches) on a side. The 
various “technologies,” or methods of constructing 
integrated circuits, impose a number of constraints on the 
way efficient circuits can be designed. For example, we 
mentioned earlier that certain types of gates, such as AND, 
OR, and NOT, are easier to construct than other kinds 
Circuit Speed 
Associated with each gate is a delay, between the time that 
the inputs become active and the time that the output 
becomes available. This delay might be only a few 
nanoseconds (a nanosecond is 10−9 seconds), but in a 
complex circuit, such as the central processing unit of a 
computer, information propagates through many levels of 
gates, even during the execution of a single instruction. As 
modern computers perform instructions in much less than a 
microsecond (which is 10−6 seconds), it is evidently 
imperative that the number of gates through which a value 
must propagate be kept to a minimum. Thus, for a 
combinational circuit, the maximum number of gates that lie 
along 
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any path from an input to an output is analogous to the 
running time of a program as a figure of merit. That is, if we 
want our circuits to compute their outputs fast, we must 
minimize the longest path length in the graph of the circuit. 
The delay of a circuit is the number of gates on the longest 
path — that is, one plus the length of the path equals the 
delay. For example, the adder of Fig. 13.10 has delay 3, 
since the longest paths from input to output go through one 
of the inverters, then one of the AND-gates, and finally, 
through one of the OR-gates; there are many paths of length 
3. Notice that, like running time, circuit delay only makes 
sense as an “order of magnitude” quantity. Different 
technologies will give us different values of the time that it 
takes an input of one gate to affect the output of that gate. 
Thus, if we have two circuits, of delay 10 and 20, 
respectively, we know that if implemented in the same 
technology, with all other factors being equal, the first will 
take half the time of the second. However, if we implement 
the second circuit in a faster technology, it could beat the 
first circuit implemented in the original technology. 
Size Limitations 
The cost of building a circuit is roughly proportional to the 
number of gates in the circuit, and so we would like to 
reduce the number of gates. Moreover, the size of a circuit 
also influences its speed, and small circuits tend to run 
faster. In general , the more gates a circuit has, the greater 
the area on a chip that it will consume. There are at least two 
negative effects of using a large area. 
1. If the area is large, long wires are needed to connect gates 
that are located far apart. The longer a wire is, the longer it 
takes a signal to travel from one end to the other. This 
propagation delay is another source of delay in the circuit, in 
addition to the time it takes a gate to “compute” its output . 
2. There is a limit to how large chips can be, because the 
larger they are, the more likely it is that there will be an 
imperfection that causes the chip to fail. 
If we have to divide a circuit across several chips, then wires 
connecting the chips will introduce a severe propagation 
delay. 
Our conclusion is that there is a significant benefit to 
keeping the number of gates in a circuit low. 
Fan-In and Fan-Out Limitations 
it is a constraint on the design of circuits comes from 
physical realities. We pay a penalty for gates that have too 
many inputs or that have their outputs connected to too 
many other inputs. The number of inputs of a gate is called 
its fan-in, and the number of inputs to which the output of a 
gate is connected is that gate’s fanout. While, in principle, 
there is no limit on fan-in or fan-out, in practice, gates with 
large fan-in and/or fan-out will be slower than gates with 
smaller fan-in and  fan-out. Thus, we shall try to design our 
circuits with limited fan-in and fan-out.  
A Divide-and-Conquer Addition Circuit 
One of the key parts of a computer is a circuit that adds two 
numbers. While actual microprocessor circuits do more, we 
shall study the essence of the problem by designing a circuit 
to add two nonnegative integers. This problem is quite 
instructive as an example of divide-and-conquer circuit 
design. We can build an adder for n-bit numbers from n one-
bit adders, connected in one of several ways.  use the circuit 
as a one-bit-adder circuit. This circuit has a delay of 3, 
which is close to the best we can do , The simplest approach 
to building an adder circuit is the ripple-carry adder . In this 
circuit, an output of each one-bit adder becomes an input of 
the next one-bit adder, so that adding two n-bit numbers 

