
International Journal of Emerging Science and Engineering (IJESE) 

ISSN: 2319–6378, Volume-4 Issue-9, April 2017 

13 

Published By: 
Blue Eyes Intelligence Engineering 

& Sciences Publication Pvt. Ltd. 

Convolutional Neural Network and Adaptive 

Dictionary Learning for Brain Tumour Cell 

Detection 

N. Poonguzhali, B. Punitha, J.Ashwini Mega, G. Thamizamudhu 

Abstract: In this paper, we propose an efficient brain tumor 

detection method and an automatic segmentation method, which 

can detect tumor and locate it in the brain MRI images. 

Automatic and reliable segmentation methods are used in order 

to manage large spatial and structural variability among brain 

tumors. Also, some pre-processing steps are used for tumor 

detection purpose. The automatic segmentation method is based 

on convolution neural networks. We present an automatic cell 

detection framework using sparse reconstruction and adaptive 

dictionary learning. The automatic cell detection results are 

compared with manually annotated ground truth and other state-

of-the-art cell detection algorithms. 

     Keywords: Cell detection, MRI images. 

I. INTRODUCTION 

Image processing is processing of images using 

mathematical operations by using any form of signal 

processing for which the input is an image, a series of 

images, or a video, such as a photographer video frame; the 

output of image processing may be either an image or a set 

of characteristics or parameters related to the image. Most 

image-processing techniques involve treating the image as 

a dimensional signal and applying standard signal-

processing techniques to it. Images are also processed 

as three-dimensional signals where the third-dimension 

being time or the z-axis. In brain tumor segmentation, we 

find several methods that explicitly develop a parametric or 

non-parametric probabilistic model for the underlying data. 

These models usually include a likelihood function 

corresponding to the observations and a prior model. Being 

abnormalities, tumors can be segmented as outliers of 

normal tissue, subjected to shape and connectivity 

constrains. Mathematical morphology stresses the role of 

“shape” in image pre-processing, segmentation and object 

description. Morphology usually divided into binary 

mathematical morphology which operates on binary images 

and gray level images. The two fundamental operations are 

Dilation and erosion. Dilation expands the object to the 

closest pixels of the neighborhood. 
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A. Brain Tumor 

A brain tumor or intracranial neoplasm occurs when 

abnormal cells form within the brain. There are two main 

types of tumors: malignant or cancerous tumors 

and benign tumors. Cancerous tumors can be divided into 

primary tumors that start within the brain, 

and secondary tumors that have spread from somewhere 

else, known as brain metastasis tumors. 

 

Fig.1. Brain Tumor 

 All types of brain tumors may produce symptoms that vary 

depending on the part of the brain involved. These 

symptoms may include headaches, seizures, problem 

with vision, vomiting, and mental changes. The headache is 

classically worse in the morning and goes away with 

vomiting. More specific problems may include difficulty in 

walking, speaking, and with sensation. As the disease 

progresses unconsciousness may occur.  

II. RELATED WORKS 

The accurate segmentation of gliomas and its intra-tumoral 

structures is important not only for treatment planning, but 

also for follow-up evaluations. However, manual 

segmentation is time-consuming and subjected to inter- and 

intra-rater errors difficult to characterize. Thus, physicians 

usually use rough measures for evaluation [1]. For these 

reasons, accurate semiautomatic or automatic methods are 

required [1], [5]. However, it is a challenging task, since the 

shape, structure, and location of these abnormalities are 

highly variable. Additionally, the tumor mass effect change 

the arrangement of the surrounding normal tissues [5]. Also, 

MRI images may present some problems, such as intensity 

in homogeneity [6], or different intensity ranges among the 

same sequences and acquisition scanners [7]. 

 

 

https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Video_frame
https://en.wikipedia.org/wiki/Three-dimensional
https://en.wikipedia.org/wiki/Signal_(electrical_engineering)
https://en.wikipedia.org/wiki/Human_brain
https://en.wikipedia.org/wiki/Cancer
https://en.wikipedia.org/wiki/Benign_tumor
https://en.wikipedia.org/wiki/Primary_tumor
https://en.wikipedia.org/wiki/Metastasis
https://en.wikipedia.org/wiki/Brain_metastasis
https://en.wikipedia.org/wiki/Headaches
https://en.wikipedia.org/wiki/Seizures
https://en.wikipedia.org/wiki/Visual_perception
https://en.wikipedia.org/wiki/Vomiting
https://en.wikipedia.org/wiki/Cognition
https://en.wikipedia.org/wiki/Unconsciousness
https://en.wikipedia.org/wiki/File:Postermass.png


 

Convolutional Neural Network and Adaptive Dictionary Learning for Brain Tumour Cell Detection 

14 

Published By: 

Blue Eyes Intelligence Engineering 
& Sciences Publication Pvt. Ltd. 

