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Abstract— Finite Element Analysis for geometrically nonlinear 

behavior of laminated composite plates is presented and compared 

with the reported investigations. A first order displacement field 

that accounts for transverse shear effects under geometric 

nonlinear condition is employed in the formulation of a four 

node, rectangular, element with five degrees of freedom per node. 

The formulation demonstrates its excellence in the performance 

for predicting response at various lay ups and plies conditions. 

Index Terms—Finite element method, plates and shells, 

geometric non linear analysis, composites.  

I. INTRODUCTION  

Thin and laminated plates/panels are one of the major load 

bearing structural elements in high performance structures. 

Composite laminates have many applications as advanced 

engineering materials, primarily as components in aircrafts, 

power plants, civil engineering structures, ships, cars, rail 

vehicles, robots, prosthetic devices etc. The major advantage 

of composite material is ability of the controllability fiber 

alignment. By arranging layers & fiber direction of laminates 

it can gain required strength & stiffness to meet specific 

design conditions. Most of the impact problems have been 

formulated using the small deflection theory which is 

adequate if the impact load is small. Theory regarding plates 

and shells and finite element method is given by Timoshenko, 

Zienkiewicz and Krishnamoorthy respectively. Ghugal and 

shimpi (2002) presented review of refined shear deformation 

theories of isotropic and anisotropic laminated plates. 

Wankhade (2011) analyzed skew plates for geometric 

nonlinear analysis using finite element method. Chaudhari 

(2011) also studied geometric nonlinear analysis of composite 

plates. Akavci (2007) used first order shear deformation 

theory for symmetrically laminated composite plates on 

elastic foundation. In the present study, a finite element 

including the effect of geometric non-linearity is employed in 

the impact analysis of laminated composite plates. A series of 

numerical examples are presented that provide insight into 

certain interesting behavior of laminated composite plates. 

Results are compared to available literature results & other 

available sources of numerical studies to validate the element. 

II. FINITE ELEMENT METHODOLOGY 

Fig. 2.1 shows a typical plan of laminated plate consisting of 

orientation of fibers with different axes  
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Fig. 2.1 Laminated composite plate provided with fiber 

orientation 

At each node equal degrees of freedom is provided i.e. 

, , , ,x yu v w φ φ  
And hence for FOST writing, 

0 xu u zφ= +
 

0 yv v zφ= +
 

0ww =
                                                                     (2.1) 

The coordinate x and y of any point within the element can be 

obtained by the four geometry nodes on the boundary of the 

plate expressed as, 
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Where, Ni’s are Lagrangian isoparametric shape functions 

and are given by, 
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Displacement within element domain can be given as, 
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Formulation for linear analysis  

In case of linear analysis, plate observes following three types 

of strains. These strains are linearly related with 

displacements and are given as following, 

A. Middle plane membrane strains 

{
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B. Curvature strains/Bending strains  

Curvature strains are linearly related to bending displacement 

as  

{
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C. Shear strains                                   
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Thus combining them together,     
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And     
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Where, γεε andbp , are membrane, bending and shear 

components of strains respectively. 

Strain-Displacement Matrix 

Strains are related with displacements as follows, 

{ {6 20
6 1 2 0 1

eBε δ
×

× ×

=

                                                             (2.11) 

{ {
2 202 1 20 1

s eBγ δ
×× ×

=

                                                                  (2.12) 

where Bm and Bs are strain displacement matrix which 

contains derivatives of shape functions.   

[ ] −mB
contribution due to membrane and bending effect 

[ ] −sB
 contribution due to transverse shear 

Geometric non-linear approach  

In linear analysis, it is assumed that both displacements and 

strains developed in the structure are small. In practical terms 

this means that geometry of the element remains basically 

unchanged during loading process and hence linear strain 

assumptions can be used. In practice such assumptions fails 

frequently even though actual strains may be small and elastic 

limit of ordinary structural materials not exceeded. If accurate 

determination of the displacement is needed for plates with 

large deflections analysis, geometric non-linearity may have 

to be considered. Whether the displacement or strains are 

large or small, equilibrium conditions between internal and 

external forces have to be satisfied. If  ( )aΨ   is a sum of 

internal and external geometric forces,                                                        
_

( ) 0
T

v

a B dv fσΨ = − =∫
                                                (2.13) 

In which 

_

B is defined from 

_

d B daε =
. 