incurs a delay of 3n. For example, in the case where n = 32, 
the circuit delay is 96. A Recursive Addition Circuit We can 
design an adder circuit with significantly less delay if we 
use the divide-and-conquer strategy of designing a circuit 
for n/2 bits and using two of them, together with some 
additional circuitry, to make an n-bit adder. In Example 
13.6, we spoke of a divide-and-conquer circuit for taking the 
OR of many bits, using 2-input OR- gates. That was a 
particularly simple example of the divide-and-conquer 
technique, since each of the smaller circuits performed 
exactly the desired function (OR), and the combination of 
outputs of the subcircuits was very simple (they were fed to 
an OR-gate). The two half-size circuits did their work at the 
same time (in parallel), so their delays did not add. For the 
adder, we need to do something more subtle. A naive way to 
start is to add the left half of the bits (high-order bits) and 
add the right half of the bits (low-order bits), using identical 
half-size adder circuits. However, unlike the n-bit OR 
example, where we could work on the left and right halves 
independently, it seems that for the adder, the addition for 
the left half cannot begin until the right half is finished and 
passes its carry to the rightmost bit in the left half, as 
suggested If so, we shall find that the “divide-and-conquer” 
circuit is actually identical to the ripple-carry adder, and we 
have not improved the delay at all. The additional “trick” we 
need is to realize that we can begin the computation of the 
left half without knowing the carry out of the right half, 
provided we compute more than just the sum. We need to 
answer two questions. First, what would the sum be if there 
is no carry into the rightmost place in the left half, and 
econd, what would the sum be if there is a carry-in?3 We 
can then allow the circuits for the left and right halves to 
compute their two answers at the same time. Once both have 
been completed, we can tell whether or not there is a carry 
from the right half to the left. That tells us which answer is 
correct, and with three more levels of delay, we can select 
the correct answer for the left side. Thus, the delay to add n 
bits will be just three more than the delay to add n/2 bits, 
leading to a circuit of delay 3(1 + log2 n). That compares 
very well with the ripple-carry adder for n = 32; the divide-
and-conquer adder will have delay 3(1+ log2 32) = 3(1+ 5) 
= 18, compared with 96 for the ripple-carry adder. 
 

 
 
-An inefficient divide-and-conquer design for an adder. 

 
More precisely, we define an n-adder to be a circuit with 
inputs x1, x2, . . . , xn & y1, y2, . . . , yn, representing two n-
bit integers, and outputs  
 1. s1, s2, . . . , sn, the n-bit sum (excluding a carry out of the 
leftmost place, i.e., out of the place belonging to x1 and y1) 
of the inputs, assuming that there is no carry into the 
rightmost place (the place of xn and yn). 
 2. t1, t2, . . . , tn, the n-bit sum of the inputs, assuming that 
there is a carry into the rightmost place. 
3. p, the carry-propagate bit, which is 1 if there is a carry out 
of the leftmost place, on the assumption that there is a carry 
into the rightmost place. 
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4. g, the carry-generate bit, which is 1 if there is a carry out 
of the leftmost place, even if there is no carry into the 
rightmost place. 
Note that g → p; that is, if g is 1, then p must be 1. 
However, g can be 0, and p still be 1. it is clear , if the x’s 
are 1010 ・ ・ ・ , and the y’s are 0101 ・ ・ ・ , then g = 
0, because when there is no carry in, the sum is all 1’s and 
there is no carry out of the 
leftmost place. On the other hand, if there is a carry into the 
rightmost position, then the last n bits of the sum are all 0’s, 
and there is a carry out of the leftmost place; thus p = 1. 
We shall construct an n-adder recursively, for n a power of 
2. BASIS. Consider the case n = 1. Here we have two 
inputs, x and y, and we need to compute four outputs, s, t, p, 
and g, given by the logical expressions 
 
s = x¯ y + ¯ xy 
t = xy + ¯ x¯ y 
g = xy 
p = x + y 
To see why these expressions are correct, first assume there 
is no carry into the one place in question. Then the sum bit, 
which is 1 if an odd number of x, y, and the carry-in are 1, 
will be 1 if exactly one of x and y is 1. The expression for s 
above clearly has that  
 