     In brain tumor segmentation, we find several methods 

that explicitly develop a parametric or non-parametric 

probabilistic model for the underlying data. These models 

usually include a likelihood function corresponding to the 

observations and a prior model. Being abnormalities, tumors 

can be segmented as outliers of normal tissue, subjected to 

shape and connectivity constrains [8]. Other approaches rely 

on probabilistic atlases [9]–[11]. In the case of brain tumors, 

the atlas must be estimated at segmentation time, because of 

the variable shape and location of the neoplasms [9]–[11]. 

Tumor growth models can be used as estimates of its mass 

effect, being useful to improve the atlases [10], [11]. The 

neighborhood of the voxels provides useful information for 

achieving smoother segmentations through Markov Random 

Fields (MRF) [9]. Zhao at al. [5] also used a MRF to 

segment brain tumors after a first oversegmentation of the 

image into supervoxels, with a histogram-based estimation 

of the likelihood function. As observed by Menze et al. [5], 

generative models generalize well in unseen data, but it may 

be difficult to explicitly translate prior knowledge into an 

appropriate probabilistic model. 

III. SYSTEM ANALYSIS 

A. Existing System 

A generative models generalize well in unseen data, but it 

may be difficult to explicitly translate prior knowledge into 

an appropriate probabilistic model. Another class of 

methods learns a distribution directly from the data. 

Although a training stage can be a disadvantage, these 

methods can learn brain tumor patterns that do not follow a 

specific model. This kind of approaches commonly consider 

voxels as independent and identically distributed, although 

context information may be introduced through the features.  

Because of this, some isolated voxels or small clusters may 

be mistakenly classified with the wrong class, sometimes in 

physiological and anatomically unlikely locations.  

     To overcome this problem, some authors include 

information of the neighborhood by embedding the 

probabilistic predictions of the classifier into a Conditional 

Random Field. In summary, we propose a novel CNN-based 

method for segmentation of brain tumors in MRI images.  

We start by a pre-processing stage consisting of bias field 

correction, intensity and patch normalization. After that, 

during training, the number of training patches is artificially 

augmented by rotating the training patches, and using 

samples of HGG to augment the number of rare LGG 

classes. The CNN is built over convolution layers with small 

3 × 3 kernels to allow deeper architectures.  

    In designing our method, we address the heterogeneity 

caused by multi-site multi-scanner acquisitions of MRI 

images using intensity normalization. We show that this is 

important in achieving a good segmentation. Brain tumors 

are highly variable in their spatial localization and structural 

composition, so we have investigated the use of data 

augmentation to cope with such variability. 

B. Proposed System 

Adaptive Dictionary Learning 

At training stage, we manually crop many image patches, 

and each patch contains one cell located in the center .These 

image patches form an over-complete dictionary, which is 

neither robust nor efficient. Considering this factor, we 

propose to use the -selection to select a subset of 

representative patches to build a compact dictionary. In 

order to further improve the computational efficiency, we 

only utilize the patches similar to the testing image patches 

as the dictionary candidates measured by cosine similarity 

metric.  

    A cell splitting method based on ellipse fitting using 

concave points information is reported in  to learn a 

classifier to refine the cell detection results obtained by 

ellipse fitting. The major challenges in cell detection for the 

brain tumor data set include shape variation, cell touching or 

overlapping, and heterogeneous intracellular intensity, and 

weak cell boundaries. There are three components, including 

training stage, testing image specific information 

acquisition, and cell detection using sparse reconstruction 

with trivial template. In training stage, a set of representative 

patches are selected from thousands of manually cropped 

single cell patches.  In the testing image specific information 

acquisition, for a given testing image, a sample patch is 

cropped and used to find similar patches from the 

representative patches to form the dictionary. Although the 

existing methods are able to handle some of these 

challenges, they fail in simultaneously addressing all of 

them. Therefore the accurate cell detection in brain tumor 

histopathological images remains to be a challenging 

problem 

The algorithm consists of the following steps:  

         1) A set of training image patches is collected      from 

images of different brain tumor patients at different ages. –

selection is applied on this dataset to learn a compact cell 

library.  

          2) Given a testing image, a testing image specific 

dictionary is generated by searching in the learned library 

for similar cells. Cosine distance based on ocal steering 

kernel features is employed as the similarity measurement. 

           3) The sparse reconstruction using trivial templates is 

applied to handle touching cells. A probability map is 

obtained by comparing the sparsely reconstructed image 

patch to each testing window. 

 4) A weighted mean-shift clustering is used to generate the 

final cell detection results. 