_

B contains linear as 

well as non-linear strain displacement relation. 

And 

_

0 NLB B B= +
                                                        (2.14) 

In which 0B
 is the same matrix as in linear analysis. And 

NLB
contains some of the non-linear terms. A general 

definition of strains which is valid whether displacements or 

strains are large or small is, 
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and similar expressions for other strains. These formulae are 

defined by Green and saint Venant (Zienkiewicz, O. C. 

(1989)).  

 

 

 

                                                       (2.16) 

 

 

For large deflection analysis of plates the non-linear 

expressions given in equation 2.17 reduce to von Karman 

equations. The non-linear strains at any point within plate are 

given by,                           
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Strains 

In case of non-linear analysis, plate observes some of the 

non-linear terms in the membrane and bending strains. As 

these non-linear terms relate membrane and bending 

displacements and strains and are unaffected by shear, shear 

can be decoupled and its formulation can be separated from 

membrane-bending behavior. Hence these strains are given as 

following, 

 

{
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in which 

L
pε

 and 

N
pε

 are linear and non-linear components 

of middle plane membrane strains and combining linear and 

non-linear terms membrane strains are given as, 

Curvature strains/Bending strains 

Curvature strains are linearly related to bending displacement 

as  
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c. Shear strains 
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Hence,                      
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and shear strains can separately be written as, 
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In which
{ } { } { },p b andε ε γ

are membrane, bending and 

shear components of strains respectively. 
{

6 1

ε
× is combined 

strain vector of membrane and bending strains. 
{

2 1

γ
× is a vector 

containing shear strains. Subscript ‘p’ stands for in-plane, ‘b’ 

for bending, ‘L’ for linear and subscript ‘N’ stands for 

non-linear. 

Displacement-strain relation 

Strains are related with displacements as follows, 
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also, 
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Change in strain can be related to change in displacement as, 
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Matrices [B] and 
[ ]

_

B
 are different here. Various components 

of strains and change in strains are written as, 
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Change in strains,       
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Matrices 3 12

N
bB

× and 

_
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× are different due to geometric 

non-linear behavior of structure. The non-linear components 

of middle plane strains are written as, 
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Hence        
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Here [A] depends on the displacement vector of current 

deformed configuration of structure and slope matrix {θ} 

depends on next deformed configuration of structure which is 

to be calculated. Matrix [G] is purely based on derivatives of 

shape functions and coordinates.  
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Element stiffness matrix 

As usual stiffness matrix is given by  

[ ] [ ] [ ] [ ]T
K B D B dv= ∫                                               (2.34) 

[ ]
8 128 8

20 20

12 8 12 12

0

0

L
pp

L

L
bb

K

K

K

××

×

× ×

 
 
 

=  
 
                                                   (2.35) 

And  

_

_ _ _20 20

0

N
t

L
pp p

N t t
N N N

A L
b b bp p p

B D B

K dA

B D B B D B
×

  
           =         

                          

∫

 
                                                                                       (2.36) 

The equation is derived as 
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Kσ    is the matrix which accounts for the change in 

potential energy associated with rotation of volume elements 

under load. This matrix is called as ‘initial stress stiffness 

matrix’ or ‘differential stiffness matrix’ or geometric stiffness 

matrix or stability coefficient matrix. 
Kσ    is independent of 

elastic properties. It depends on elements geometry, 

displacement field and state of stress. The matrix can be 

expressed as: 
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Where,    
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Total element stiffness matrix can be written as, 
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III. NUMERICAL RESULTS AND DISCUSSIONS 