property. Further, with no carry-in, there can only be a 

 
Adder Circuit 

 
The Divide-and-Conquer Adder 

 
Delay of the Divide-and-Conquer Adder  
Let D(n) be the delay of the n-adder we just designed. We 
can write a recurrence relation for D as follows. For the 
basis, n = 1, examine the basis circuit and conclude that the 
delay is 3. Thus, D(1) = 3. Now examine the inductive 
construction of the circuit . of the circuit is the delay of the 
n-adders plus the delay of the FIX circuitry. Then adders 
have delay D(n). Each of the expressions developed for the 
FIX circuitry yields a simple circuit with at most three 
levels.  
Thus, D(2n) is three more than D(n). The recurrence relation 
for D(n) is thus  
D(1) = 3 
D(2n) = D(n) + 3 

The solution, for numbers of bits that are powers of 2, 
begins D(1) = 3, D(2) = 6, D(4) = 9, D(8) = 12, D(16) = 15, 
D(32) = 18, and so on. The solution to the recurrence is 
D(n) = 3(1 + log2 n) 
particular, note that for a 32-bit adder, the delay of 18 is 
much less than the delay of 96 for the 32-bit ripple-carry 
adder. Number of Gates Used by the Divide-and-Conquer 
Adder We should also check that the number of gates is 
reasonable. Let G(n) be the number of gates used in an n-
adder circuit. The basis is G(1) = 9,  T, the inductive case, 
has 2G(n) gates in the two n-adder sub circuits. To this 
amount, we must add the number of gates in the FIX 
circuitry. As we may invert gR and pR once, each of the n 
si’s and ti’s can be computed with three gates each (two 
AND’s and an OR), or 6n gates total. To this quantity we 
add the two inverters for gR and pR, and we must add the 
two gates each that we need to compute g and p. The total 
number of gates in the FIX circuitry is thus 6n + 6.  The 
recurrence for G is hence  ,G(1) = 9 ,  G(2n) = 2G(n) + 6n + 
6 Again, our function is defined only when n is a power of 
2. The first six values The closed-form expression for G(n) 
is 3n log2 n + 15n − 6, for n a power of 2 , Actually, we can 
do with somewhat fewer gates, if all we want is a 32-bit 
adder . For then, we know that there is no carry-in at the 
right of the 32nd bit, and so the value of p, and the values of 
t1, t2, . ... . , t32 need not be computed at the last stage of the 
circuit. Similarly, the right-half 16-adder does not need to 
compute its carry propagate bit or its 16 t-values; the right-
half 8-adder in the right 16-adder does not need to compute 
its p or t’s and so on. It is interesting to compare the number 
of gates used by the divide-and-conquer adder with the 
number of gates used by the ripple-carry adder. The circuit 
for a full adder that we designed in Fig. 13.10 uses 12 gates. 
Thus, an n-bit ripple-carry 

 
 Numbers of gates can be used by n-adders. 

 
adder uses 12n gates, and for n = 32, this number is 384 (we 
can save a few gates if we remember that the carry into the 
rightmost bit is 0). We see that for the interesting case, n = 
32, the ripple-carry adder, while much slower, does use 
fewer than half as many gates as the divide-and-conquer 
adder. Moreover, the latter’s growth rate, O(n log n), is 
higher than the growth rate of the ripple-carry adder, O(n), 
so that the difference in the number of gates gets larger as n 
grows. However, the ratio is only O(log n), so that the 
difference in the number of gates used is not severe. As the 
difference in the time required by the two classes of circuits 
is much more significant [O(n) vs. O(log n)], some sort of 
divide-and-conquer adder is used in essentially all modern 
computers. 

V. Building complicated circuits Using Logic Gates 

By combining a number of gates, we can start building more 
practically useful circuits. For example, the circuit shown 
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below compares two 4-bit binary numbers, giving an output 
of 1 if they are equal, or 0 if they are different. 
 