C. System Architecture 

 
Fig 2. System Architecture 
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IV. IMPLEMENTATION AND RESULTS 

A. GUI Creation 

   GUI provide point-and-click control of software 

applications. It integrates the two primary tasks of app 

building―laying out the visual components and 

programming app behavior. 

 

Fig 3. GUI 

B. Input Image 

The MRI Scanned image is given as input. Functional MRI 

measures signal changes in the brain that are due to 

changing neural activity. MRI images may present some 

problems, such as intensity in homogeneity, or different 

intensity ranges among the same sequences and acquisition 

scanners. The shape, structure and location of these 

abnormalities are highly variable. The mean intensity value 

and standard deviation across all training patches 

extracted for each sequence. 

 

Fig 4. MRI Scanned Image 

C. Ground Truth Image 

   Super resolution offers an effective approach to boost 

quality and details of low-resolution images to obtain high 

resolution image. Evaluation result demonstrate the special 

characteristics of the captured ground truth HR-LR images. 

The patches with touching/occlusion cells exhibit 

unexpected appearances in the background such that they 

are not consistent with the dictionary atoms and thus sparse 

reconstruction with could result in larger reconstruction 

errors. 

 

Fig 5. HR Ground Truth 

D. Cubic Spline 

The spline is constructed of piecewise third-order 

polynomials which pass through a set of control points. The 

method involves cluster analysis, that is, grouping the crude 

data into clusters and seed points are the limits of each 

cluster. The central for each cluster become nodes through 

which a natural spline is fitted. B-splines is utilized to infer 

the object shapes and missing object boundaries. However, 

the method may not work well on cells with heterogeneous 

intensity and cluttered background. 

 

Fig 6.  Cubic Spline 

E. Sparse Reconstructed Image 

  The cells with similar appearances approximately lie in the 

same low dimensional subspace. Each atom corresponds to 

one training patch with one single non-touching cell at its 

center, the atoms can sufficiently represent a testing patch 

with a centered single non-touching cell. The sparse Re-

construction using trivial templates are very similar to the 

original image. In addition, compared to the original patches 

it is clear that the clean image not only preserves the original 

shape of the cell but also removes the touching cells 

(occlusions). This is due to the contribution of the trivial 

templates. Using the reconstruction images provides better 

cell detection results, Because it gives much smaller sparse 

reconstruction errors even there exist occlusions. 
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Fig 7. Sparse Reconstructing Image 

F. Validation Performance 

   This structure contains all of the information concerning 

the training of the network. The error reduces after more 

epochs of training, but might start to increase on the 

validation data set as the network starts over-fitting the 

training data. In the default setup, the training stops after six 

consecutive increases in validation error, and the best 

performance is taken from the epoch with the lowest 

validation error. 

 

   Fig 8. Best Validation Performance 

G. Training State 

  When the network weights and biases are initialized, the 

network is ready for training. The multilayer feed-forward 

network can be trained for function approximation 

(nonlinear regression) or pattern recognition. The process of 

training a neural network involves tuning the values of the 

weights and biases of the network to optimize network 

performance, as defined by the network performance 

function net. Perform Fcn. There are two different ways in 

which training can be implemented: incremental mode and 

batch mode. In incremental mode, the gradient is computed 

and the weights are updated after each input is applied to the 

network. In batch mode, all the inputs in the training set are 

applied to the network before the weights are updated. 

 

Fig 9. Neural Network Training State 

H. Confusion Matrix 

    On the confusion matrix plot, the rows correspond to the 

predicted class (Output Class), and the columns show the 

true class (Target Class). The diagonal cells show for how 

many (and what percentage) of the examples the trained 

network correctly estimates the classes of observations. That 

is, it shows what percentage of the true and predicted classes 

match. The off diagonal cells show where the classifier has 

made mistakes. The column on the far right of the plot 

shows the accuracy for each predicted class, while the row 

at the bottom of the plot shows the accuracy for each true 

class. The cell in the bottom right of the plot shows the 

overall accuracy. 

 

Fig 10. Confusion Matrix 

V. CONCLUSION 

  This paper presents an efficient method of classifying MR 

brain images into normal, benign and malignant tumor, 

using a adaptive learning. We propose a novel CNN-based 

method for segmentation of brain tumors in MRI images. 

We start by a pre-processing stage consisting of bias field 

correction, intensity and patch normalization.   
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The proposed approach gives very promising results in 

classifying MR images. Most of the existing methods can 

detect and classify MR brain images only into normal and 

abnormal. Based on the experimental results, adaptive 

learning is considered to major advantages over 

conventional neural networks, due to the fact that adaptive 

learning learns from the training data instantaneously. 
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