Numerical examples of composite plates having different 

features are solved by the proposed element and the results 

obtained are presented with the published results for 

necessary comparison. Example 1: An anti-symmetric, 

cross-ply (0
0
/90

0
) square laminate, with which dimensions of 

a and b, in x and y directions respectively, is considered as 

subjected to a sinusoidal varying mechanical load of the type 

[q = qo sin px sin qy] with clamped boundary condition. The 

material properties used are as follows: 

E1/E2 =25, G12/E2 = 0.5, G12 = G13, G23/E2 = 0.2, γ12 = γ13 = γ23 

= 0.25, E2 = E3 = 1.0 x 106, a = b= 30, h =3 

Table 3.1 Comparison of central deflection 

Load Psi 

Central 

Deflection ‘w’ in. 

(Present) 

Central 

Deflection ‘w’ in. 

(Chang et al) 

30000 2.8013 2.5877 

60000 3.7025 3.4471 

90000 4.3289 4.0372 

120000 4.7908 4.4968 

150000 5.2287 4.8821 

180000 5.6158 5.2166 

210000 5.9386 5.5143 

240000 6.2625 5.7836 

270000 6.3329 6.0306 

300000 6.6892 6.2593 

 

 

Fig. 3.1 Load – Deflection curve for cross-ply (0
0
/90

0
) 

square laminate, 

Example 2: A 4 ply anti symmetric (-45
0
/45

0
/45

0
/-45

0
) square 

laminated plate with a = b = 12 in., h = 0.096 in.and subjected 

to a sinusoidal varying mechanical load of the type [q = qo sin 

px sin qy] is used with clamped edge conditions. The 

following material properties are used 

E1 = 1.8282 x 106, E2 = 1.8315 x 106, G12 = G23 = G13 = 3.125 

x 105, γ = 0.23949 



International Journal of Emerging Science and Engineering (IJESE) 

ISSN: 2319–6378, Volume-3 Issue-9, July 2015  

 

5 

 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication Pvt. Ltd. 

Table 3.2  Comparison of central deflection 

Load psi 

Central 

Deflection ‘w’ in. 

(Present) 

Central 

Deflection ‘w’ 

in. (Chang et al) 

30000 2.9581 3.0526 

60000 3.9372 4.1088 

90000 4.6389 4.8305 

120000 5.1893 5.3913 

150000 5.5718 5.861 

180000 5.8773 6.2689 

210000 6.2903 6.6317 

240000 6.6402 6.9602 

270000 6.9318 7.2614 

300000 7.1991 7.5403 

 

 

Fig. 3.2 Load – Deflection curve for anti symmetric 

(-450/450/450/-450) square laminated 

Fig 3.1& Fig.3.2 show non-dimensional load versus non- 

dimensional maximum central deflection . The results 

obtained for central maximum deflection are compared with 

the results of Chang et al. (1991), and are found in good 

agreement. It is observed that maximum central deflection of 

laminated plate increases as load increases. 

IV. CONCLUSION 

A new rectangular element based on first order shear 

deformation theory is presented. The formulation is validated 

by comparing results with the relevant literature. The element 

is tested numerically in a wide range of problems covering 

different boundary conditions, loading, material property, and 

stacking sequence and so on. This study has lead to the 

following conclusions. The consideration of non-linear terms 

in the formulation results in better agreement of the response 

with both, the experimental and the analytical, solution in 

relevant literature. The central deflection increases with 

increase in the value of load. The central deflection decreases 

with increase in number of layers for the same thickness. It is 

observed that the central deflection reduces with increase in 

the degree of orthotropy and that the rate of change of 

transverse deflection with respect to degree of orthotropy is 

almost identical for both symmetric and anti-symmetric plies 

considered for the present study. From the present study it 

may be conclude that the above results will be helpful to 

structural engineers as design charts. 
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