 
A circuit which compares two 4-bit binary numbers. 

 
In order to see how it works, you will need to remember the 
behaviour of the exclusive-OR (XOR) and NOR gates. 
Recall that the XOR gate gives an output of 0 only if its 
inputs are the same. The NOR gate here has four inputs 
rather than two, but remember that it is a “NOT (OR)”, so 
that it will give an output of 1 only if all of its inputs are 0. 
Here’s how it works: a separate XOR gate compares the two 
bits at each bit position of the two numbers. If the bits are 
the same, then the XOR will give an output of 0. A 4-input 
NOR gate then combines the results from all the XOR gates. 
If the two numbers are identical, then all the XOR outputs 
will be 0, and the output of the NOR will be 1. On the other 
hand, if the numbers are different, then at least one of the 
XOR outputs will be 1, forcing the output of the NOR gate 
to zero. For the two binary numbers being compared in the 
diagram above (1010 and 1011), the first three bits are 
identical, so that the outputs of the first three XOR gates are 
0. The last bit is different, but it only takes one input of the 
NOR gate to be 1 to make its output zero. The circuit can 
easily be expanded to handle larger numbers of bits, and 
might serve as a useful building block in a larger digital 
system, where, for example, a notification might be required 
when a counter reaches a certain value. 

VI.  FLIP FLOPS - REGISTERS- COUNTERS 

1. Flip-flops as memory elements 
The figure below shows a strange-looking circuit – two 
inverters, with outputs A and B, talking only to each other 
(note that you could redraw this circuit as a simple closed 
loop with a “chain” of two inverters). 

 

 
Cross-coupled inverters form a basic flip-flop. 
 

suppose for a start that outputs A and B can only have 
values 0 or 1.Then, let’s assume that A = 1. Is this OK? The 
output A goes into the lower inverter and is complemented, 
so that B must be 0. Output B is fed to the upper inverter, 
producing an output of 1 at A. This is the same as our 
original assumption, and tells us that everything is 
consistent; the circuit can have this state. Furthermore, there 
is no reason for the state to change. It is stable. What if we 
had chosen A = 0 instead? Following the same chain of 
reasoning, we could argue that this is also a stable state (but 

obviously the only other one). Thus the circuit has two 
stable states; it is referred to as a bistable circuit, or a flip-
flop. Note also that B = A. Another way of looking at it is to 
say that the circuit has a “memory”. If it is somehow forced 
into one state, it will stay there. So, in principle, we have a 
simple way of “saving” binary information (at least as long 
as the power is not turned off!). The only problem we have 
is that it’s not clear how to make the flip-flop “flip” or 
“flop” on demand.  A “brute-force” method is shown in the 
diagram below, where a switch can connect the input of 
either flip-flop (and hence the output of the other) directly to 
a voltage source representing logical 0, or just hang loose in 
the middle position. Connecting one gate input to logical 0 
also forces the input of the other gate to 1, and hence its 
output to 0, and so the circuit can be “set” or “reset”. 

 

 
Adding a switch enables the flip-flop to be forced into 

one state or the other. 
In practice we might not simply connect outputs to 0 volts 
like this, as the gates might be damaged; we would include 
resistors in appropriate places. A version of this technique is 
often used to “de-bounce” switches, such as pushbuttons on 
a panel connected to logic circuits. It is normal for switch 
contacts to “chatter” as they close, causing multiple changes 
of signal level. The de-bouncing scheme makes sure that 
only one change occurs, at the time the switch first makes 
contact.  

2. The R-S flip-flop 
Using switches to set values in flip-flops clearly isn’t going 
to be much practical use, except in some fairly simple 
applications. We need to be able to set and reset flip-flops 
using logic signals. The circuit below shows such a 
possibility. It is called an R-S flip-flop (where the R and S 
refer to the reset and set functions), and this particular one is 
made by cross-coupling two NOR gates, rather than simple 
inverters. This leaves two spare gate inputs, which are used 
to set and reset the circuit. The symbol for this R-S flip-flop 
is also shown on the right of the diagram. 

 
A flip-flop formed from two NOR gates makes an R-S 

flip-flop which may be set and reset via the two inputs R 
and S. 

Here’s how it works: 
• If R = S = 0 then the two NOR gates just function as 
inverters for the signals fed between the two gates. (To see 
this, look at the truth table for a NOR gate with one input set 
to 0. The output is then just always the complement of the 
other input.) Thus the circuit behaves exactly as the simple 
pair of inverters – that is, it just stays in whichever state it 
finds itself, and acts as a one-bit memory. 
• If R = 1 and S = 0 (that is, we make the reset input high), 
then output Q is forced to 0. (To see why, look at the NOR 
truth table again.  



Using Logic Gates to Build Computer Component 

37 

 

Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication Pvt. Ltd. 

Making any input 1 forces the output to 0). Q′ (= Q) is thus 
forced to 1, and the flip-flop is reset. It doesn’t matter how 
many times this is then repeated; the circuit will still stay 
reset. 
Note: Q is taken to be the “normal” output of the flip-flop 
(Q is always just its complement). Making Q = 1 is said to 
be setting the flip-flop, while making Q = 0 is resetting it. 
Set and reset are often also called preset and clear.  
• If R = 0 and S = 1 (that is, we make the set input high), 
then output Q´ is forced to 0 (it’s just the reverse of the 
previous case – the circuit is symmetric). Q is thus forced to 
1, and the flip-flop is set.  
• If R = 1 and S = 1 at the same time, we have a problem. 
Why? Because the outputs of both gates will be forced low. 
Then, when R and S are both returned to 0, which state will 
the circuit choose? (Note that Q = Q´ = 0 is not a stable state 
if R = S = 0). The answer is – we don’t know! It all depends 
on whether R or S went back to 0 first. For this reason, the 
combination R = S = 1 is not allowed. 
So, to store a 0 or 1 in this R-S flip-flop, we momentarily set 
R or S respectively to 1. 
It is also possible to build an R-S flip-flop using NAND 
gates, as shown inthe diagram below 
 

 
 

Another R-S flip-flop - this time using NAND gates. 
 
We won’t work through the logic of it, but the R-S input 
signals used here have to be the complement of those used 
in the previous (NOR) case. That is, the set and reset signals 
(labelled S and R ) are normally 1 in “remember” mode, and 
are taken to 0 to set or reset the circuit. Here the state S = R 
= 0 is not allowed. 
Note that these “inverted sense” input signals are denoted by 
bars over the S and R (hence becoming S and R ) and by the 
little bubbles at the S and R inputs on the flip-flop symbol. 

3. The J-K flip-flop 
Although the R-S flip-flop is occasionally used, the J-K flip-
flop is far more commonly found in digital systems. In a 
sense it is an enhancement of the R-S type, being rather 
more versatile, but it does has some fundamental 
differences. It has two inputs, J and K, which function 
somewhat like the S and R inputs on an R-S flip-flop, as 
well as a third clock input. The symbol for it is shown in the 
diagram below. The particular variety of J-K flip-flop shown 
in the diagram also has R and S inputs, which function in the 
same way as in a plain R-S flip-flop (to force it into one 
state or other). However, we won’t be concerned with them 
here; they are not a necessary feature of J-K flip-flops. 

 

 
The J-K flip-flop and its truth table. (Note that the R 
and S inputs are not provided on all J-K flip-flops.) 

Here’s how the J-K flip-flop works: 
• A change can only occur when the clock rises (that is, 
changes from 0 to 1). Nothing can happen at any other time 
(for example, when the clock falls). The flip-flop is said to 
be rising-edge-triggered. (It is also possible to get J-K flip-
flops which are falling-edge-triggered.) 
• What happens depends on the values of J and K at the 
instant the 
clock rises. Now, the truth table: 
• The third column of the truth table is just to remind you 
that the 
values of J and K are only important at the moment the 
clock rises. 
• The fourth column indicates the state which Q goes to after 
the clock 
rises, for a particular set of values of J and K. The notation 
looks a bit 
strange, but here’s what it means: Qn+1 means the state 
after the clock 
rises, while Qn means the state before. So the four entries in 
column 4 

for Qn+1 mean: 
 

 
as toggling. Note that this behaviour did not occur with the 
R-S flip-flop. The J-K truth table is actually not too difficult 
to remember. The rules are: 
 
(1) Things only happen when the clock rises. 
(2) If J = K = 0 then nothing happens. 
(3) If J = K = 1 then the flip-flop toggles 
(4) If J ≠ K then Q goes to the value that J has. 
 
The J-K flip-flop has some advantages over the R-S type. 
First, because changes are controlled by the clock, the 
operation of many circuits can be synchronised. Second, the 
behaviour is defined for all values of J and K (remember 
that R = S = 1 was not allowed with the R-S flip-flop). 
Third, the toggling behaviour when J = K = 1 allows us to 
design circuits which do some neat things. 
There are many useful circuits we can build by connecting 
J-K flip-flops together. Two of the most important are shift 
registers and counters. Let’s look at some of these. 

4. Shift registers 
In digital parlance, a register is simply a fancy name for a 
memory circuit to hold one “chunk” of information 
consisting of a number of bits. A shift register has the ability 
to “shift” all the bits of the binary number contained in it 
one place to the left (or right, or either, depending on its 
design), for each “tick” of a clock. It’s exactly like having a 
full row of seats at the cinema, each seating a girl (1) or boy 
(0). Some newcomer wants to sit at the end, so everybody 
shifts along by one at the same time to accommodate them. 
Of course, somebody also gets dropped off the other end, 
since there are only a fixed number of seats. So the situation 
might look like this: Before shift: 1 → 1010101100110100 -
-- (new girl) After shift: 1101010110011010 → 0 --- (boy 
lost off end) The figure below shows a single stage of a shift 
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register using a J-K flipflop. J is set to the new value to be 
shifted in, while K is set to its complement (this is easy to 
arrange with an inverter if necessary). When the clock rises, 
the J and K values are transferred to Q and Q respectively 
(refer back to the J-K truth table to see why). The old values 
of Q & Q are lost from this flip-flop, but are shifted to the 
following stage at the same time 

 
Figure 16.6 A basic shift register stage. With 
complementary J and K inputs, the data at J and K are 
transferred to Q and Q on rising clock edges. We can string 
together as many basic stages as we like, each feeding the 
next, as shown in the 3-stage example below. Note that the 
same clock signal connects to all stages. After the clock 
rises each time, a new value must be present at the input (A) 
to get shifted into the register. 

 
A three-stage shift register. 

A timing diagram is shown below for an 8-stage shift 
register, with outputs named Q1 to Q8 (flip-flops 1 to 8). 
Initially the shift register contains all zeroes (see down left-
hand side). Notice that the bits comprising the data (input) 
signal (going to flip-flop 1) are presented one bit at a time 
(serially), and are changed just after the clock rises each 
time. Notice also that Q1 follows the input signal (but 
delayed by just a little; it doesn’t change until the clock 
rises). Q2 follows Q1, but one clock cycle later, and so on. 
Eventually, after 8 clock cycles, the 8 bits of the input signal 
are shifted along to appear at Q1 through Q8. 

 
 

A Timing diagram for serial-to-parallel conversion 
using an 8-bit shift register. Q1 to Q8 are all initially 0, but 
after 8 clock cycles are set to the values of the incoming 
serial data. At this point all the bits of the signal are 
available simultaneously at the flip-flop outputs – that is, in 
parallel, rather than one at a time. Since the serial data 
stream is converted into parallel form, the shift register thus 
acts as a serial-to-parallel converter. (In practice, a little 
more circuitry would be required to inform the eventual 
receiver of the data that a new output was available after 
every 8 bits.) This might be useful, for example, if you 
wanted to test whether consecutive bits of the serial data 
stream were equal to some particular pattern (you would 

also need a little extra circuitry), or if they had to be sent to 
another device which required them all at the same time. For 
example, printers used with personal computers used to 
accept their data this way, one byte (8 bits) at a time, via the 
computer’s parallel port. A shift register can also be used to 
perform parallel-to-serial conversion, as illustrated in the 
next timing diagram. Here the idea is that the shift register is 
“loaded” with the new data, 8 bits at a time. These 8 bits are 
then shifted to the right one bit at a time, appearing at Q8. 
After 8 clock cycles, the next 8 bits are loaded, and so on. 

 
 

A Timing diagram for parallel-to-serial conversion 
Using an 8-bit shift register. 

5. Counters 
One particularly useful class of circuits which can be 
constructed with J-K , flip-flops is counters. Just like a 
digital clock, a counter steps through a specified sequence of 
numbers with each “tick” of a clock. In fact, let’s just 
consider this example for a moment to tune in to how 
counters operate. A digital clock is probably best designed 
as, say, 3 counters, two of which count through 0 to 59 
(seconds and minutes), and one which counts through 0 to 
11 (or 0 to 23). When the seconds counter goes past 59, it 
resets to zero, as well as sending a “minute tick” to the 
minutes counter (this is a “carry”). And so on. It wouldn’t be 
difficult to design such a clock with flip-flops and gates, but 
we’ll do something a little bit easier. Here we’re just going 
to consider binary counters. That is, circuits which count 
through a series of states which represent binary numbers, as 
in the following table (similar to the one in the previous 
chapter). 

 
The Successive states of a 4-bit binary counter counting 

from 0 to 15 (decimal). 
As a start, let’s look a bit closer at a J-K flip-flop which is 
set up to toggle - (that is when J = K = 1), as shown in the 
diagram below. We know that for every clock cycle (when 
the clock rises), its state changes, from 0→1 or 1→0. If we 
look at the timing diagram on the right, we see that Q 
changes only half as often as the clock. (That is, the 
frequency of the signal at Q is half that of the clock. We 
could make immediate use of this if we had need for a 
circuit to divide the frequency of a (digital) signal by two.) 
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Figure 16.10 A J-K flip-flop with J = K = 1 toggles (changes 
state) on rising clock edges to give an output which changes 
at one-half the clock rate. If you look at the right-hand bit 
(usually referred to as least-significant bit or LSB) of each 
binary number in the table above, and compare it with the 
next bit (one from the right), you will notice that the LSB 
changes exactly twice as often as its left neighbour as the 
count proceeds. This bears a striking similarity to the 
relationship between the clock and Q signals in the timing 
diagram above. Similarly, the next bit to the left changes 
half as often again, and so on. Now suppose we connect two 
J-K flip-flops together as shown below. That is, the output Q 
of the first flip-flop is used as the clock input for the next 
flip-flop. The output of the second flip-flop will now change 
at one-quarter the rate of the clock. 

 

 
The Cascading two stages gives a final output (Q2 or Q2) 

which is one-quarter the clock rate. The circuit also 
functions as a two-bit binary counter. 

 
Assume that initially Q1 = 0 and Q2 = 0. Let’s look at what 
happens on successive clock cycles. The timing diagram is 
shown below. 

 
 

The Timing diagram for the two-bit binary counter. 
 
Notice that: 
-Every time the clock rises, Q1 (and Q1 of course) changes. 
-Every time Q1 falls (that is, Q1 rises), Q2 changes. -After 4 
clock cycles, everything is back to where it started, with Q1 
= Q2 = 0. This is probably not surprising – there are only 4 
different possibilities for the values of Q1 and Q2 taken 
together. That is, the whole circuit has only 4 different 
possible states. It certainly can’t take longer than 4 clock 
cycles to return! 

• Taken together as a binary number, the pair {Q2Q1} 
cycles through the values 00, 01, 10, 11, …(decimal 0, 1, 2, 
3,…). That is, we have constructed a 2-bit binary counter.  

VII.  Conclusion 

 important computer components like Flip Flops , Registers 
and counters have been built by using the basic logic gates . 
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